新型深吃水多柱延伸式张力腿平台的概念设计与耦合运动响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球能源需求量的不断增加,越来越多的深海油气资源得以勘探和开发,采用的钻采设备主要是不同类型的浮式平台,其中以张力腿平台、半潜式平台、浮式生产储油轮和柱式平台这四种最为常用。张力腿平台,运动性能优良,同时具有半固定和半顺应的特点,已被广泛应用于世界众多深海油气钻采工程当中,但目前在我国尚没有一座在建或投入使用。世界上的很多学者已经对张力腿平台的各方面性能做了大量的研究,其中水动力特性及动力响应性能是张力腿平台最核心的科学问题之一。为了掌握张力腿平台的各方面性能,为我国深海油气资源的开发积累技术储备,本文在综述目前世界深海油气资源勘探开发中常用浮式平台的类型和特点以及张力腿平台的发展历史、不同型式的特性和主要科学问题的研究现状及方向的基础上,主要做了以下几方面的研究工作:
     (1)介绍了张力腿平台的总体设计内容、相关规范规程、交互式设计方法和基本力学特性,归纳出了深水浮式平台型式创新的方向和原则,提出了一种新型的深吃水多柱延伸式张力腿平台,并根据我国南海特定海域的实际环境条件对它进行了概念设计和选型,得到了此种平台的基本特性,结果表明新型深吃水多柱延伸式张力腿平台所受到的波激力状况要明显优于传统张力腿平台,具有更好的动力响应性能。用拟静力的方法分析了张力腿平台运动对各参数的敏感性,结果表明影响张力腿平台性能的主要参数有平台水线面面积、张力腿的初始预张力和就位长度。
     (2)应用势流理论及波浪的绕射和辐射理论,考虑系泊系统的附加刚度,建立和求解了张力腿平台上体的波频响应运动方程。以四座常用类型张力腿平台和新型系列深吃水多柱延伸式张力腿平台为对象,建立它们的数值计算模型,分别计算了它们的水动力参数和波频响应,结果表明系泊系统的附加刚度使得波浪能量集中的周期范围内平台各方向的运动幅值响应算子取值均变小,纵、横荡和首摇均呈现出很长的自然周期,垂荡和纵摇的自然周期很短;水线面的减小将同时减小平台的波浪荷载和静水回复刚度,会同时增大平台垂荡和纵摇的幅值响应算子;新型深吃水多柱延伸式张力腿平台具有良好的波频响应特性,立柱的直径、间距和吃水是影响其性能的主要参数。
     (3)考虑多种环境荷载与平台运动的耦合关系,建立了由平台上体、立管和张力腿系泊系统共同组成的张力腿平台时域耦合运动方程,并给出了方程迭代求解的方法。建立平台全耦合运动系统的数值模型,数值模拟不同工况下四座常用类型张力腿平台和新型深吃水多柱延伸式张力腿平台的时域运动响应,结果表明张力腿平台纵荡将引起垂荡,它们和首摇运动均以低频成分为主,而纵摇就是高频成分占绝对优势的波频响应,立管的主要作用是增加平台主体的沉降和提高垂荡响应的低频成分比例,新型张力腿平台在各方向上的运动性能均要比传统式张力腿平台优良。
     (4)应用弦振动理论推导了张力腿在流荷载作用下产生卡门涡街时的非线性偏微分振动方程,从而建立了适用于概念设计阶段的平台张力腿动力响应快速预报模型,进一步推导了张力腿在顶端受到平台各方向运动作用时的动力响应计算方法,最后用数值模拟的方法分析了一个张力腿算例在波、流联合作用下在不同方向上和不同工况下的动力响应,其中考虑了张力腿的运动与所受流荷载大小及方向的耦合效应。结果表明波浪荷载的作用很小,平台的运动会激起张力腿在更多频率上的共振响应,在一定条件下张力腿会产生涡激振动并处于发散状态,这将严重危害平台的安全。
     (5)提出了两种能够使得张力腿平台适用于更深海域或更恶劣海况的方案:混合系泊系统方案和附加浮箱张力腿方案。数值模拟结果表明装备混合系泊系统的张力腿平台各方向的响应幅值均会有显著地减小,在张力腿的一定位置附加浮箱可以显著降低平台的纵荡和垂荡响应极值和平台的慢漂响应,但对纵摇没有明显作用。
With the increasing demand for energy, the global exploitation of deepwater oiland gas is continuously improved. The drilling and production platforms are floatingplatforms such as tension leg platform (TLP), semi-submersibles (Semi-sub),floating production storage&offloading (FPSO) and Spar. The TLPs have bothsemi-fixed and semi-compliant features, which are used in oil drilling andproduction abroad extensively because of its excellent motion performance.However, so far there is no TLP to be built in our country China. For a long time,many scholars at home and abroad have done considerable research on TLP. One ofthe most core problems is hydrodynamic properties and dynamic responses of TLP.This research aims to master performances of TLP, develop new type of TLP, andincrease Chinese technical reserve on oil and gas exploitation in deep sea. In theintroduction, the source, significance and main contents of this thesis are illustrated.The most commonly used types of floating platforms in the exploration anddevelopment of deepwater oil and gas and its characteristic are summarizedespecially TLP, such as its development history, research status, main types andcharacteristics, the current research status and directions of development. Based onthe reviews of introduction, the main contents in this thesis are as follows:
     (1) The main contents of general design, relevant codes, operation regulationsand interaction design methods are introduced for TLP. The methods and the path ininnovating a new-type TLP are summarized. Then an innovative deep-driftmulti-column extended tension leg platform (DME TLP) is global designed underthe environmental conditions of South China Sea according to relational criterions.The analytical solutions of TLP’s nonlinear motion based on the corner are deducedaccording to the quasi-static analysis method. It is used to study the global motionresponse of TLP considering the main parameters. The influence of TLP’s tension,cross-sections, lengths and hull’s cross-section upon the global motion response ofTLP is analyzed.
