低渗透砂岩气藏气水分布规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏里格气田上古二叠系气藏储层无论是岩性、孔隙结构还是气、水分布均很复杂。位于该气田北部的苏54区盒8、山1气藏是一个典型的低孔、低渗的砂岩岩性气藏,其储层物性差,孔喉半径小,非均质性强。苏54区处于开发的前期,该区主要产层为石盒子组的盒8段与山西组的山1段,截止2012年11月共完钻82口井,其中探井39口,开发井43口。随着勘探开发的不断进行,有近30余口井在试气过程中出水,单井试气出水量最高可达72m3/d,从出水层段来看盒8、山1段均有出水,从出水井分布来看,出水井位分散,可见气藏普遍见水;目前对该区的研究程度较低,对苏54区主力产层的砂体展布规律、气井的出水成因、地层水的相互连通性、水体分布规律及其控制因素等内容的认识不够清楚,另外气、水层识别难度大。为了在钻井时尽量避开水体,高效建产,合理开发苏54区盒8、山1段气藏,因此,论文选择该区气藏为研究对象。
     本文在前人研究成果的基础上,结合岩心、测井、录井、水化学分析、薄片观察和试气等资料,以沉积学、石油地质学、油田化学,储层地质学和开发地质学等学科理论为指导,运用储层评价技术、测井分析技术等现代油藏描述技术和方法,综合鄂尔多斯盆地上古气藏开发现状,对地层水化学特征、气水层识别、砂体的物性及展布规律、水体分布规律及其控制因素进行了综合研究,以确保气田的高效开发,通过研究取得了以下的成果和认识:
     1、以沉积学理论为基础,充分考虑研究区的沉积背景、沉积特点,遵循“先大后小、循序渐进”的原则,综合运用高分辨率层序地层学、标志层法和等高程等对比技术与方法,对苏里格气田苏54区盒8、山1段进行了精细地层划分与对比,建立了苏54区的等时地层格架,制定了适用于本区地层划分与对比的标准,统一了研究区所有井的分层。
     2、依据测井综合解释、水化学分析资料和试气资料,将苏里格气田气井的产水类型划分为三类:正常地层水、淡化地层水和残液;并在此基础上分析了苏里格气田盒8、山1段储层的正常地层水的水化学特征,两段正常地层水化学特征差别不大,地层水中阳离子以Na~++K~+和Ca~(2+)占为主,Mg~(2+)次之,阴离子以Cl-为主,以总矿化度、水化学特征系数等,不能将这两段所产地层水区分开来。通过对地层水化学特征系数综合分析认为:苏里格气田盒8,山1气藏总体上封闭性较好,有利于天然气的保存。
     3、运用盒8、山1段岩心、薄片等资料,经分析、观察和化验,对储层岩石的颜色、沉积构造、岩石学特征、粒度特征等相标志进行了分析,结合测井特征,认为山1段、盒8段均为辫(网)状河分流河道沉积,划分出河道滞留沉积、河漫滩沉积、心滩沉积、泛滥平原和天然堤等微相。
     4、根据取心井的铸体薄片、扫描电镜、物性测试等分析资料对盒8、山1段储层特征进行了评价。盒8、山1段储集层主要发育四类孔隙,原生粒间孔隙、次生溶孔、高岭石晶间孔和微裂隙。储层物性方面,盒8、山1段储层属典型的低孔低渗储层;孔隙结构分选差、粗-细歪度型为主;整体来看,盒8下段储层物性较好。
     5、运用测井和岩心资料,对盒8、山1储层砂岩电性特征进行了分析,对山1、盒8段各小层进一步细分,并分析了研究区的砂体展布规律,砂体整体近南北向展布,砂体在平行物源的方向上连续性较好,延伸较远,而在垂直物源方向上连续性较差,砂体多呈孤立状;砂体分布的不均匀性、砂体的连续性和储层物性变化直接造成该区砂体很强的非均质性。
     6、综合射孔试气资料、测井、岩性、水化学等资料,分析了研究区低阻气层的成因认为主要由储层物性、泥浆滤液侵入与泥质杂基引起;采用两级识别原则,首先将识别渗透层与非渗透层,而后采用多种方法在渗透层中对气、水进行识别,通过对比,筛选出适合本区的气、水识别方法,主要使用孔隙度-电阻率法,辅助使用可动水法和多元判别分析法。
     7、结合研究区地质等多种因素,分析认为控制气水分布规律的主要因素中储层地质结构是基础、由于受砂体展布方向等的影响,研究区多为局部水体。储层的纵横向变化(非均质性),是控制独立气水系统分布的关键因素;在独立的气水系统中,气水分布受局部砂体微构造的控制。以沉积微相和砂体展布规律为背景,结合气水识别结果,预测水体在纵向和横向上的分布规律,总体而言,在纵向上各层段均有出水,横向上散布于该研究区。通过追踪水体,分析地层水的成因,地层水类型。
Abstract: The lithology, pore structure and gas-water distribution of ancient timespermian gas reservoir in Sulige Gasfield were complicated. Located in the north ofSulige Gasfield, the Su54area He8and Shang1gas reservoir was one typicallow-porosity and low-permeability sandstone lithologic gas reservoir, with poorphysical properties, small radius of pore throat and strong heterogeneity. Su54areawas in the early period of development. The He8member in Shihezi formation andShang1member were the principal producing formations in Su54area. UntilNovember2012, there were82drilled wells containing39exploratory wells and43development wells. With continuous exploratory development, there was water in theprocess of gas testing in nearly30wells and meanwhile the water yield of single wellcould be up to72m3/d. Judging from the water production interval, there was waterboth in He8and Shang1members; from the distribution of water wells, the water wellpositions were scattered, which indicated that there was always water in gas reservoirs;at present, the research degree of the main production layer was low, and thedistribution