地震诱发斜坡塌滑机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震是地壳快速释放能量过程中造成振动,期间会产生地震波的一种自然现象,是对人类危害最严重的地质灾害。斜坡包括天然斜坡和人工斜坡,是地球表面具有露天侧向临空面的地质体,是自然界中最为常见的地表特征之一,而岩体及其弱层为低抗拉介质,承受拉应力区域的岩体易发生拉张破坏。地震引发的破坏性比较大的边坡崩塌、滚石加上滑坡等也非常严重,滑坡还造成堰塞湖及相关危害,所以研究地震动力作用下岩体边坡破坏过程和规律,在工程实践中具有非常重要的意义。
     有限元方法是目前应用最为广泛的研究工具,但是传统的有限元方法,是建立在连续性假设基础上的,不能模拟岩石拉张破裂后形成的不连续结构,不能直接处理岩石拉破坏现象问题。本文基于岩体拉张破坏理论,应用可模拟拉张破裂的有限元软件对不同强度地震作用下的斜边坡拉张区域及瞬时拉张破裂现象进行数值模拟。就不同弱层数量、不同坡面倾角斜坡模拟试件,加载不同方向、不同强度地震波,共进行了20次数值模拟。分别从同一模型不同强度地震波加载;相同地震波同一坡角不同弱层加载;同一地震波不同坡角不同弱层加载三个方面进行对比。结果表明,拉应力区在地震过程中,不断变化,同一角度边坡弱层越深受拉区域越大,并且地震的加速度值越大,拉应力水平就越高,受拉范围就越大。地震引起的拉张破坏中起主要作用的是x方向地震波,y方向地震波对坡面拉张破坏的影响较小。地震作用下岩体产生了附加应力且随地震进程不断调整;原岩应力与附加应力叠加而形成的总应力场随着地震的进行发生相应改变。斜边坡在一定范围内可能产生拉应力。拉应力区域在地震过程中不断变化,并且地震加速度值越大,拉应力水平就越高,最终产生初始的拉张裂纹;随着受拉范围的增大,裂纹由坡体向坡面延伸,导致边坡岩体拉张破坏。
Crustal earthquakes are caused by quick release of energy during the vibration, will produce seismic waves during a natural phenomenon, the most serious harm to human geological disasters. Slopes, including the natural slopes and artificial slopes, is invading the earth's surface with the open side surface geological body, is the nature of the surface features of the most common one, while the lower layer of rock and its weak tensile media, to bear tensile stress area prone to tensile damage of rock. The devastating earthquake relatively large slope failure, coupled with the Rolling Stones were also very serious landslides, landslides also caused landslide-dammed lakes and associated hazards, the study of rock slope under seismic dynamic failure process and patterns of practice in engineering has a very important significance.
     The finite element method is currently the most widely used research tools, but the traditional finite element method, is built based on the assumption of continuity can not be simulated rocks formed after the tensile rupture of non-continuous structure, and can not directly deal with the problem of rock failure phenomena of Latin America . Based on rock tensile failure theory, the application can simulate tensile rupture of the finite element software for different intensity earthquakes on steep slope under the action of tensile tensile rupture of the regional and temporal phenomenon of numerical simulation. The number of different weak layers with different slope angle slope simulated specimen, loading different directions and intensity of seismic waves, conducted a total of 20 times the value of simulation. Respectively from the same model of earthquakes of various magnitudes Microwave and load; the same as the same slope angle seismic waves in different weak layers loading; the same slope angle seismic waves in different layers of different load three aspects of a weak comparison. The results show that tensile stress zones in the earthquake process, constantly changing, the same angle of slope of the weak layer of the more popular drawing area larger, and the larger the value of the earthquake acceleration, the higher the level of tensile stress, the greater the tension range. Tensile damage caused by the earthquake played a major role in the x direction of seismic wave, y the direction of seismic waves on the slope tensile damage was less affected. Seismic rock produced under additional stress and adjustment process will continue with the earthquake; situ rock stress and additional stress superimposed stress field formed by the total conduct of earthquake occurrence with the corresponding changes. Inclined slope that may arise within a certain tensile stress. Tensile stress region in the process of changing the earthquake and the earthquake acceleration values of the larger the higher the level of tensile stress and eventually produce the initial tensile crack; as the tension increases the scope of the crack extends from the slope to the slope , resulting in tensile damage of rock slope.