     (2) The theory of potential flow and diffraction&radiation are used tocalculate the wave frequency responses of TLPs in frequency domain and theinfluences of tendon additional stiffness are considered. Four TLPs with commonforms and the innovative DME TLPs are chosen as research models, the motionRAOs of platform, additional mass and radiation damping in different conditions areobtained. The results show that the additional stiffness from tendons to platformreduced the motion RAOs of TLP in the energy focus range of wave period. Thenatural periods of surge, sway and yaw are longer, and heave is shorter. The patulous mooring system and optimization of waterline plane may reduce the hydrostaticstiffness matrix of platform, and RAOs of changed platform may be increased. Theinnovative DME TLPs have good performance on wave frequency response; itsmain parameters are diameter of column, spacing and draught.
     (3) The whole coupled response model composed of platform, risers andtension legs is built to simulate the motion response of different types of TLPs andDME2TLP in time domain considering the hydrodynamic parameters and thecombined action of wind, current and wave. The results show that surge and sway ofTLP, which are mainly composed by low frequency motion, are conspicuous andmotions of TLP in other direction are inconspicuous. Roll and pitch are mainlycomposed by high frequency motion. Yaw is mainly composed by low frequency.Because surge and sway can bring on heave, heave has many low frequencyelements. The effect of risers is to increase heave and its low-frequency contents.DME2has more excellent performance than CTLP in each direction.
     (4) The vibratory response analysis model of tendon is made based upon thetheory of string vibration. In addition, the nonlinear partial differential equations ofvibratory response of tendon are deduced. Afterwards an even more complex modelfor VIV of tendon is built considering the influences of platform motions and bothof wave and current loads. Moreover, the finite element method is used to analysisthe motion response of tendon. The results show that the motions of platformprovoked resonance of tendon in more frequencies. The tendon would have VIV, andit may be in a state of divergence.
     (5) The studies on performance improvement of TLP are completed to makeTLP apply to deeper waters or severe sea condition. A mixed mooring system of TLP,which is composed by catenary cables and vertical parallel tendons, is advanced toimprove the motion response performances of TLP, and the motion performance ofTLP in Extreme Sea Environments can be improved by adding pontoon on eachtendon. The analysis model of additional pontoon TLP is built. The hydrodynamicparameters of platform and additional pontoon are calculated by using thediffraction/radiation wave theory. In addition, the coupled dynamic responsebetween the platform and additional pontoon on the effect of wind, wave and currentloads is analyzed according to multi-module cooperative solving analysis andconsidering different pontoon dimension and emplacement water depth.
引文
[1]兰德尔.海洋工程基础[M].杨槱,包丛喜,译.上海:上海交通大学出版社,2002:15-16.
    [2]白云程,周晓慧,万群,等.世界深水油气勘探现状及面临的挑战[J].特种油气藏,2008,15(2):7-17.
    [3]鲍莹斌,李润培,顾永宁.张力腿平台研究领域和发展趋势[J].海洋工程,1998,16(4):17-26.
    [4] Ellis N, Tetlow J H, Anderson F, et al. Hutton TLP Vessel-StructuralConfiguration and Desigh Features[C]//Offshore Technology ConferenceProceedings. Houston: OTC,1982:4427-MS.
    [5]董艳秋.深海采油平台波浪载荷及响应[M].天津:天津大学出版社,2005:2-9.
    [6] Ahmad S K, Ahmad S. Active control of non-linearly coupled TLP responseunder wind and wave environments [J]. Computers and Structures,1999(72):735-747.