of sand body, the cause of effluent of gas well, the connectivity offormation, distribution of water body and the controlling factors in Su54area had notbeen clearly known. Additionally, the recognition of gas and water layers was difficult.In order to avoid water body and achieve high-efficient production in the process ofdrilling, and reasonably develop Su54He8and Shang1member gas reservoir, the gasreservoir in this area was selected as research object in this paper.
     Based on previous research achievements and data on rock core, well log,logging, water chemical analysis, slice observation and gas testing, the modernreservoir description technology and methods, such as reservoir assessment technology and log analysis techniques, were adopted to comprehensively study thechemical characteristics of formation water, recognition of gas-water layer, physicalproperties of sand body and its distribution, distribution of water body and itscontrolling factors in accordance with the development status of upper Paleozoic inOrdos Basin to ensure the high efficient development of gasfield; at the same, thisresearch was guided by discipline theories, such as sedimentoloty, petroleum geology,oilfield chemistry, reservoir geology and reservoir geology. Through the research, thefollowing achievements and understandings were obtained:
     1. Based on sedimentary theory, the high-resolution sequence stratigraphy, themethod of the key bed and equal height were applied to the fine strata classificationand correlation of Su54area He8and Shang1members in Sulige Gasfield, with fullyconsidering the sedimentary background and sedimentary characteristics in study area,and following the principles of “big then small, step by step”. Finally the isochronousstratigraphic framework in Su54area was established; the standards which weresuitable for the stratigrahic division and comparison of this area were set up; and thelayering of all wells in this area was unified.
     2. According to comprehensive log interpretation, water chemical analysis dataand gas testing data, the water production types of gas wells in Sulige gasfield weredivided into three sorts: normal formation water, desalinated formation water andraffinate; on this basis, the chemical characteristics of formation water in He8andShang1members of Sulige gasfield was analyzed. It could come to the followingconclusions: the differences between the chemical characteristics of formation waterin this two members was not significant; the Na++K+and Ca2+were the main cationsin formation water, followed by Mg2+; while the Cl-was the main anion; and theformation water produced in the two members could not be distinguished by totalsalinity and hydrochemistry characteristics coefficient. Through the comprehensiveanalysis on hydrochemistry characteristics of formation water, the results showed thatgenerally the sealing of He8and Shang1gas reservoir in Sulige gasfield was better,which was in favor of conversation of natural gas.