引文
[1]顾渭建.城市地下建筑非结构地震震害与对策[J].特种结构.1996,13(1):24-24.
    [2]于翔,赵跃堂,郭志昆.人防工程的抗震问题[J].地下空间,2001,20(1):8-32.
    [3]朱训.世纪是中矿业城市形势与发展战略思考[C]. 2001年中国矿业城市发展论坛.
    [4]王来贵,潘一山,王永岩,章梦涛.资源枯竭煤城环境灾害系统分析[M].资源枯竭城市灾害形成机理与控制战略研讨会议论文集.北京:地质出版社,2003.
    [5]潘昌实,隧道及地下结构物抗震问题的研究概况[J],世界隧道,1996,(5):7-16.
    [6]刘向峰,于永江,王来贵.矿区地层结构弱化与矿区地震灾害[J],辽宁工程技术大学学报,2003,22(5):616-617.
    [7]林皋,梁青槐.地下结构的抗震设计[J].土木工程学报,1996,29(1):15-24.
    [8] Thomson W T. Transmission of elastic waves through a stratified soil medium[J],J.Apple.Phys.,1950,21(1):89-93.
    [9] N.A.Haskell,The dispersion of surface waves on multilayered media[J],Bull. SEism,Soc. Amer., 1953,43(1):17-34.
    [10] N.A.Haskell,Raduatuib pattern of surface waves from point source in a multilayered medium[J],Bull.SEism,Soc.Amer.,1964,54(1):377-393.
    [11]Dunkin. J,Computation of model solutions in layered elastic media at high frequency [J].Bull. SEism. Soc. of America,1965,55(2):335-358.
    [12] Waston. T.H. A note on fast computation of raylEigh wave dispersion in the multilayered elastic half s pace [J].Bull. SEism. Soc. of America,1970,60(1):161-166.
    [13]陈运泰.多层弹性半空间中的地震波(一)[J].地球物理学报,1974,17(1):20-44.
    [14]陈运泰,多层弹性半空间中的地震波(二)[J].地球物理学报,1974,17(3):173-186.
    [15]王育生,田春林.波在多层弹性介质中的一些特性研究[J].地震工程与工程振动,1983,3(4): 69-82.
    [16] Luco. J. E, Apsel. R.J, On the Green’s function for a layered half space (Part I) [J],Bull. SEism. Soc. of America,1983,73(4):909-929.
    [17] Apsel. R.J,Luco. J. E, On the Green’s function for a layered half space (Part II) [J] .Bull. SEism. Soc. of America,1983,73(4):931-951
    [18]布列霍夫斯基赫ДМ,分层介质中的波(第二版)[M],杨训仁译.北京:科学出版社,1985
    [19] Mott. G, Reflection and refraction coefficients at a fluid-solid interface [J]. J. Aoust. Soc. Amer., 1971,50(3):19-829
    [20] Stoll. T. D, Kan. T. K, Reflection of acoustic waves at a water-sediment interface [J].J. Aoust. Soc. Amer.,1981,0(1):149-156
    [21] Huang. L. H, Influence of seefloor on acoustic plane wave [J],J. Engrg. Mech., ASCE, 1992,118(10):1987-2004
    [22]赵成刚,高福平,王进廷等.波从单相介质向两相饱和多孔介质入射时在交界面上的反射和透射[J],地震工程与工程振动,1998,18(1):131-139
    [23]赵成刚,高福平,崔杰.波在饱和多孔介质与弹性固体介质交界面上的界面效应[J],地震工程与工程振动,1999,19(1):1-6
    [24]Z. S. Alterman and F. C. Jr. Karal. Propagation of elastic waves in layered medil by finite difference methods [J], Bull. SEism. Soc. Am.,1968,58:367-398
    [25]肖克强地震载荷作用下顺层岩体边坡变形特征及稳定性研究[D.]武汉:中国科学院武汉岩土力学研究所,2006.