    [7]张智,董艳秋,唐友刚,等.1990年后世界TLP平台的发展状况[J].中国海洋平台,2004,19(2):5-11.
    [8] Huang E, Bhat S, Luo Y, et al. Evaluation of Dry Tree Platform Concepts
    [C]//Offshore Technology Conference Proceedings. Houston: OTC,2000:11899-MS.
    [9] Kibbee S E, Leverette S J, Davies K B, et al. Morpeth Seastar Mini-TLP
    [C]//Offshore Technology Conference Proceedings. Houston: OTC,1999:10855-MS.
    [10] Furlow W. Unlimited Depth Minimal TLP Gets First Application on Prince[J].Offshore,2001,61(10):82,160.
    [11]刘杰鸣.深海油气开发与科技进展[C]//中国深水油气开发工程高技术论坛论文集.上海,2005:132-139.
    [12] S rensen A J, Sagatun S I, Fossen T I. Design of a dynamic positioning systemusing model-based control[J]. Control Engineering Practice,1996,4(3):359-368.
    [13]郝黎晶.单柱式深水平台结构设计准则及主体强度初探[D].上海:上海交通大学船舶与海洋结构物设计制造专业硕士学位论文,2008:17-25.
    [14]张智. Spar平台系泊系统计算及波浪载荷研究[D].天津:天津大学船舶与海洋结构物设计制造专业硕士学位论文,2005:7-15.
    [15] Irani M, Perryman S, Brewer J, et al. Vortex Induced Motions of the HornMountain Truss Spar[C]//Proceedings of OMAE2008. Estoril: ASME,2008:OMAE2008-57992.
    [16] Irani M, Finn L. Improved Strake Design for Vortex Induced Motions of SparPlatforms[C]//Proceedings of OMAE2005. Halkidiki, Greece: ASME,2005:OMAE2005-67384.
    [17] Theckumpurath B, Ding Y, Zhang J. Numerical simulation of the truss spar‘HORN MOUNTAIN’[C]//Proceedings of the sixteenth Internatlonal Offshoreand Polar Engineering Conference. San Francisco: ISOPE,2006:203-209.
    [18] Liu T, Chen X, Wu J, et al. Global Performance and Mooring Analysis of aTruss Spar[C]//Proceedings of The Thirteenth International Offshore and PolarEngineering Conference. Hawaii, USA: ISOPE,2003:256-263.
    [19] Bradbury J. Red Hawk Showcases First Cell Spar[EB/OL].(2002-11-4)
    [2012-12-12].http://www.epmag.com/EP-Magazine/archive/Red-Hawk-showcases-cell-spar_3086.
    [20] Shimamura Y. FPSO/FSO: State of the Art[J]. Journal of Marine Science andTechnology,2002,7(2):59-70.
    [21] Mack R C, Gruy R H and Hall R A. Turret Moorings for Extreme DesignConditions[C]//Offshore Technology Conference Proceedings. Houston, USA:OTC,1995:7696.
    [22]李彬彬.新型深吃水多立柱平台的水动力与运动响应研究[D].哈尔滨:哈尔滨工业大学防灾减灾工程与防护工程学科博士学位论文,2011:4-15.
    [23]闫功伟,欧进萍.新型分离式张力腿平台概念设计[J].科学技术与工程,2012,12(8):7-15.
    [24] Homayoun H, Neil W, Sean L, et al. Development of a new self-stable dry-treegom TLP with full drilling capabilities[C]//Proceedings of OMAE2008.Houston: ASME,2008:743-749.
    [25] Heidari H. NOVEL TLP CONCEPT FOR ULTRA-DEEPWATER FIELDDEVELOPMENT[C]//Proceedings of OMAE2009. Honolulu: ASME,2009:OMAE2009-80191.
    [26] Bian X S, Leverette S J, Rijken O R. A TLP solution for8000Ft waterdepth[C]//Proceedings of OMAE2010. Shanghai: ASME,2010:OMAE2010-20409.
    [27] Jagannathan S. The Suspended Tension Leg Platform (STLP): A New PlatformConcept for Deepwater Exploration and Production[C]//Proceedings of ASME11th International Offshore Mechanics and Arctic Engineering. Calgary,Canada,1992,1(B):517-525.
    [28] Kobayashi H, Iida Y, Mori N, et al. New Concept of TLP with Gravity-typeTemplate[J]. SPE ADV TECHNOL SER,1995,3(1):30-38.
    [29] Copple R W, Capanoglu C C, Kalinowski D W. Buoyant leg structure withadded tubular members for supporting a deep water platform[P]. United StatesPatent,2004, Patent No: US6783302B2.