     3. By using the data of cores and thin slices of He8and Shang1members andcombining the characteristics of logging, the facies markers such as the color of rocks,sedimentary structure, petrological characteristics and grain-size characteristics ofreservoir were analyzed. Through analysis, observation and assay, it was thought thatthe upper segment of Shang1and He8members was the distributary channel depositof meandering river, and the water system of He8member was mainly the distributary channel deposit of braided river. Consequently, the micro-phases, including channelretention sediment, sideband deposition, channel bar sedimentary, flood plain andnatural levee, were divided.
     4. In terms of the casting slices, scanning electron microscope and physicalproperty measurement, the reservoir characteristics of He8and Shang1members wereevaluated. There were chiefly four pores developed in the reservoirs of He8andShang1members----primary intergranular pore, secondary solution pores, kaoliniteintercrstallline pore and microfissure. According to reservoir physical properties, thereservoir of He8and Shang1members belonged to typical low-porosity andlow-permeability reservoir; the sorting of pore structure was poor, with the coarse-fineskewness type as the principle; on the whole, the reservoir physical properties of thelower segment of He8were better.
     5. Combining the logging curve and core observation, the electricalcharacteristics of reservoir sand of He8and Shang1members were analyzed, eachsmall layer of Shang1and He8segments were furtherly subdivided, and thedistribution of sand body in study area was also analyzed. The sand body extendedalong south and north direction as a whole; the continuity of sand body in thedirection parallel with sources was better, extending widely; while the continuity waspoor in the direction perpendicular to the sources, taking on shapes of isolated points;the inhomogeneity of distribution, the continuity of sand body and changes ofreservoir physical properties directly caused the strong heterogeneity of sand body inthis area.
     6. Through synthesizing the perforation gas testing data and data on logging,lithology and hydrochemistry, the cause of low-resistivity gas reservoir in study areawas analyzed, with the results that the low-resistivity gas reservoir was caused by thephysical properties of reservoir, invasion of mud filtrate and matrixes of shaly; byapplying two-level recognition principle, the permeability formation andnon-permeability formation were recognized firstly, and then the gas and water inpermeability formation were recognized by many methods. Through comparison, therecognition methods of gas and water which were suitable for this area were screened.The porosity-resistivity method was mainly used, assisted by apparent formationwater resistivity method and multiple discriminate analysis method.
     7. In terms of multi-factors containing the geology in study area, it was thoughtthrough analysis that the geological structure was the basic factor for the distributionof gas and water, gas-water identification was guarantee factor and accumulation process was the key factor. Through combing the results of gas-water identification,the sedimentary micro-facies and the distribution of sand body were taken asbackground to predict the distribution law of water body in vertical and lateraldirections. In general, there was effluent in each interval in vertical direction whilewater body was scattered in this study area in lateral direction. By tracing water body,the cause and type of formation water were analyzed.
引文
[1]钱伯章,朱建芳.世界天然气供应和需求预测[J].天然气与石油,2006,24(2):44-48.
    [2]胡国松,张欢.世界天然气消费趋势及我国天然气消费的策略[J].天府新论,2010:77-81.
    [3]江怀友,钟太贤,宋新民,等.世界天然气资源现状与展望[J].中国能源,2009,31(3):40-42.
    [4]张亚雄.世界天然气资源现状[J].石油与天然气地质,2006:792-793.
    [5]余良辉.世界天然气资源状况及贸易格局分析[J].天然气经济,2006,12-15.
    [6]李健,吴智勇,曾大乾,等《深层致密砂岩气藏勘探开发技术》[M].北京:石油工业出版社,2002.6-9.
    [7]郭平,张茂林,黄全华,等《低渗透致密砂岩气藏开发机理研究》[M].北京:石油工业出版社,2009.6-9.
    [8] Bennion D B,1996.Low Permeability gas reservoir;problems,opportunities and solutions for drilling,Completion,stimulation and production,SPE35527.
    [9] Berkenpas P G,1991.The Milk River shallow gas pool: role of the updip water trap and connate water ingas production from the pool,SPE22922.
    [10] Cant D J,1983.Spirit river formation-a stratigraphic-diagentic gas trap in the deep basin of Alberta,AAPG Bulletin,67(10):577~587.
    [11] Cant D J,et al,1984.Lithology-dependent diagenetic control of reservoir properties of conglomerates,Falher Member,Elmworth field, Alberta,AAPG,68:1045~1054.
