高精度曲率分析方法及其在构造识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着三维地震技术的发展,利用属性进行构造解释成为地质解释人员的常用方法。近年来,曲率属性越来越受到人们的关注,人们发现曲率属性对构造识别非常有用。本文在利用曲率分析进行构造识别的基础上将其与自适应中值滤波结合起来得到了一种新的基于高精度曲率分析的断层识别方法,该方法充分利用了自适应中值滤波能较好去噪的优点,以及最大正曲率对断层高敏度性的优点,克服了常规相干体分析抑制噪声能力较差及对小断层识别能力较差的缺陷。另一方面,本文将曲率分析与构造应力场结合起来,基于曲率—应力—应变的关系,提出了一种新的基于曲率分析的构造应力场计算公式,该方法克服了常规基于有限元模拟的构造应力场计算的建模难点问题,不需要建立复杂的地层岩石模型,是一种简单高效的构造应力场计算方法。实际资料的计算结果表明,基于该方法预测的裂缝发育带与流体预测的结果完全一致,从而验证了新方法的正确性和有效性。论文的研究工作主要分以下几方面
     (1)自适应中值滤波方法。该方法首先将整个待处理的图像分割为K个子图像,然后分别统计每个子图像中噪声的个数,再根据子图像中噪声点的个数,在每个子图像中自动选择滤波窗口的大小。改方法既可有效滤除严重的噪声干扰,又能较好地保持图像细节
     (2)基于曲率分析的断层识别方法。该方法先用自适应中值滤波进行预处理,然后通过曲面拟合计算地层的最大正曲率,最后通过提取目的层位的最大正曲率切片进行断层解释。
     (3)基于曲率分析的构造应力场计算方法。该方法以地层时间切片为研究对象,先通过曲面拟合计算地层的曲率,然后通过测井资料建立地层的杨氏模量模型,最后根据推导得到的“曲率—应力—应变”公式进行构造应力场计算,从而实现了基于叠后地震资料的构造应力场计算。
Along with the development of 3d seismic technology, using attribute structure interpretation in geological interpretation personnel become common method. In recent years, curvature properties are more and more concerned, people find curvature properties of structural identification is very useful. A new high-precision curvature analysis based on the fault identification method was proposed by adaptive median filter and curvature analysis . It overcomes the conventional coherence cube analysis’s defect that the function of suppressing noise and identifying small faults is not very effective. The method takes full advantage of the better de-noising result of the adaptive median filter and the high sensitivity of the maximum positive curvature analysis for the fault. The actual data results show that the proposed high-precision curvature analysis based on the fault identification method is easy and efficient and can effectively carry out a large, medium and small scales of different faults, fault recognition rate is significantly higher than the conventional coherence cube analysis.On the other hand, from the perspective of curvature analysis in the field of imagery processing, the paper proposed a new simulation method of tectonic stress based on curvature analysis, which was deduced by the relationship of curvature -stress-strain. The new method directly study the time slice of objective stratum. Firstly it calculated the curvature based on fitting method, secondly built the layered model of Young's modulus based on log data, then calculated the tectonic stress by the curvature -stress-strain formula, which was the procession of tectonic stress filed simulation based on posted seismic data. To overcome the difficulty of conventional method based on finite element modeling, the method needn’t to build complex rock strata model, and was a simple and efficient method. Results of practical calculation proved the correctness and validity of the new method by the corresponding prediction result with fluid prediction of reservoir. The research of this thesis has been divided into the following aspects:
     (1) The method of adaptive median filter. In this method, first, the whole image will be divided into sub images of K ,then respectively statistics the number of noise points in each sub image. At last, the method will automatically choose the size of the filter window in each sub image according to the number of noise points in each sub image.
     (2) Fault identification based on curvature analysis. Firstly this method remove noise by adaptive median filter, secondly it calculated the most-positive curvature based on fitting method, thirdly it interpret the fault by extracting the most-positive curvature slice of the horizon we need, finally compare the result of this method to the result of coherence cube analysis.
     (3) Tectonic stress field simulation based on curvature analysis. The new method directly study the time slice of objective stratum. Firstly it calculated the curvature based on fitting method, secondly built the layered model of Young's modulus based on log data, then calculated the tectonic stress by the curvature -stress-strain formula, which was the procession of tectonic stress filed simulation based on posted seismic data.
引文
[1]张军华,王伟,谭明友,崔世凌,陈海云.曲率属性及其在构造解释中的应用[J].油气地球物理,2009,7(2):1~7.