    [30] Chandrasekaran S, Jain A K. Dynamic behaviour of square and triangularoffshore tension leg platforms under regular wave loads[J]. Ocean Engineering,2002,29(3):279-313.
    [31] Chandrasekaran S, Jain A K. Triangular Configuration Tension Leg Platformbehaviour under random sea wave loads[J]. Ocean Engineering,2002,29(15):1895-1928.
    [32] Bhattacharyya S K, Sreekumar S, Idichandy V G. Coupled dynamics of Seastarmini tension leg platform[J]. Ocean Engineering,2003,30(6):709-737.
    [33] Murray J, Yang C K, Yang W, et al. An Extended Tension Leg Platfom Designfor Post-Katrina Gulf of Mexico[C]//Proceedings of the Nineteenth (2009)International Offshore and Polar Engineering Conference. Osaka: ISOPE,2009:ISOPE-2008-287.
    [34] Lee J Y, Lim S J. Hull form optimization of a tension-leg platform based oncoupled analysis[C]//Proceedings of the Eighteenth International Offshore andPolar Engineering Conference. BC, Canada: ISOPE,2008:100-107.
    [35] Taflanidis A A, Angelides D C, Scruggs J T. Simulation-based robust design ofmass dampers for response mitigation of tension leg platforms[J]. EngineeringStructures,2009,31(4):847-857.
    [36] Yang C K, Kim M H. Transient effects of tendon disconnection of a TLP byhull-tendon-riser coupled dynamic analysis[J]. Ocean Engineering,2010,37(8-9):667-677.
    [37] Nihei Y, Fujioka H. MOTION CHARACTERISTICS OF TLP TYPEOFFSHORE WIND TURBINE IN WAVES AND WIND[C]//Proceedings ofOMAE2010. Shanghai: ASME,2010: OMAE2010-21126.
    [38] Srinivasan N. Tension-based tension leg platform: technologies for ultradeepwater applications[C]//Proceeding of OMAE2010. Shanghai: ASME,2010:OMAE2010-20042.
    [39] Srinivasan C, Gaurav G, Serino G, et al. Ringing and springing response oftriangular TLPs[J]. International Shipbuilding Progress,2011,58:141-163.
    [40] King R. A review of vortex shedding research and its application[J]. OceanEngineering,1977,4(3):141-171.
    [41] Sarpkaya T. Vortex-induced oscillations: a selective review[J]. Journal ofApplied Mechanics,1979,46(2):241-258.
    [42] Iwan W D. The vortex-induced oscillation of non-uniform structuralsystems[J]. Journal of Sound and Vibration,1981,79(2):291-301.
    [43] Lyons G J, Patel M H. Application of a general technique for prediction ofriser vortex-induced response in waves and current[J]. J Offshore Mech ArctEng,1989,111(2):82-91.
    [44] Rajabi F, Mangiavacchi A, Zedan M F. Vortex shedding induced dynamicresponse of marine risers[J]. J Energy Resour Technol,1984,106(2):214-221.
    [45] Siddiqui N A, Ahmad S. Fatigue and fracture reliability of TLP tethers underrandom loading[J]. Marine Structures,2001,14(3):331-352.
    [46]甘锡林,朱胜昌.旋塔式单点系泊立管水弹性分析.中国海洋平台,1990,1:15-17.
    [47]董艳秋,Lou J Y K.深水海洋平台张力腿涡激非线性振动响应研究[J].中国造船,1992,3:80-92.
    [48]董艳秋,Lou J Y K.张力腿平台涡激非线性振动稳定性研究[J].中国造船,1992,4:85-97.
    [49]董艳秋.波、流联合作用下海洋平台张力腿的涡激非线性振动[J].海洋学报,1994,16(3):121-129.
    [50]郭海燕,娄敏,董晓林.海洋立管涡激振动动力特性及动力响应研究[C]//中国深水油气开发工程高技术论坛论文集.中国上海,2005:78-85.
    [51]史庆增,黄焱.深水张力管横向涡激振动问题的有限元计算分析[C]//中国深水油气开发工程高技术论坛论文集.中国上海,2005:165-171.
    [52]鲍莹斌,李润培,顾永宁.张力腿平台系索疲劳可靠性研究[J].上海交通大学学报,2000,34(1):87-90.
    [53] Rustad A M, Larsen C M, S rensen A J. FEM modeling and automatic controlfor collision prevention of top tensioned resers[J]. Marine Structures,2008,21:80-112.
    [54] Barranco-Cicilia F, Lima ECP, Sagrilo LVS. Relibility-based design criterionfor TLP tendons[J]. Applied Ocean Research,2008,30:54-61.
    [55] Jayalekshmi R. Sundaravadivelu R, Idichandy V G. Hull-tether-riser dynamicsof deep water tension leg platforms[J]. WIT Transactions on The BuiltEnvironment,2009,105:215-223.