    [12] Castagna J P,et al,1997,Principle of AVO crossplotting.The Leading Edge of Exploration,(4):337~342.
    [13] Chiang K T,1984.The giant Hoadley gas field,south-central Canada,AAPG Memoir38.
    [14] Davis T B,1984.Subsurface pressure profile in gas saturated basins.AAPG Memoir,38.
    [16] Emrich C K.1999,Exploiting a reservoir,An evaluation of recompletions in the Dakota,Wattenbergfield,D.J.basin,SPE5227.
    [17] Thomas R D,Ward D C.1972.Effect of overburden pressure and water on gas permeability of the tightgas sandstone cores.JPT,2:120~124.
    [18] Spencer C W.1985.Geology aspects of tight gas reservoirs in the Rocky Mountain region. JPT,37(8):1308~1314.
    [19] Spencer C W.1989.Review of characteristics of low-permeability gas reservoir in Wastern Unitedstates.AAPG,73(5):613~629.
    [20] R.P.Baron,A.J.Pearce.1996.Understanding the performance of a low-permeability gas reservoir Hydefield,Southern North Sea.SPE Reservoir Engineering,8:210~214.
    [21] Mcpeek L A,1981,Eastern green river basin,A developing giant gas supply from deep, overpressuredupper cretaceous.AAPG Bulletin,65(6).
    [22] Creaney S,et al,1990.Hydrocarbon generation and migration in the Western Canada Sedimentary basis,society special publication50.
    [23] Creaney S,et al,1992.Petroleum system in the foreland basin of Western Canada Sedimentary basis,society special publication50.
    [24] Creaney S,et al,1992.Petroleum system in the foreland basin of western Canada,foreland fold belts.AAPG Memoir55.
    [25] Masters J A,1979.Deep basin gas trip,western Canada.AAPG Bulletin,34(2):152~181.
    [26] Masters J A,1984.Lower Cretaceous oil and gas in western Canada.AAPG Memoir38.
    [27] McMaster G E,1981.Gas reservoirs,deep basin,western Canada.The Journal of Canadian PetroleumTechnology,20(3):62~66.
    [28]张小川,李珍义.川东石炭系地层水地球化学特征与天然气的关系研究[J].江汉石油职工大学学报.2000,13(4):41-44.
    [29]汪泽成,李晓清,赵献文.川西地区上三叠统气田水化学场特征[J].天然气工业,2001,21(5):31-34.
    [30]刘桂凤,吴运强,赵增义,等.克拉玛依百口泉油田地层水化学特征与油气成藏关系[J].中外能源.2007,12(1):29-34.
    [31]梁家驹,徐国盛,李昌鸿,等.江汉平原区古生界地层水化学特征与油气保存[J].断块油气田.2010,17(2):129-133.
    [32]过敏,李仲东,杜少林,等.杭锦旗地区上古生界地层水成因及其与油气的关系[J].矿物岩石.2009,29(1):99-104.
    [33]李继宏,李荣西,韩天佑等.鄂尔多斯盆地西缘马家滩地区地层水与油气成藏关系研究[J].石油实验地质.2009,31(3):253-257.
    [34]潘文蕾,刘光祥,吕俊祥.鄂西渝东区建南气田地层水水化学特征及其意义[J].石油实验地质.2003,25(3):295-299.
    [35]李伟,杨金利,姜均伟,等.四川盆地中部上三叠统地层水成因与天然气地质意义[J].石油勘探与开发.2009,36(4):428-434.
    [36]程付启,金强,姜桂凤,等.地层水在天然气保存中的积极作用[J].新疆石油地质.2006,27(5):626-628.
    [37]王祥,韩剑发,于红枫,等.塔中北斜坡奥陶系鹰山组地层水特征与油气保存条件[J].石油天然气学报.2012,34(5):25-29.
    [38]吴浩,郑丽,慈建发.新场气田须二段地层水地球化学特征及其石油地质意义[J].天然气勘探与开发.2012,35(4):41-44.
    [39]张文忠,林文姬,赵广民.苏里格气田石盒子组地层水特征与天然气聚集[J].新疆石油天然气.2008,4(3):1-4.
