摩擦提升机衬垫滑动热—应力耦合行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦提升机是矿井生产的关键装备之一,而提升机上的摩擦衬垫与钢丝绳这一特殊摩擦副是其安全可靠运行的关键。本文在高等学校博士学科点专项科研基金的资助下,针对摩擦提升机衬垫与钢丝绳间的滑动摩擦问题,开展摩擦提升机衬垫滑动热-应力耦合行为研究,旨在寻求摩擦衬垫摩擦接触性能随工况变化的内在机理与规律,为研制高性能摩擦衬垫和保障摩擦提升机安全可靠运行提供理论支撑,进而有效避免高速过卷过放事故的发生。
     本文主要研究内容包括:建立摩擦衬垫非完全接触温度场;建立摩擦衬垫和钢丝绳低速滑动摩擦接触力学模型;在以上两个模型的基础上建立摩擦衬垫高速滑动热-应力耦合模型;采用有限元数值分析软件进行热-应力仿真试验,分析摩擦衬垫高速滑动时的温度场、应力场及其耦合行为;在模拟试验台上开展摩擦衬垫与钢丝绳滑动摩擦试验,验证理论模型的正确性。
     首先,通过热分析试验掌握了摩擦衬垫动态热物性能;理论分析了摩擦衬垫与钢丝绳间的动态热分配机制;结合钢丝绳绳股螺旋结构分析了摩擦衬垫与钢丝绳之间的螺旋接触特性;基于热传导理论,综合考虑摩擦衬垫动态热物性能和螺旋接触特性,建立了摩擦衬垫非完全接触温度场模型,并采用有限差分法进行数值求解;在模拟试验台开展滑动摩擦试验,验证了理论模型的正确性。
     其次,通过多频时间谱动态力学性能试验掌握了摩擦衬垫黏弹性力学性能随加载时间和加载频率的变化规律;结合黏弹性力学理论和摩擦接触力学理论,构建了低速滑动时摩擦衬垫与钢丝绳绳股间的摩擦接触力学模型,并对其进行理论求解;开展低速滑动摩擦模拟试验,验证了理论模型的正确性。
     最后,通过动态热机械性能试验研究摩擦衬垫动态热机械性能,掌握了其复合模量随温度和加载频率的变化规律,并通过回归分析建立了摩擦衬垫热黏弹性本构关系;通过热膨胀仪得到了摩擦衬垫线膨胀系数随温度变化规律;结合摩擦衬垫非完全接触温度场模型、摩擦接触力学模型和热黏弹性本构关系,建立了摩擦衬垫热-应力耦合模型,采用多场耦合有限元软件对其进行数值仿真;开展高速滑动摩擦试验,同步多点测量摩擦衬垫的温度和应变,并将试验测量结果与仿真结果进行比较分析,验证了热-应力耦合模型的正确性。
A friction hoist is the one of the most important equipments in mine, and the special friction pair between friction lining and wire rope in friction hoist is the key to guaranteeing its safe and reliable operation. This dissertation was financially supported by Research Fund for the Doctoral Program of Higher Education of China. Aiming at the problem of sliding friction between friction lining and wire rope, the thermo-stress coupling behavior of friction lining is investigated to seek the intrinsic mechanism and variation of the friction contact properties with different operating condition, which will be beneficial to avoid the accident of overwinding and overfalling, develop new friction lining and consequently guarantee the safe and reliable operation of friction hoist.
     The main content of this study includes: the friction lining’s temperature field under the condition of non-complete contact, the friction contact between friction lining and wire rope with low-speed sliding and the thermo-stress coupling behavior. And the thermo-stress during the sliding process was simulated by the software of finite element analysis. Consequently, the temperature field, stress field as well as thermo-stress coupling behavior were studied. Furthermore, the sliding friction experiment between friction lining and wire rope was carried out on the friction tester to verify the theoretical model.