    [2] Roberts A..Curvature attributes and their application to 3D interpreted horizons.First Break.2001,19(2):85~100
    [3] Hakami A. M., Marfurt K. J. and Al-Dossary S.. Curvature Attribute and seismic interpretation: Case study from Fort Worth Basin, Texas, USA. SEG Int’l Exposition and 74th Annual Meeting. Denver, Colorado,2004
    [4] Al-Dossary S. and Marfurt. K. J.. 3D volumetric multispectral estimates of reflector curvature and totation. Geophysics. 2006, 71(5):41~51
    [5] Chopra S. and Marfurt K. J., Multispectral volumetric curvature adding value to 3D seismic data interpretation. CSPG/CSEG Convention. 2007
    [6] Lozano F.A., Marfurt K. J.. 3D seismic visualization of shelf-margin to slope channels using curvature attributes. SEG Las Vegas, 2008 Annual Meeting:914~918
    [7] Mai H. T., Attribute Illumination of Basement Faults, Cuu Long Basin, Vietnam. SEG Las Vegas, 2008 Annual Meeting.914~918
    [8] Fornberg B.. The pesudospectral method: Comparisons with finite differences for the elastic wave equation. Geophysics, 1987,52:483~501
    [9] Partyka G., Gridley J., and Lopez J.. Interpretational applications of spectral decomposition in reservoir characterization. The Leading Edge, 1999:353~360
    [10]同济大学数学教研室.高等数学.高等教育出版社,1996:209~211
    [11] Andy Roberts.曲率属性在3D层位解释中的应用[J].勘探地球物理进展,2002,25(1):67~78.
    [12] Satinder Chepta.三维地面地震数据的曲率属性应用[J].国外油气地质信息,2007,9(3):29~38
    [13] Pascal Klein, Loic Richard, Huw James.三维曲率属性:一种新的地震解释方法[J].国外石油动态,2008,8(15):23~31
    [14]尹剑仑,卫武迪.一种改进的自适应中值滤波算法研究[J].自动化信息,2009,1(1): 31~32
    [15]邱相艳,冯宇,郝金光,陈丽莉.一种简单的自适应中值滤波方法[J].电子元器件应用,2007,9(12):66~68
    [16]章毓晋.图像工程(上册)图像处理和分析[M].北京:清华大学出版社,2006.
    [17]高克芳,郭建纲.一种基于噪声点检测的自适应中值滤波方法[J].福建农林大学学报(自然科学版),2009,38(3):333~336
    [18]黄煦涛.二维数字信号处理Ⅱ——变换与中值滤波器[M].北京:科学出版社,1985
    [19]张恒,雷志辉,丁晓华.一种改进的中值滤波算法[M].中国图象图形学报,2004,9(4):408~411.
    [20]田红磊,张卫宁,赵振.基于迭代中值滤波的自适应两级排序滤波算法[J].山东大学学报,2005,33(5):60~63.
    [21]董继扬,张军英.一种简单的椒盐噪声滤波算法[J].计算机工程与应用,2003,20(8):27~29.
    [22]郭琳,尚振宏.一种有效的自适应中值滤波算法[J].长春工业大学学报(自然科学版),2008,29(1):87~90.
    [23]刑藏菊,王守觉,邓浩江,等.一种基于极值中值的新型滤波算法[J].中国图像图形学报,2001,6A(6):533~536.
    [24] Makoto Nagao,Takashi Matsnyama. Edge preserving smoothing [J]. Computer Graphics and Image Processing, 1979,9:394~407.
    [25]朱菊华,杨新,李俊.一种改进的自适应保细节中值滤波算法[J].计算机工程与应用,2001,(3):93~95.
    [26]彭红利,熊钰,孙良田.主曲率法在麻柳场嘉陵祖裂缝预测中的应用研究[J].特种油气藏,2005(4):21~23.
    [27]宋惠珍,贾承造,欧阳健.裂缝性储集层研究理论与方法.北京:石油工业出版社,2001.
    [28]张振波.利用相干分析技术判断断层和地层特征[J].中国海上油气(地质),1999,13(3):229~233.
    [29]王大伟,刘震,陈小宏,姬小兵.地震相干技术的进展及其在油气勘探中的应用[J].地质科技情报,2005,24(2):71~76.
    [30]张延章,韩品龙,池永红,牟智全,何滨,刘过权.地震相干技术的应用及效果分析[J].中国海上油气(地质),2003,17(3):215~217.
    [31]李玲,冯许魁.用地震相干数据体进行断层自动解释[J].石油地球物理勘探,1998,(增刊1):105~110.
    [32]张帆,贺振华,黄德济等.预测裂缝发育带的构造应力场数值模拟技术[J].石油地球物理勘探,2000,35(4),154~163.
    [33]谭成轩,王连捷,孙宝珊等.含油气盆地三维构造应力场数值模拟方法.地质力学学报,1997,(1):71~79.
    [34] Cooke D A , Schneider W A. Generalized linear inversion of reflection seismic Geophysics,1983,48(6):665~676.