    [40]王运所,许化证,王传刚,等.鄂尔多斯盆地上古生界地层水分布与矿化度特征[J].石油学报.2010,31(5):748-760.
    [41]于起玲,武红义,夏洪强.陆西地区地层水特征与油气聚集关系[J].工业技术.2011:128.
    [42]霍秋立,申家年,付丽,等.海拉尔盆地地层水特征及成因分析[J].世界地质.2006,25(2):172-176.
    [43]封猛,肖辉,胡广文,等.基于D函数鉴别地层水的方法与应用[J].石油地质与工程.2012,26(4):117-119.
    [44]王晓梅,赵靖舟,刘新社.苏里格地区致密砂岩地层水赋存状态和产出机理探讨[J].石油实验地质.2012,34(4):400-405.
    [45]王晓梅,赵靖舟,刘新社.苏里格气田西区致密砂岩储层地层水分布特征[J].石油与天然气地质.2012,33(5):802-808.
    [46]姜文娟,冯乔,李颖莉等.苏里格西部盒8段地层水化学特征及其地质意义[J].新疆石油地质.2011,32(4):399-401.
    [47]朱蓉,楼章华,云露,等.塔河油田奥陶系油藏地层水赋存分布[J].地质科学.2008,43(2):228-237.
    [48]蔡立国,钱一雄,刘光祥,等.塔河油田及邻区地层水成因探讨[J].石油实验地质.2002,24(1):57-60.
    [49]穆龙新,田中元,赵丽敏.A油田低电阻率油层的机理研究[J].石油学报,2004,25(2):69-73.
    [50]高霞,谢庆宾.低电阻率油气藏成因机理及研究方法综述[J].中外能源,2006,11(6):28-32.
    [51]刘福利,郑浚茂,许亚萍,等.艾丹油田油层低阻机理及解释方法研究[J].断块油气田,2007,14(4):83-85.
    [52]冯春珍,林伟川.SU气田低电阻率气层的成因及测井解释技术[J].测井技术,2004,28(6):526-530.
    [53]曾文冲.低电阻率油气层的类型、成因及评价方法(上)[J].地球物理测井,1991,15(1):6-12.
    [54]曾文冲.低电阻率油气层的类型、成因及评价方法的分析(中)[J].地球物理测井,1991,15(2):88-99.
    [55]曾文冲.低电阻率油气层的类型、成因及评价方法的分析(下)[J].地球物理测井,1991,15(3):149-152.
    [56]陈学义,魏斌,陈艳,等.辽河油田滩海地区低阻油层成因及其精细解释[J].测井技术,2000,24(1):55-59.
    [57]李召成,吴金龙,于代国,等.曲堤油田低阻油层形成机理及曲线形态识别方法[J].大庆石油地质与开发,2006,25(6):102149-104.
    [58]陆风才,朱曰荣.苏北盆地低阻油层的成因及评价技术[J].小型油气藏,2006,11(2):23-26.
    [59]张小莉,王恺.王集油田相对低电阻率油层成因及识别[J].石油勘探与开发,2004,31(5):60-62.
    [60]回雪峰,吴锡令,祝文亮.油气田低电阻率油层成因机理分析[J].辽宁工程技术大学学报,2004,23(1):24-27.
    [61]李辉,李伟忠,张建林,等.正理庄油田低电阻率油层机理及识别方法研究[J].测井技术,2006,30(1):76-79.
    [62] Hamada G. M.,Al-Blehed M. S.,Al-Awad M. N.,et al.Petrophysical Evaluation of Low-ResistivitySandstone Reservoirs with Nuclear Magnetic Resonance Log[J].Petroleum Science And Engineering,2001,29(2):129149-138.
    [63] Hamada G. M. Al-Awad M.N.Almalik M.S.Log evaluation of low-resistivity sandstone reservoirs[J].SPE70040,2001.
    [64] Givens W W.A Conductive rock matrix model(CRMM):for the analysis of low-contrast resistivityformation[J].The log Analyst,1987,28(2):138149-151.
    [65] Charles R B.A simple,effective-medium model for water saturation in porous rocks[J].Geophysics,1995,60(4):1070149-1080.