     Firstly, the dynamic thermophysical properties were obtained by the thermal analysis and the dynamic distribution coefficient of heat-flow was analyzed theoretically. And the helical contact property was analyzed by considering the strand’s helical structure. Moreover, the model of friction lining’s temperature field was set up under the condition of non-complete contact with wire rope, and the finite difference method was applied to solve this problem. Subsequently, the friction experiment was performed on the friction tester and the theoretical model was verified by comparison between the simulation results and the expermental results.
     Secondly, the variation of mechanical properties with loading time and frequency was gained by the mechanical experiment of multi-frequency time spectrum. Through combination of the theory of viscoelasticity and contact mechanics with friction, the contact mechanics with friction between friction lining and wire rope was established and solved theoretically. Furthermore, the sliding friction experiment was carried out on the friction tester, and the experimental results show that the theoretical model is correct.
     Finally, the dynamic mechanical properties of frictin ling were investigated by DMA and the variation of complex modulus with temperature and frequency was obtained. Besides, the thermoviscoelastic constitutive relation of friction lining was established by regression analysis. Taking into account the temperauture field with non-complete contact, stress field with sliding friction contact and thermoviscoelastic constitutive relation, the thermo-stress coupling model was established. Moreover, the numerical simulation was performed by multiphysics coupling software of finite element analysis. In the end, the temperature and strain at testing points were measured simultaneously, and the simulation results were compared with experimental results to verify the theoretical model of thermo-stress.
引文
[1] <煤矿安全>读本编委会.煤炭安全规程[M].北京:煤炭工业出版社, 2004.
    [2]王承鹤.塑料摩擦学[M].北京:机械工业出版社, 1994.
    [3]林福严,张东胜,马向东.聚氨酯弹性体摩擦衬垫材料的摩擦特性研究[J].润滑与密封. 2000(2): 33-34.
    [4]封士彩.多绳摩擦提升钢丝绳与衬垫间磨损机理的研究[J].煤矿机械. 2001(11): 22-24.
    [5]葛世荣,夏荣海.摩擦提升衬垫摩擦系数测试条件研究[J].煤炭科学技术. 1992(6): 43-48.
    [6]杨兆建.多绳提升机衬垫静摩擦系数的研究[J].山西矿业学院学报. 1992, 10(3): 242-246.
    [7] Ge S. Friction coefficients between the steel rope and polymer lining in frictional hoisting[J]. Wear. 1992, 152(1): 21-29.
    [8]李良洲.摩擦衬垫摩擦系数和磨损率的测试[J].矿山机械. 2002(06): 36-38.
    [9]杨兆建.矿井多绳摩擦式提升机衬垫材料摩擦学特性的研究[D].江苏徐州:中国矿业大学, 1987.
    [10]杨兆建.多绳摩擦提升机衬垫温度场的理论计算[J].山西矿业学院学报. 1990, 8(4): 304-314.
    [11]刘道平.摩擦提升机滑动摩擦热量分配规律的研究[D].江苏徐州:中国矿业大学, 1989.
    [12]葛世荣.摩擦提升防滑可靠性理论与设计[D].江苏徐州:中国矿业大学, 1989.
    [13]夏荣海,葛世荣.摩擦提升机衬垫摩擦温升的计算[J].煤炭学报. 1990, 15(2): 1-9.
    [14]胡明.摩擦衬垫温度特性的检测方法及试验研究[D].徐州:中国矿业大学, 2008.
    [15]刘道平.对滑动摩擦热效应问题的认识[J].润滑与密封. 1994(6): 11-14.
    [16] Marklund P, Maki R, Larsson R, et al. Thermal influence on torque transfer of wet clutches in limited slip differential applications[J]. Tribology International. 2007, 40(5): 876-884.
    [17] Aleksendric D, Duboka C. Fade performance prediction of automotive friction materials by means of artificial neural networks[J]. Wear. 2007, 262(7-8): 778-790.
    [18] Qi H S, Day A J. Investigation of disc/pad interface temperatures in friction braking[J]. Wear. 2007, 262(7-8): 778-790.
    [19] Ozturk B, Arslan F, Ozturk S. Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials[J]. Tribology International. 2007, 40(1): 37-48.