    [56] Jayalekshmi R. Sundaravadivelu R, Idichandy V G. Dynamic Analysis of DeepWater Tension Leg Platforms Under Random Waves[J]. Journal of Offshoremechanics and Arctic Engineering,2010,132,041605:1-4.
    [57] Kim M H, Zhang Z. Transient effects of tendon disconnection on thesurvivability of a TLP in moderate-strength hurricane conditions[J]. Inter JNav Archit Oc Engng,2009,1:13-19.
    [58]余春华,程晓杰,尹晓春.横向有限应变对张力腿平台空间涡激振动响应的影响[J].南京理工大学学报(自然科学版),2009,33(6):723-727.
    [59] Huang H, Zhang S R. Dynamic Analysis of Tension Leg Platform for OffshoreWind Turbine Support as Fluid-Structure Interaction[J]. China Ocean Eng,2011,25(1):123-131.
    [60] Naess A, Stansberg C T and Batsevych O. Prediction of Extreme TetherTension for a TLP by the AUR and ACER Methods[J]. Journal of OffshoreMechanics and Arctic Engineering,2012,134,021103:1-9.
    [61] Stokes G G. On the theory of oscillatory waves[J]. Trans Cambridge PhilosSoc,1847,8:441-473.
    [62] Levi-Civita T. Determination rigoureuse des ondes permanents d’ampleurfinie[J]. Mathematische Annalen,1925,93(1):264-314.
    [63] Struik D J. Determination rigoureuse des ondes irrotationelllesperiodiques danun canal a profoundeur finie[J]. Mathematics Statistics,1926,95(1):595-634.
    [64] Borgman L E, Chappelear J E. The use of the Stokes-Struik approximation forwaves of finite height[C]//Proc6th conf Coastal Eng. ASCE,1958:252-281.
    [65] Skjelbreia L. Gravity waves, Stokes’ third order approximation; table offunctions[M]. Council on Wave Research, Engineering Foundation, Univ. ofCalifornia, Berkeley,1959.
    [66] Skjelbreia L, Hendrickson J. Fifth order gravity wave theory[C]//Proc7th ConfCoastal Eng,1961:184-196.
    [67] Huijsmans R, Dekker J. Combined effect of waves and current on the motionbehavior and tether forces of a deepwater tension leg platform[C]//OffshoreTechnology Conference Proceedings. Houston: OTC,1989:6180-MS.
    [68] Vickery P J. Wind-induced Response of Tension Leg Platform: Theory andExperiment[J]. Journal of Structural Engineering,1995,121(4):651-663.
    [69] Petrauskas C, Liu S V. Springing force response of a tension leg platform[C]//Offshore Technology Conference Proceedings. Houston: OTC,1987:5458-MS.
    [70]胡志敏,董艳秋,张建民.张力腿平台波浪载荷计算[J].中国海洋平台,2002,17(3):6-11.
    [71]胡志敏,董艳秋,张建民.张力腿平台水动力参数计算.海洋工程,2002,20(3):14-22.
    [72]董胜,宁萌.深水油气开发中的多因素海洋环境条件联合分析[C]//中国深水油气开发工程高技术论坛论文集.中国上海,2005:44-48.
    [73]吕海宁,杨建民,彭涛.海洋深水试验池造流系统的数值模拟研究[C]//中国深水油气开发工程高技术论坛论文集.中国上海,2005:159-164.
    [74]欧进萍,段忠东,辛大波,等.深水海洋平台结构风浪流模拟试验技术[C]//中国深水油气开发工程高技术论坛论文集.中国上海,2005:149-158.
    [75] Yalpaniyan A, Goodarzi M. The Free Surface Flow around aTLP[C]//Proceedings of OMAE2010. Shanghai: ASME,2010:OMAE2010-20021.
    [76] Natvig B J, Teigen P. Review of hydrodynamic challenges in TLP Design[J].International Journal of Offshore and Polar Engineering,1993,3(4):241-249.
    [77]杨冠声.张力腿平台非线性波浪载荷和运动响应研究[D].天津:天津大学船舶与海洋结构物设计制造专业博士学位论文,2003:11-16.
    [78] Breit S R, Sclavounos P D and Newman J N. New generation of panelprograms for radiatin-diffraction problems[R]. United States: MassachusettsInst. of Tech., Cambridge (USA), Dept. of Ocean Engineering,1985:14.
    [79] Korsmeyer F T, Lee C H, Newman J N, et al. The analysis of wave effects ontension leg platforms[C]//Proc. Offshore Mech. And Arctic Eng Conf. Houston:ASME,1988:3-6.
    [80]崔毅.张力腿平台低频线性波浪载荷及响应研究[D].天津:天津大学船舶与海洋结构物设计制造专业硕士学位论文,2003:9-11.