    [66] Clavier C,Coates G Dumanoir J.The theoretical and experimemtal bases for the Dual water model forinterpretation of shaly sands[J].Society of Petroleum Engineers Journal,1984,24(2):153149-169.
    [67] Silva And Bassiouni.Statistical Evaluation Of The S-B Conductivity Model For Water-Bearing ShalyFormations.The Log Analyst,1986.
    [68]刘红岐,彭仕宓.唐洪,等.苏里格庙气田气层识别方法研究[J].西安石油学院学报,2005,27(1):8-11.
    [69]李永杰,李健伟.大牛地气田低阻气层识别方法[J].天然气勘探与开发,2009,32(3):12-18.
    [70]王新龙,李华,刘百舟,等.苏里格气田低孔低渗储层测井解释评价与应用研究[J].国外测井技术,2010,175(1):45-49.
    [71]吴巧英,谢润成,孙藏军.苏西盒8段低阻气层识别方法[J].油气地球物理,2012,10(4):22-25.
    [72]黄平,路中侃.川东石炭系气水分布及预测[J].石油地球物理勘探,1996,31(2)(增刊):95-100.
    [73]冉宏.川东地区石炭系气藏气水分布特征及其成因探讨[J].天然气工业,2001,21(1):52-56.
    [74]刘忠群.什股壕地区下石盒子组气水分布[J].天然气工业,2001,21(增刊):24-26.
    [75]徐国盛,徐燕丽,袁海锋,等.川中-川东南震旦系-下古生界烃源岩及储层沥青的地球化学特征[J].石油天然气学报,2007,29(4):45-51.
    [76]尹晓贺.川中地区上三叠统须家河组埋藏史恢复及重点构造气水分布控制因素探讨[D].成都.西南石油大学硕士学位论文,2006,5.
    [77]战薇芸,颜其彬,唐洪,等.蜀南长垣坝构造带嘉陵江组气水分布特征[J].西部探矿工程,2007,21:68-70.
    [78]高锡兴.中国含油气盆地油田水[M].北京:石油工业出版社,1994.
    [79]汪义先.泌阳凹陷油田水地球化学特征及其与油气的关系[J].石油实验地质,1983,5(4):298-303.
    [80]刘崇禧.我国陆相盆地油田水文地球化学特征[J].地球化学,1982,11(2):190-197.
    [81]杨忠辉,周景田,李淑琴,等.油气田的水文地球化学标志及其应用[J].石油天然气地质,1982,3(4):327-334
    [82]林耀庭,熊淑君.氢氧同位素在四川气田地层水中的分布特征及其成因分类[J].海相油气地质1999,4(4):39-45.
    [83]楼章华,朱蓉,云露.塔河油田奥陶系碳酸盐岩缝洞储层油气成藏动力学与油田水体类型[J].海相油气地质2009,14(3):60-64.
    [84]李晓燕.东营凹陷地层水成因类型及其与油气运移方向的关系[J].油气地质与采收率2012,19(3):18-21.
    [85]李仲东.鄂尔多斯盆地北部上古生界压力异常及其与天然气成藏关系研究[D].成都.成都理工大学博士论文,2006,12.
    [86]张海涛.苏里格地区有效储层测井识别方法研究[D].西安.西北大学博士论文,2010,12.
    [87]肖建新,孙粉锦,何乃祥等.鄂尔多斯盆地二叠系山西组及下石盒子组盒8段南北物源沉积汇水区与古地理[J].古地理学报,2008,4:341-354.
    [88]陈安清,陈洪德,向芳.鄂尔多斯东北部山西组-上石盒子组砂岩特征及物源分析[J].成都理工大学学报(自然科学版),2007,34(3):305-311.
    [89]康立明.鄂尔多斯盆地韩渠-张天渠油区延安组-延长组油藏精细描述[D].西安.西北大学博士论文,2008.6.
    [90]侯国伟.大牛地气田盒2和盒3段河流相储层描述与建模[D].北京.中国地质大学(北京)博士论文,2005.5.
    [91]王张华,张国栋.鄂尔多斯伊克昭盟晚古生代沉积环境与岩相古地理[J].古地理学报,2007,21:68-70.
    [92]周文,等.鄂尔多斯盆地靖边气田北二区马五1气藏产水机理研究[R].成都:成都理工大学能源学院,2003.