    [20]林谢昭,高诚辉,黄健萌.制动工况参数对制动盘摩擦温度场分布的影响[J].工程设计学报. 2006, 13(1): 45-48.
    [21] Akpinar M V, Benson C H. Effect of temperature on shear strength of two geomembrane-geotextile interfaces[J]. Geotextiles and Geomembranes. 2005, 23(5): 443-453.
    [22] Thuresson D. Influence of material properties on sliding contact braking applications[J]. Wear. 2004, 257(5-6): 451-460.
    [23] Zaidi H, Senouci A. Thermal tribological behaviour of composite carbon metal/steel brake[J]. Applied Surface Science. 1999, 144: 265-271.
    [24] Gopal P, Dharani L R, Blum F D. Load, speed and temperature sensitivities of a carbon-fiber-reinforced phenolic friction material[J]. Wear. 1995, 181-183(2): 913-921.
    [25] Gopal P, Dharani L R, Blum F D. Fade and wear characteristics of a glass-fiber-reinforced phenolic friction material[J]. Wear. 1994, 174(1-2): 119-127.
    [26] Shodja H M, Ghahremaninejad A. An FGM coated elastic solid under thermomechanical loading: A two dimensional linear elastic approach[J]. Surface and Coatings Technology. 2006, 200(12-13): 4050-4064.
    [27] Bawa-Bhalla K. Thermomechanics of crack growth: Closing the loop between experiments and simulation[D]. New York: Cornell University, 2001.
    [28] Majumdar P, Jayaramachandran R, Ganesan S. Finite element analysis of temperature rise in metal cutting processes[J]. Applied Thermal Engineering. 2005, 25(14-15): 2152-2168.
    [29] Choi J, Lee I. Finite element analysis of transient thermoelastic behaviors in disk brakes[J]. Wear. 2004, 257(1-2): 47-58.
    [30] Kalin M. Influence of flash temperatures on the tribological behaviour in low-speed sliding: A review[J]. Materials Science and Engineering A. 2004, 374(1-2): 390-397.
    [31] Vick B, Furey M J. An investigation into the influence of frictionally generated surface temperatures on thermionic emission[J]. Wear. 2003, 254(11-12): 1155-1161.
    [32] Abdel-Aal H A. Efficiency of thermal energy dissipation in dry rubbing[J]. Wear. 2003, 255(1-6): 348-364.
    [33] Omrane A, Wang Y C, Goransson U, et al. Intumescent coating surface temperature measurement in a cone calorimeter using laser-induced phosphorescence[J]. Fire Safety Journal. 2007, 42(1): 68-74.
    [34] Walker D G, Allison S W. Transient measurements using thermographic phosphors[J]. ISA Transactions. 2007, 46(1): 15-20.
    [35] Gallardo-Hernandez E A, Lewis R, Dwyer-Joyce R S. Temperature in a twin-disc wheel/rail contact simulation[J]. Tribology International. 2006, 39(12): 1653-1663.
    [36] Larsen T O, Andersen T L, Thorning B, et al. Comparison of friction and wear for an epoxy resin reinforced by a glass or a carbon/aramid hybrid weave[J]. Wear. 2007, 262(7-8): 1013-1020.
    [37] Gul H, Akpinar E K. Investigation of heat transfer and exergy loss in oscillating circular pipes[J]. International Communications in Heat and Mass Transfer. 2007, 34(1): 93-102.
    [38] Adamczak S, Orzechowski T, Stańczyk T L. The infrared measurement of form deviations of machine parts in motion [J]. Measurement. 2007, 40(1): 28-35.
    [39] Majcherczak D, Dufrenoy P, Berthier Y. Tribological, thermal and mechanical coupling aspects of the dry sliding contact[J]. Tribology International. 2007, 40(5): 834-843.
    [40] Didarul I M, Kenyu O, Minoru Y, et al. Study on heat transfer and fluid flow characteristics with short rectangular plate fin of different pattern[J]. Experimental Thermal and Fluid Science. 2007, 31(4): 367-379.