    [35] Stewart, S A, and Wynn T J. Mapping spatial variation in rock properties in relationship to scale-dependent structure using spectral curvature. Geology, 2000, 28(3): 691~694.
    [36] Bergbauer, S, Mukerji T, and Hennings P. Improving curvature analyses of deformed horizons using scale-dependent filtering techniques: AAPG Bulletin, 2003, 87(2): 1255~1272.
    [37]黄炎.弹性薄板理论[M].北京:国防科技大学出版社, 1992: 10~50 Huang Y. Elastic thin-plate theory. Beijing: National Defense University Press, 1992:10~50
    [38] Gary M, Tapan M, Jack D. Tools for seismic analysis in porous Media. Anhu: University Press of Science and Technology,2008:44~46
    [39]宋洪亮,徐守余,郑丁.构造应力场与油气运移[J].断块油气田,2007,14(5):12~14.
    [40]王连捷,王红才,王薇,等.油田三维构造应力场、裂缝与油气运移[J].岩石力学与工程学报,2004,23(23):4053~4054.
    [41]孙雄,洪汉净.构造应力场对油气运移的的影响[J].石油勘探与开发,1998,25(1):1~3.
    [42]王小凤,马寅生.油田构造应力场驱动油气运移的理论和方法研究[J].石油学报,1999,20(5):7~12.
    [43]曾锦光,罗元华,陈太原.应用构造面主曲率研究油气藏裂缝问题[J].力学学报,1982(2):202~206.
    [44] Richard J Lisle , Julian M Robinson. Fracture prediction using Gaussian curvature analysis[J].The Leading Edge,1996,28:72~74.
    [45] Bruce S Hart,Tom Engler,Robin Pearson,Ryan L Robinson. 3-D seismic horizon-based approaches to fracture-swarmsweetspot[J], The Leading Edge,2002,32:53~55.
    [46]沈国华.有限元数值模拟方法在构造裂缝预测中的应用[J].油气地质与采收率,2008,15(4).
    [47]王永刚,乐友喜,张军华.地震属性分析技术[M].东营:中国石油大学出版社,2006,1-5.
    [48] M. Turhan Taner, James S. Schuelke, et al.Seismic attributes revisited[J]. SEG Expanded Abstracts,1994,13:1104~1106.
    [49] Satinder Chopra等.曲率属性在3D地面地震资料中的应用[J].油气地球物理,2007,5(4):50~59.
    [50]韩翀,纪学武,尹晓贺.曲率体属性在碳酸盐岩生物礁储层解释中的应用[J].石油天然气学报,2010,32(4):243~246.
    [51] Lisle R J. Detection of zones of abnormal strains in structures using Gaussian curvature analysis[J]. AAPG Bulletin, 1994,78(12):1811~1819.
    [52] Hart B S , Pearson R A . 3-D seismic horizon-based approaches to fracture-swarm sweet spot definition in tight-gas reservoirs [J]. The Leading Edge,2002,21(1):28~35.
    [53] Sigimondi E A, Soldo C J. Curvature attributes and seismic interpretation: Case studies from Argentina basins[J]. The Leading Edge, 2003,22(1):1122~1126.
    [54]操成杰.川西北地区构造应力场分析与应用.中国地质科学院硕士学位论文,2005.
    [55]李启飞.基于构造曲率的库姆组裂缝预测.成都理工大学硕士学位论文. 2010.
    [56]张振波.利用相干分析技术判断断层和地层特征[J].中国海上油气(地质),1999,13(3):229~233.
    [57]赵牧华,杨文强,崔辉霞.用方差体技术识别小断层及裂隙发育带[J].物探化探计算技术,2006,28(3):216~218.
    [58]易宗富,邵雨,严泽泉,等.三维叠后去噪应注意断层“保护”[J].新疆石油地质,2003,24(2):136~138.
    [59]戴俊生,李理.油区构造分析[M].石油大学出版社,2002.
    [60]王喜双.塔里木盆地构造应力场的数值模拟及其对油气聚集的意义[J].地震地质,1999,21(3).
    [61]韩露.有限元等数值模拟方法在我国岩石圈构造研究中的应用于发展[J].地球物理学进展,2004,19(4).
    [62]陈子光.岩石力学性质与构造应力场[M].北京:地质出版社,1986:339~377.
    [63]孙雄,洪汉净.构造应力场对油气运移的影响[J].石油勘探与开发,1998,25(1):1~4.
    [64]宋惠珍,曾海容,孙君秀,等.储层古应力场的数值模拟[J].地震地质,1999,21(3):193~204.
    [65]孙雄,洪汉净,马宗晋.构造应力作用下流体运动的动力学分析——构造流体动力学[J].地球学报,1998,19(2): 150~157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700