    [93]周文,等.苏里格气田西区地层水分布规律研究与富集区筛选[R].成都:成都理工大学能源学院2011.
    [94] Steven K-H L, Thiam-G T, Andrew V,.An Attractive Raw Deal-Novel Approach to Barton OilfieldWater Injection[J]. SPE Asia Pacific Conference on Integrated Modelling for Asset Management,29-30March2004, Kuala Lumpur, Malaysia.
    [95] Kaasa, Baard, Ostvold, Terje, Norwegian University of Science and Technology. Alkalinity in OilField Waters. What Alkalinity is and How it is Measured. International Symposium on OilfieldChemistry,18-21February1997, Houston, Texas.
    [96] Evans,R.,Ambellia Consultancy.Improved Environmental Compliance And Planning For Oil FieldWater Management Using The Latest Information Technology.SPE/UKOOA European EnvironmentConference,15-16April1997,Aberdeen,United Kingdom.
    [97] Garbutt,C.F.,Marathon Oil Company.Innovative Treating Processes Allow Steamflooding With PoorQuality Oilfield Water.SPE Annual Technical Conference and Exhibition,5-8October1997,SanAntonio,Texas.
    [98](美)P.A.迪基.石油开发地质学[M].北京:石油工业出版社,1982.
    [99] Dickey,P.A,and Carlos Soto R,1974,Chemical composition of deep subsurface waters of the westernAnadarko Basin:Soc Petrol.Eng. Pap.SPE5178,18P.
    [100](美)柯林斯著.油田水地球化学[M].北京:石油工业出版社,1984.
    [101]库丽曼木沙太.川中地区上三叠统须家河组四段气藏成藏机理研究[D].成都:成都理工大学博士学位论文,2007.
    [102]朱玉双,王震亮,高红,等.油气水物化性质与油气运移及保存[J].西北大学学报:自然科学版,2000,30(5):415-418.
    [103]沈玉林,郭英海,李壮福.鄂尔多斯盆地苏里格庙地区二叠系山西组及下石盒子组盒八段沉积相[J].古地理学报,2006,8(1):53-62.
    [104]刘行军,张吉,南力亚.苏里格地区苏X井区盒8段沉积相控储层测井解释分析[J].国外测井技术,2007,22(5):22-25.
    [105]李文厚,魏红红,赵虹,等.苏里格庙地区二叠系储层特征及有力相带预测[J].西北大学学报(自然科学版),2002,32(4):335-340.
    [106]王世成,郭亚斌,杨志,等.苏里格南部盒8段沉积微相研究[J].岩性油气藏,2010:31-36.
    [107]陈兆荣,侯明才,董桂玉,等.苏里格气田北部下石盒子组盒8段沉积微相研究[J].沉积与特提斯地质,2009,29(2):39-47.
    [108]陈凤喜,卢涛,达世攀,等.苏里格气田辫状河沉积相研究及其在地质建模中的应用[J].石油地质与工程,2008,22(2):21-25.
    [109]何顺利,兰朝利,门成全.苏里格气田储层的新型辫状河沉积模式[J].石油学报,2005,26(6):25-29.
    [110]王继平,任战利,单敬福,等.苏里格气田东区盒8段和山1段沉积体系研究[J].地质科技情报,2011,30(5):41-48.
    [111]尹志军,余兴云,鲁国永.苏里格气田苏6井区块盒8段沉积相研究[J].天然气工业,2006,26(3):26-28.
    [112]王宏,王继平,范萍,等.苏里格气田西苏54区块下石盒子组盒8段沉积相及含气有利储集相带研究[J].内蒙古石油化工,2012:117-121.
    [113]刘行军,张吉,龙世梅.苏里格中部地区盒8段储层沉积相控测井解释分析[J].测井技术,2008,32(3):228-232.
    [114]刘行军,柳晓燕,成军军.苏里格中西部地区石盒子组盒8测井相分析[J].测井技术,2008,32(6):538-541.
    [115]曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社.1986.62-78.
    [116]赵娟.苏里格气田东二区山1段和盒8段沉积相特征与储层评价[D].济南:山东科技大学.2011,06.
    [117]刘宝珺.沉积岩石学[M].北京:地质出版社.1980.52-65.