    [41]贺海留.红外热像仪测量轮胎的表面温度[J].轮胎工业. 2006, 26(2): 104-109.
    [42] Wu C, Kung Y. Thermal analysis for the feed drive system of a CNC machine center[J]. International Journal of Machine Tools and Manufacture. 2003, 43(15): 1521-1528.
    [43] Kitagawa T, Kubo A, Makawa K. Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti-6Al-6V-2Sn[J]. Wear. 1997, 202(2): 142-148.
    [44] Kottenstette J P. MEASURING TOOL-CHIP INTERFACE TEMPERATURES.[C]. New Orleans, LA, USA: ASME, 1984.
    [45] Ueda T, Hosokawa A, Yamamoto A. MEASUREMENT OF GRINDING TEMPERATURE USING INFRARED RADIATION PYROMETER WITH OPTICAL FIBER.[C]. Montvillargenne, Fr: ASME, 1986.
    [46] Guha D, Chowdhuri S K R. The effect of surface roughness on the temperature at the contact between sliding bodies[J]. Wear. 1996, 197(1-2): 63-73.
    [47] Abdel-Aal H A. On the bulk temperatures of dry rubbing metallic solid pairs[J]. International Communications in Heat and Mass Transfer. 1999, 26(4): 587-596.
    [48] Batako A D, Rowe W B, Morgan M N. Temperature measurement in high efficiency deep grinding[J]. International Journal of Machine Tools and Manufacture. 2005, 45(11): 1231-1245.
    [49]吴洪潭.表面温度和热流的一种间接测量技术[J].宇航计测技术. 2003, 23(2): 30-34.
    [50]蔡丹,魏宸官,宋文悦.离合器片表面温度的测量与表面应力的计算[J].车辆与动力技术. 2000(4): 7-11.
    [51]李平,文玉梅,刘双临,等.编码式谐振SAW无源无线温度传感阵列系统[J].仪器仪表学报. 2003, 24(6): 551-554.
    [52]李平,文玉梅,黄尚廉.声表面波谐振器型无源无线温度传感器[J].仪器仪表学报. 2003, 24(4): 403-405.
    [53]于春肖,申光宪.弹塑性摩擦接触多极边界元法的规划-迭代型算法[J].中国科学技术大学学报. 2008, 38(1): 70-76.
    [54]于春肖,申光宪.规划-迭代型弹塑性摩擦接触多极边界元法[J].计算力学学报. 2008, 25(1): 65-71.
    [55]孙林松,王德信.三维摩擦接触问题的增量线性互补方法[J].应用力学学报. 2006, 23(3): 383-387.
    [56] Habraken A M, Cescotto S. Contact Between Deformable Solids: The Fully Coupled Approach[J]. Mathematical and Computer Modelling[Z]. 1998: 28.
    [57] Kuss F, Lebon F. Stress based finite element methods for solving contact problems: Comparisons between various solution methods[J]. Advances in Engineering Software. 2009, 40(8): 697-706.
    [58]祁德庆,高云开,徐连民.三维摩擦接触问题不动点算法[J].力学季刊. 2007, 28(1): 149-152.
    [59]张洪武,钟万勰,等.三维弹塑性有摩擦接触问题求解的一个新算法[J].应用数学和力学. 2001, 22(7): 673-681.
    [60]肖勇刚,罗云飞.弹性摩擦接触问题数值解分析[J].长沙交通学院学报. 1999, 15(2): 13-16.
    [61]杨秀娟,闫相祯,贾善坡.封隔器胶筒大变形的粘-滑摩擦接触分析[J].机械强度. 2006, 28(2): 229-234.
    [62] Wriggers P, Scherf O. Adaptive finite element techniques for frictional contact problems involving large elastic strains[J]. Computer Methods in Applied Mechanics and Engineering. 1998, 151(3-4): 593-603.
    [63] Khoei A R, Biabanaki S O R, Vafa A R, et al. A new computational algorithm for contact friction modeling of large plastic deformation in powder compaction processes[J]. International Journal of Solids and Structures. 2009, 46(2): 287-310.