    [26]陈昌凯地震作用下边坡的有限元动力模拟[D].昆明:昆明理工大学,2006.
    [27]尹紫红地震作用下的滑坡稳定性分析—以西攀高速公路为例[D].成都:西南交通大学,2006.
    [28]任自铭地震作用下斜坡动力响应及稳定性研究[D].成都:西南交通大学,2007.
    [29]青地秀雄断层形态与地震破坏的动态模拟[J].日本地震学会新闻通讯2001, 13(4):31-32
    [30]梁庆国,韩文峰,马润勇等.强地震动作用下层状岩体破坏的物理模拟研究[J].岩土力学200526(8):1307-1311.
    [31]魏占玉,何宏林,董绍鹏等,从两个地表破裂点的几何学与运动学特征分析汶川地震的破裂方式[J].地震地质2008,30(4):023-1032.
    [32]许强,黄润秋5. 12汶川大地震诱发大型崩滑灾害动力特征初探[J].工程地质学报,2008,16 (6):721-729.
    [33]王林,田勤俭,马保起,等.汶川8.0级地震发震断层的累积地震位错研究[J],地震地质2008,30(4):1013-1022.
    [34]刘静,张智慧,文力等汶川8级大地震同震破裂的特殊性及构造意义-------多条平行断裂同时活动的反序型逆冲地震事件[J].地质学报200882(12):1707-1722.
    [35]吴珍汉,张作辰.汶川8级地震地质灾害的类型及实例[J].地质学报2008,82(12):1747-1757.
    [36]赵伯明,徐锡伟.汶川MS8.0地震断层与地震灾害初步分析[J].地震地质2008,30(4):839-854.
    [37]李细光,贵华,徐锡伟.汶川MS8.0地震基岩中的地表破裂[J].地震地质2008,30(4):989-995.
    [38]黄润秋,裴向军,李天斌.汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J].工程地质学报2008 ,16 (6):30-741.
    [39]滕军,涂胡兵.从损伤谱解读汶川大地震震害[J].工程抗震与加固改造,2008,306 :1-6.
    [40]王来贵,赵娜,周永发,等.岩石受拉破坏的数值模拟方法[J].辽宁工程技术大学学报,2007,31(2):198-200..
    [41] WANG Lai-gui,ZHAO Na,ZHANG Li-lin. Numerical simulation of rock tension fracture[C]. International Young Scholar Symposium on Rock Mechanics,China,2008,.4.
    [42]王来贵,赵娜,周永发,等.雁列式断层拉张破裂有限元数值模拟[J].辽宁工程技术大学学报.2008,31(2):204-206..
    [43]王来贵,赵娜,周永发..岩石圆环试件拉张破裂结构演化有限元模拟[J].自然科学进展,2009,20(4):109-112. [44王来贵,赵娜,初影,周永发.不同面积载荷作用下的岩石试件破裂数值模拟[J].沈阳建筑大学学报,2007,(6):44-47.
    [45]王来贵,初影,赵娜.不同形状硐室拉张破裂有限元数值模拟[J].沈阳建筑大学学报,2009,(6):59-63.
    [46] Yamaguchi I.A laser-speckle strain gauge[J].Journal of Physics E:Scientific Instruments,1981,(14):1270-1273.
    [47] Peters W H , Ranson W F.Digital imaging techniques in experimentalstress analysis[J].Optical Engineering,1982,21(3):427-431.
    [48] Choi S,Shah S P.Measurement of Deformations on Concrete Subjectedto Compression Using Image Correlation[J].Exp.Mech.,1997,(37):304.
    [49]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [50]张雄,王天舒.计算动力学[M].北京:清华大学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700