    [81] Mclver D B. The Static offset in waves of tension leg platform[C]//OffshoreTechnology Conference Proceedings. Houston: OTC,1981:4070-MS.
    [82] Yoshida K, Yoneya T, Oka N, et al. Motions and leg tensions of tension legplatforms[C]//Offshore Technology Conference Proceedings. Houston: OTC,1981:4073-MS.
    [83] Gie T S, Boom W C. The wave induced motions of a tension leg platform indeep water[C]//Offshore Technology Conference Proceedings. Houston: OTC,1981:4074-MS.
    [84] Salvesen N, Kerczek C H, Vue D K, et al. Computations of nonlinear surgemotions of tension leg platform[C]//Offshore Technology ConferenceProceedings. Houston: OTC,1982:4394-MS.
    [85] Higgins S A, Hinwood J B, Thiagarajan K P. Response prediction of a TLP incyclonic storm conditions[C]//Proceedings of the Seventh InternationalOffshore and Polar Engineering Conference. Honolulu, USA,1997,1:177-184.
    [86] Jefferys E R, Patel M H. Dynamic analysis models of the tension legplatform[C]//Offshore Technology Conference Proceedings. Houston: OTC,1981: OTC4075.
    [87] Kitami E, Ninomiya K, Katayama M, et al. Response characteristics of tensionleg platform with mechanical damping systems in waters[C]//OffshoreTechnology Conference Proceedings. Houston: OTC,1982: OTC4393.
    [88] Boom W C, Pinkster J A, Tan S G. Motion and tether force prediction for adeepwater tension leg platform[C]//Offshore Technology ConferenceProceedings. Houston: OTC,1983: OTC4487.
    [89] Donley M J, Spanos P D. Stochastic response of a tension leg platform toviscous drift forces[J]. Journal of Offshore Mechanics and Arctic Engineering,1991,133(2):148-155.
    [90] Naess A. Statistics of combined linear and quadratic springing response of aTLP in random waves[J]. Journal of Offshore Mechanics and ArcticEngineering,1994,116(3):127-136.
    [91] Kawanishi T, Kato T, Takamura H, et al. Earthquake response of the tensionleg platform under offset condition[C]//The Proceedings of the firstinternational offshore and polar engineering conference, International Societyof Offshore and Polar Engineers. Golden, CO(USA),1991:80-86.
    [92] Kawanishi T, Ohashi S, Takamura H, et al. Earthquake response of the tensionleg platform under unbalanced initial tension[C]//Proceedings of the ThirdInternational Offshore and Polar Engineering Conference. Cupertino, CA,1993:319-325.
    [93] Balint, W Stephen. Design loads for sloshing in TLP pontoon tanks. CivilEngineering in the Oceans, Vol1. Pub1by ASCE, New York, NY, USA,1992.
    [94] Willians A N, Rangappa T. Approximate hydrodynamic analysis ofMulti-column ocean structures [J]. Ocean Engneering,1994,21(6):519-573.
    [95] Yilmaz O. Hydrodynamic interactions of waves with group of truncatedvertical cylinders [J]. Journal of Waterway, Port, Coastal, and OceanEngineering,1998,124(5):272-279.
    [96] Yilmaz O, Incecik A, Barltrop N. Wave enhancement due to blockage insemi-submersible and TLP structures [J]. Ocean Engineering,2001,28(5):471-490.
    [97] Ahmad S. Stochastic TLP response under long crested random sea[J].Computers&Structures,1996,61(6):975-993.
    [98] Kim C H, Lee C H, Goo J S. A dynamic response analysis of tension legplatforms including hydrodynamic interaction in regular waves[J]. OceanEngineering,2007,34(11-12):1680-1689.
    [99]鲍莹斌,李润培,顾永宁.张力腿平台系索响应研究[J].中国造船,2000,41(3):40-46.
    [100]马驰,董艳秋,杨丽婷.海洋平台张力腿在两种边界条件下的涡激非线性振动的比较研究[J].船舶力学,2000,4(1):56-65.
    [101]曾晓辉,沈晓鹏,刘洋,等.考虑多种非线性因素的张力腿平台动力响应[J].海洋工程,2006,24(2):82-88.
    [102]曾晓辉,沈晓鹏,吴应湘.张力腿平台有限振幅运动的方程和数值解[J].应用数学和力学,2007,28(1):34-44.
    [103]曾晓辉,刘洋,沈晓鹏,等.有限位移下张力腿平台的非线性动力响应[J].工程力学,2007,24(3):179-184.
    [104] Low Y M. Frequency domain analysis of a tension leg platform with statisticallinearization of the tendon restoring forces[J]. Marine Structures,2009,22:480-503.