    [64] Hartmann S, Oliver J, Weyler R, et al. A contact domain method for large deformation frictional contact problems. Part 2: Numerical aspects[J]. Computer Methods in Applied Mechanics and Engineering. 2009, 198(33-36): 2607-2631.
    [65] Oliver J, Hartmann S, Cante J C, et al. A contact domain method for large deformation frictional contact problems. Part 1: Theoretical basis[J]. Computer Methods in Applied Mechanics and Engineering. 2009, 198(33-36): 2591-2606.
    [66]许中明,黄平.考虑接触界面材料微观结构与势能参数的滑动摩擦计算研究[J].摩擦学学报. 2006, 26(2): 159-163.
    [67] Karuppanan S, Churchman C M, Hills D A, et al. Sliding frictional contact between a square block and an elastically similar half-plane[J]. European Journal of Mechanics, A/Solids. 2008, 27(3): 443-459.
    [68] Tur M, Fuenmayor F J, Wriggers P. A mortar-based frictional contact formulation for large deformations using Lagrange multipliers[J]. Computer Methods in Applied Mechanics and Engineering. 2009, 198(37-40): 2860-2873.
    [69]王步康,董光能.滑动接触中摩擦发热的数值分析[J].中国机械工程. 2002, 13(21): 1880-1883.
    [70] Pabisek E. Hybrid FEM/HTA analysis of friction contact in elastic and elastoplastic plane stress problems[J]. Computers and Structures. 2007, 85(19-20): 1475-1483.
    [71] Jang K S, Kim T W, Kim C, et al. Stress analysis for fiber reinforced composites under indentation contact loading[J]. Journal of the Korean Ceramic Society. 2008, 45(4): 238-244.
    [72] Xia F, Cole C, Wolfs P. The dynamic wheel-rail contact stresses for wagon on various tracks[J]. Wear. 2008, 265(9-10): 1549-1555.
    [73] Vijaywargiya R, Green I. A finite element study of the effect of friction on the deformations, forces, stress formations, and energy losses in a sliding contact between aluminum and copper cylinders[C]. San Diego, CA, United states: American Society of Mechanical Engineers, 2008.
    [74] Romlay F R M. Modeling of a surface contact stress for spur gear mechanism using static and transient finite element method[J]. Structural Durability and Health Monitoring. 2008, 4(1): 19-27.
    [75] Bazarenko N A. The contact problem for hollow and solid cylinders with stress-free faces[J]. Journal of Applied Mathematics and Mechanics. 2008, 72(2): 214-225.
    [76] Dahlberg J, Alfredsson B. Surface stresses at an axisymmetric asperity in a rolling contact with traction[J]. International Journal of Fatigue. 2008, 30(9): 1606-1622.
    [77] Liu C H, Hsu W E. Non-Hertzian rolling contact stress analysis[C]. Prague, Czech republic: WITPress, 2007.
    [78] Lee K. Numerical analysis for dynamic contact between high-speed wheel and elastic beam with Coulomb friction[J]. International Journal for Numerical Methods in Engineering. 2009, 78(8): 883-900.
    [79] Kravchuk A S. The solution of three-dimensional friction contact problems[J]. Journal of Applied Mathematics and Mechanics. 2008, 72(3): 338-346.
    [80] Lebon F. Contact problems with friction: models and simulations[J]. Simulation ModellingPractice and Theory:Modelling and Simulation of Advanced Problems and Smart Systems in Civil Engineering. 2003, 11(5-6): 449-463.
    [81] Kulchytsky-Zhyhailo R D, Olesiak Z S. Stress distribution in rotating solids with frictional heat excited over contact region[J]. Journal of Thermal Stresses. 2006, 29(10): 957-972.
    [82] Holmberg K, Laukkanen A, Koskinen J, et al. Tribological contact analysis of a rigid ball sliding on a hard coated surface, Part III: Fracture toughness calculation and influence of residual stresses[J]. Surface and Coatings Technology. 2006, 200(12-13): 3824-3844.