    [118]刘宝珺.岩相古地理教程[M].北京:地质矿产部岩相古地理工作协作组.1990.40-45.
    [119] Zemanek J.Low-resistivity hydrocarbon-bearing sand reservoirs[C].SPE15713,1987:1-10
    [120]曾文冲.对低电阻率油层的认识[J].石油学报,1981,2(2):37-44.
    [121]赵文杰,白全胜,金秀珍,等.低电阻率油气层的测井解释[J].测井技术,1998,22(增刊):33-36.
    [122]孙建孟,陈钢花,杨玉征,等.低阻油气层评价方法[J].石油学报,1998,19(3):83-88.
    [123]中国石油勘探与生产公司.低阻油气藏测井识别评价方法与技术[M].北京:石油工业出版社,2006.
    [124]赵发展.准噶尔盆地低阻油藏实验研究及储层评价方法[D].中国科学院地质与地球物理研究所,2005.
    [125]邹春艳,罗蓉,李子荣.镜扫描在碎屑岩储层粘土矿物研究中的应用[J].天然气勘探与开发,2005,19(3):3-88.
    [126]程晓玲.粘土矿物成岩作用对油气储集性和产能的影响-以苏北盆地台兴油田阜三段储层为例[J].石油实验地质,2003,19(3):83-88.
    [127]李保利碎屑岩中长石蚀变形成次生孔隙的试验研究[J].电子显微学报,2010,19(3):83-88.
    [128]李明瑞,张清,段宏臻,邓杰.苏里格气田上古生界主要含气层系粘土矿物分布及其主控因素[J].沉积学报,2012,19(3):83-88.
    [129]瞿思思,周汉文,钟增球,等.广西合浦新屋面高岭石矿物学特征及其形成途径[J].地质科技情报,2010,19(3);83-88.
    [130]李振宏,席胜利,刘新社.鄂尔多斯盆地上古生界天然气成藏[J].世界地质,2005,24(2):174-181.
    [131]赵林,夏新宇,戴金星.鄂尔多斯盆地上古生界天然气富集的主要控制因素[J].石油实验地质,2000,22(2):136-140.
    [132]周文等.碎屑岩层系大中型油气田富集规律与勘探方向[R].成都:成都理工大学油气藏地质与开发国家重点实验室.2010.
    [133] CrossTA,Lessenger M A.Sedimentvolumepartitioning[J].rationale for stratigraphic model evaluationand high-resolution stratigraphic correlation,in Gradstein F.M.,Sandvik K.O.,and Milton N.J.(eds),Sequence Stratigraphy Concept sand Application.NPF SpecialPublication1998.8:17l~195.
    [134]李仲东,等.榆林-子洲地区山2段地层水成因及分布规律研究[R]成都:成都理工大学能源学院,2007.
    [135] Lawrence J.De.Chant.Braided-Stream Sediment Transport Rates from an Alluvial Fan DiffusivityModel Environmental&Engineering Geoscience[J].May,2004, v.10,95-102.
    [136] Ranie Lynds and Elizabeth Hajek Conceptual model for predicting mudstone dimensions in sandybraided-river reservoirs AAPG Bulletin[J].August2006,v.90,p.1273-1288,
    [137] Jens Tronicke,Peter Dietrich,Uwe Wahlig,and Erwin Appel Integrating surface georadar andcrosshole radar tomography:A validation experiment in braided stream deposits Geophysics[J].September2002, v.67, p.1516-1523.
    [138] Warren Barrash and Roger H.Morin Recognition of units in coarse,unconsolidated braided-streamdeposits from geophysical log data with principal components analysis Geology[J].August,1997,v.25,p.687-690.
    [139]于兴河.油气储层地质学基础[M].北京:地质出版社.2009.30-33.
    [140]王允诚,等.苏里格气田东区盒8段、山1段储层综合评价研究[R].成都:成都理工大能源学院.2003.
    [141]张金亮,常象春,张金功.鄂尔多斯盆地上古生界深盆气藏研究[J].石油勘探与开发,2000,27(4):30-35.
    [142]周文.子洲气田流体分布规律及控制因素研究[R]成都:成都理工大学能源学院,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700