    [105] Low Y M. Influence of the setdown of a tension leg platform on the extremeairgap response[J]. Applied Ocean Research,2010,32:11-19.
    [106] Zhang D, Deng Z, Yan F. The Application of Knee Brace Structure in theDesign of Tension Leg Platform[C]//Proceeding of OMAE2010. Shanghai:ASME,2010: OMAE2010-20332.
    [107] Choi M, Sweetman B. The Hermite Moment Model for Highly SkewedResponse with Application to Tension Leg Platforms[J]. Journal of OffshoreMechanics and Arctic Engineering,2010,132(2):021602
    [108] Chen C W. Modeling, control, and stability analysis for time-delay TLPsystems using the fuzzy Lyapunov method[J]. Neural Comput&Applic,2011,20:527-534.
    [109] Lin J W, Huang C W, Shih C H, et al. Fuzzy Lyapunov Stability Analysis andNN Modeling for Tension Leg Platform systems[J]. Jouranl of Vibration andControl,2011,17(1):151-158.
    [110] Abrishamchi A, Younis B A. LES and URANS predictions of thehydrodynamic loads on a tension-leg platform[J]. Journal of Fluids andStructures,2012,28:244-262.
    [111]李牧.南海张力腿平台优化选型研究[D].天津:天津大学船舶与海洋结构物设计制造学科硕士学位论文,2010:21-25.
    [112] Offshore standard DNV-OS-C105[S]. DNV,2008:30-32.
    [113] Chakrabarti S K. Handbook of Offshore Engineering[M]. Volume1. New York,USA,2005:40-60.
    [114]“典型深水平台概念设计研究”课题组.张力腿平台结构主体规划设计[J].中国造船,2005,46(增):464-469.
    [115] Recommended Practice for Planning, Designing, and Constructing TensionLeg Platforms [S]. API RECOMMENDED PRACTICE2T SECONDEDITION,1997:23-39.
    [116]赵英年.海洋石油生产平面布置设计原则[J].中国海上油气(工程),1994,6(1):2-7.
    [117]贾士栋.采油平台总体设计的基本思路[J].中国海上油气(工程),2000,12(4):10-13.
    [118]张帆.深海立柱式平台概念设计及水动力性能研究[D].上海,上海交通大学博士学位论文,2008:79-83.
    [119] Teigen P, Haver S. The Heidrun TLP:measured versus predicted response[J].Applied Ocean Research,1998,20(1):27-35.
    [120]屠玮,徐日庆.负压桶形锚固基础的抗拔承载力计算理论综述[J].中国海洋平台,2002,17(5):1-6.
    [121]邹星.张力腿平台整体式负压基础设计研究[D].天津:天津大学水路运输专业硕士学位论文,2008:16-38.
    [122] Morison J R, O’Brien M P, Johnson J W, et al. The forces exerted by surfacewaves on piles[J]. Journal of Petroleum Technology,1950,189:149-154.
    [123] Ippen A T. Estuary and Coastline Hydrodynamics[M]. New York:McGraw-Hill,1966.
    [124] Newman J N. Marine Hydrodynamics[M]. United States: MIT Press,Cambridge, Massachusetts,1977.
    [125] Sarpkaya T, Isaacson M. Mechanics of Wave Forces on Offshore Structures[M].New York: Van Nostrand Rienhold Co.,1981.
    [126] Berge B, Penzien J. Three-Dimensional Stochastic Response of OffshoreTowers to Wave Forces[M]//Offshore Technology Conference Proceedings.Houston: OTC,1974:2050-MS.
    [127]胡志敏,董艳秋,杨冠声,等.张力腿平台拟静态分析[J].中国海洋平台,2001,16(4):21-25.
    [128]肖鑫.畸形波作用下张力腿平台运动响应分析[D].大连:大连理工大学港口、海岸及近海工程专业硕士学位论文,2009:20-32.
    [129] Demirbilek Z. Design formulae for offset, set down and tether loads of atension leg platform (TLP)[J]. Ocean Engineering,1990,17(5):517-523.
    [130] Haritos N. Modeling the response of TLP structures to environmentalloading[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,44(1-3):2475-2485.
    [131] Chen X, Ding Y, Zhang J, etc. Coupled dynamic analysis of a mini TLP:Comparison with measurements[J]. Ocean Engineering,2006,33(1):93-117.
    [132]闫功伟,欧进萍.张力腿平台的整体设计及拟静力性能分析[J].船海工程,2009,38(5):142-145.
    [133]李远林.近海结构水动力学[M].广州:华南理工大学出版社,1999:37.
    [134]刘应中,李谊乐,缪国平.船舶在波浪中大幅度运动的工程算法[J].水动力学研究与进展,1995,10(2):230-239.