    [83] Holmberg K, Laukkanen A, Ronkainen H, et al. Tribological contact analysis of a rigid ball sliding on a hard coated surface. Part I: Modelling stresses and strains[J]. Surface and Coatings Technology. 2006, 200(12-13): 3793-3809.
    [84] Duarte E N, Oliveira S A G. Numerical analysis of stress field in a coated bodies under contact load[J]. Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria. 2007, 23(1): 3-14.
    [85] Raje N, Sadeghi F, Rateick Jr R G, et al. Evaluation of stresses around inclusions in Hertzian contacts using the discrete element method[J]. Journal of Tribology. 2007, 129(2): 283-291.
    [86] Roswell A, Xi F, Liu G. Modelling and analysis of contact stress for automated polishing[J]. International Journal of Machine Tools and Manufacture. 2006, 46(3-4): 424-435.
    [87] Moody J, Green I. An investigation of three dimensional elastic-plastic hemispherical sliding contact, part I: Modeling and validaiton[C]. San Diego, CA, United states: American Society of Mechanical Engineers, 2008.
    [88] Moody J, Green I. An investigation of three dimensional elastic-plastic hemispherical sliding contact, part II: Results[C]. San Diego, CA, United states: American Society of Mechanical Engineers, 2008.
    [89] Wayne Chen W, Jane Wang Q, Wang F, et al. Three-dimensional repeated elasto-plastic point contacts, rolling, and sliding[J]. Journal of Applied Mechanics, Transactions ASME. 2008, 75(2): 210211-2102112.
    [90] Malayalamurthi R, Marappan R. Elastic-plastic contact behavior of a sphere loaded against a rigid flat[J]. Mechanics of Advanced Materials and Structures. 2008, 15(5): 364-370.
    [91]钱国平,郑健龙,周志刚,等.沥青混合料增量型热粘弹性本构关系研究[J].应用力学学报. 2006, 23(3): 338-343.
    [92] Mahmoud F F, El-Shafei A G, Al-Shorbagy A E, et al. A numerical solution for quasistatic viscoelastic frictional contact problems[J]. Journal of Tribology. 2008, 130(1).
    [93]周云,徐赵东,等.粘弹性阻尼器的性能试验研究[J].振动与冲击. 2001, 20(3): 71-75.
    [94]徐赵东,周洲,等.粘弹性阻尼器的计算模型[J].工程力学. 2001, 18(6): 88-93.
    [95] Krithivasan V, Jackson R L. An analysis of three-dimensional elasto-plastic sinusoidal contact[C]. San Diego, CA, United states: American Society of Mechanical Engineers, 2008.
    [96]孙大刚,宋勇,林慕义,等.黏弹性悬架阻尼缓冲件动态接触有限元建模研究[J].农业工程学报. 2008, 24(1): 24-28.
    [97] Han W, Sofonea M. On a dynamic contact problem for elastic-visco-plastic materials[J]. Applied Numerical Mathematics. 2007, 57(5-7 SPEC. ISS.): 498-509.
    [98] Greenwood J A, Johnson K L. Oscillatory loading of a viscoelastic adhesive contact[J]. Journal of Colloid and Interface Science. 2006, 296(1): 284-291.
    [99]闫宗群,李勇,沈洪斌,等.光学应变测量系统研究现状与展望[J].四川兵工学报. 2009, 30(6): 134-137.
    [100] Gao C H, Huang J M, Lin X Z, et al. Stress analysis of thermal fatigue fracture of brake disks based on thermomechanical coupling[J]. Journal of Tribology. 2007, 129(3): 536-543.
    [101]黄健萌,高诚辉,唐旭晟,等.盘式制动器热-结构耦合的数值建模与分析[J].机械工程学报. 2008, 44(2): 145-151.
    [102] Huang Y M, Chen S. The transient thermal stress and deflection of a brake[C]. Washington, D.C., United states: American Society of Mechanical Engineers, 2005.
    [103] Hwang P, Wu X, Cho S W, et al. Temperature distribution and thermal stress of ventilated brake disc using 3D FEM model[C]. Kaunas, Lithuania: Unavailable, 2007.
    [104] Yang Y, Zhou J. Numerical simulation study of 3-D thermal stress field with complex boundary[J]. 2006, 27(3): 487-489.
    [105]陈德玲,张建武,周平.高速轮轨列车制动盘热应力有限元研究[J].铁道学报. 2006, 28(2): 39-43.
    [106]刘金朝,卜华娜,刘敬辉,等.整体制动盘热应力有限元仿真分析[J].中国铁道科学. 2007, 28(2): 80-84.
    [107]丁群,谢基龙.基于三维模型的制动盘温度场和应力场计算[J].铁道学报. 2002, 24(6): 34-38.
    [108] Kim D, Lee Y, Park J, et al. Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on a frictional surface[J]. Materials Science and Engineering: A. 2008, 483-484: 456-459.
    [109]郭俊,赵鑫,金学松,等.全制动工况下轮轨热-机耦合效应的分析[J].摩擦学学报. 2006, 26(5): 489-493.
    [110]汪成明,石琴,夏国林.盘式制动器制动时的热应力分析[J].合肥工业大学学报:自然科学版. 2007, 30(11): 1436-1439.
    [111] Shin J, Chen Y. Elastic-plastic wheel-rail thermal contact stress analysis during wheelbraking[J]. 2006, 28(SUPPL. 2): 10-13.
    [112]吕振华,亓昌.蹄—鼓式制动器热弹性耦合有限元分析[J].机械强度. 2003, 25(4): 401-407.
    [113]彭莉,谢基龙,郑红霞.大秦线全程制动条件下货车车轮温度及热应力场的数值模拟[J].北京交通大学学报:自然科学版. 2007, 31(1): 37-40.
    [114] Mackin T J, Noe S C, Ball K J, et al. Thermal cracking in disc brakes[J]. Engineering Failure Analysis. 2002, 9(1): 63-76.
    [115]邵保平,赵阳升,万志军,等.热力耦合作用下花岗岩流变模型的本构关系研究[J].岩石力学与工程学报. 2009(5): 956-967.
    [116] Hirohata K, Hisano K, Kawakami T, et al. Coupled thermal-stress analysis for FC-BGA packaging reliability design[C]. Chicago, IL, United states: American Society of Mechanical Engineers, 2006.
    [117]田振国,白象忠.载流板壳电磁、热、机械场耦合的弹性效应分析[J].应用基础与工程科学学报. 2009, 17(2): 318-325.
    [118]韩志强,朱维,柳百成.挤压铸造凝固过程热-力耦合模拟Ⅰ.数学模型及求解方法[J].金属学报. 2009, 45(3): 356-362.
    [119]朱维,韩志强,柳百成.挤压铸造凝固过程热-力耦合模拟Ⅱ.模拟计算及实验验证[J].金属学报. 2009, 45(3): 363-368.
    [120]白彦华,刘金生,任春艳.挤压铸造铸件凝固过程热力耦合分析[J].铸造. 2004, 53(8): 655-657.
    [121] Choi B, Kim W, Cho N, et al. FDM/FEM hybrid method with a systematic field data conversion procedure for thermal stress analysis in casting process[J]. Key Engineering Materials. 2006, 326-328 II: 1205-1208.
    [122]黄健萌,高诚辉,李友遐.粗糙表面基于G—W接触的三维瞬态热结构耦合[J].机械强度. 2008, 30(6): 959-964.
    [123]王安麟,杨蓉,刘广军,等.微结构热力耦合解析的元胞自动机方法[J].中国工程机械学报. 2008, 6(3): 253-258.
    [124]龚惠锋,王安麟,吴仁智,等.基于元胞自动机原理的LED基板热-力耦合解析[J].机械设计. 2006, 23(10): 10-13.
    [125]吴林峰,尹晓春,吴凯,等.复杂多接触面托圈热-机械耦合三维有限元分析[J].机械强度. 2008, 30(3): 405-410.