    [135]威尔逊J F.海洋结构动力学[M].杨国金,译.北京:石油工业出版社,1991:71.
    [136]夏震寰.现代水力学(4)波浪力学[M].北京:高等教育出版社,1992:43-44.
    [137]邹志利.水波理论及其应用[M].北京:科学出版社,2004:65-67
    [138] Maruo H. The Drift of a Body Floating on Waves[J]. Journal of Ship Research,1960,4(3):1-10.
    [139] Newman J N. The Drift force and Moment on Ships in Waves[J]. Jouranal ofShip Research,1967,11:51-60.
    [140] Newman J N. Second-order slowly varying Forces on Vessels in IrregularWaves[J]. Marine Vehicles,1974:182-186.
    [141]王科,许旺. FPSO型采油平台波浪漂移力的分析研究[J].哈尔滨工程大学学报,2008,29(12):1261-1265.
    [142]黄佳.1500米水深张力腿平台运动和系泊特性数值与试验研究[D].上海:上海交通大学船舶海洋与建筑工程学院硕士学位论文,2010:24-27.
    [143]欧进萍,段忠东,肖仪清.海洋平台结构安全评定——理论、方法与应用
    [M].北京:科学出版社,2003:49-51.
    [144]竺艳蓉.海洋工程波浪力学[M].天津:天津大学出版社,1991:44-48.
    [145] Neumann G. On wind generated ocean waves with special reference to theproblem of wave forecasting[M]. New York University, College ofEngineering, Dept. of Meteorology,1952:133.
    [146] Pierson Jr W J, Moskowitz L. A proposed spectral form for fully developedwind seas based on the similarity theory of SA Kitaigorodskii [J]. Journal ofGeophysical Research,1964,69(24):5181-5190.
    [147] Hanna S Y, Thomason Y H, Williams J G. Influence of Tension, weigh t andhydro static pressure on deepwater TLP Tendons[C]//Offshore TechnologyConference Proceedings. Houston: OTC,1987:5610-MS.
    [148] Rasmussen J, Karlsson P. A new and cost-beneficial approach to TL Ptethering[C]//Offshore Technology Conference Proceedings. Houston: OTC,1988:5722-MS.
    [149] Rossit C A, Laura P A A, Bambill D V. Dynamic response of the leg of atension leg platform subjected to an axial, suddenly applied load at one end[J].Ocean Engineering,1996,23(3):219-224.
    [150] Skogvang A, Vogel H. Lessons to learn from full scale measurements of SnorreTL P tethers[C]//Proceedings of the Seventh International Offshore and PolarEngineering Conference. Honolulu: ISOPE,1997:16-24.
    [151] Allen D W. Vortex-Induced Vibration of Deepwater Risers[C]//OffshoreTechnology Conference Proceedings. Houston: OTC,1998:8703-MS.
    [152] Vandiver J K. Research Challenges in the Vortex-Induced Vibration Predictionof Marine Risers[C]//Offshore Technology Conference Proceedings. Houston:OTC,1998:8698-MS.
    [153] Triantafyllou M, Triantafyllou G, Tein Y S D, et al. Pragmatic Riser VIVAnalysis[C]//Offshore Technology Conference Proceedings. Houston: OTC,1999:10931-MS.
    [154] Foulhoux L F, Saubestre V. An engineering approach to characterize thelock-in phenomenon generated by a current on a flexible Column[J].International Journal of Offshore and Polar Engineering,1994,4(3):231-233.
    [155] Halse K H. Norwegian Deepwater Program: Improved Predictions ofVortex-induced Vibrations[C]//Offshore Technology Conference Proceedings.Houston: OTC,2000:1996-MS.
    [156]王东耀,凌国灿.在平台振荡条件下TLP张力腿的涡激非线性响应[J].海洋学报,1998,20(5):119-128.
    [157] De Oliveira J, Fjeld S. Concrete hulls for tension-leg platforms[J]. SPE drillingengineering,1990,5(2):116-122.
    [158]陈伟民,时忠民.海洋平台的涡激振动研究及其分析方法.中国造船,2003,44(增):480-487.
    [159]邱桂明,苏建新,邱树业.阻尼作用下的弦振动研究[J].汕头大学学报(自然科学版),2001,16(1):73-77.
    [160]马俊,周亚军.海洋平台涡激振动响应研究[J].工程力学,2000,增刊:124-125.
    [161]徐枫,欧进萍.方柱非定常绕流与涡激振动的数值模拟[J].东南大学学报(自然科学版),2005,35(增Ⅰ):35-39.
    [162] Dong Y, Lou J Y K. Vortex-induced nonlinear oscillation of tension legplatform tethers[J]. Ocean Engineering,1991,18(5):451-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700