    [126] Khan A S, Lopez-Pamies O, Kazmi R. Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures[J]. 2006, 22(4): 581-601.
    [127]龚中良,黄平.基于热力耦合的滑动摩擦系数模型与计算分析[J].华南理工大学学报:自然科学版. 2008, 36(4): 10-13.
    [128]明兴祖,严宏志,陈书涵,等. 3D力热耦合磨齿模型与数值分析[J].机械工程学报. 2008, 44(5): 17-24.
    [129] Karpat Y, Ozel T. Predictive analytical and thermal modeling of orthogonal cutting process-part I: Predictions of tool forces, stresses, and temperature distributions[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 2006, 128(2): 435-444.
    [130] Karpat Y, Ozel T. Predictive analytical and thermal modeling of orthogonal cutting process-part II: Effect of tool flank wear on tool forces, stresses, and temperature distributions[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 2006, 128(2): 445-453.
    [131]吴庆鸣,陈永强.基于约束函数法的热力耦合有限元分析[J].计算力学学报. 2008, 25(2): 183-187.
    [132]陈永强,吴庆鸣,张志强.基于约束函数法的热-力耦合分析[J].机械强度. 2008, 30(1): 83-87.
    [133]吴磊,温泽峰,金学松.轮轨摩擦耦合热弹性有限元分析模型[J].交通运输工程学报. 2007, 7(6): 21-27.
    [134] Miller S F, Shih A J. Thermo-mechanical finite element modeling of the friction drilling process[J]. 2007, 129(3): 531-538.
    [135]张玉春,何川,罗新荣.火灾下钢框架结构热-力耦合模拟与性能分析[J].中国安全科学学报. 2007, 17(10): 45-49.
    [136]谢卫红,高峰,李顺才.岩石热-力作用过程的耦合[J].辽宁工程技术大学学报:自然科学版. 2007, 26(6): 853-855.
    [137]谢卫红,李顺才,高峰.岩石热损伤-力耦合能量破坏准则研究[J].西安科技大学学报. 2007, 27(3): 341-346.
    [138] Goshima T, Ishihara S, Tamura K, et al. Transient thermal stresses of coated materials due to sliding contact with changing frictional coefficient[J]. Transactions of the Japan Society of Mechanical Engineers, Part A. 2006, 72(11): 1772-1778.
    [139]应富强,潘孝勇,李敏.基于有限变形理论的齿轮楔横轧制坯热力耦合模拟[J].中国工程科学. 2007, 9(7): 47-52.
    [140] Koric S, Thomas B G. Thermo-mechanical models of steel solidification based on two elastic visco-plastic constitutive laws[J]. Journal of Materials Processing Technology. 2008, 197(1-3): 408-418.
    [141]马玉娥,孙秦.动态热力耦合精细积分解法研究[J].机械强度. 2007, 29(3): 483-486.
    [142] Sawant S, Muliana A. A thermo-mechanical viscoelastic analysis of orthotropic materials[J]. 2008, 83(1): 61-72.
    [143]王立志,刘小虎,唐宏.子午线轮胎直行和侧滑滚动过程的热力耦合动态分析[J].华中科技大学学报:城市科学版. 2006(z2): 80-82.
    [144]朱真才,陈国安,彭玉兴,徐雷.钢丝绳缠绕随动装置[P].中国, 200510134987.7. 2006-07-19.
    [145]全国矿山机械标准化技术委员会. JB/T 10347-2002摩擦式提升机摩擦衬垫[S].北京:中国标准出版社, 2002.
    [146]煤炭科学研究总院. MT/T 248-91摩擦提升机用衬垫摩擦因数测试方法[S].北京:中国标准出版社, 1991.
    [147]何平笙.高聚物的力学性能[M].合肥:中国科学技术大学出版社, 1997.
    [148]路见可.解析函数辺值问题(第二版)[M].武汉:武汉大学出版社, 2004.
    [149]杨挺青,罗文波,徐平,等.黏弹性理论与应用[M].北京:科学出版社, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700