基于RoHS指令六种有害物质的痕量分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子电气产品中有害物质污染引起了人类高度关注,为此欧盟提出了RoHS指令,将电子电气产品中六种物质——铅、镉、汞、六价铬、PBBs/PBDEs——最大允许浓度值限制在痕量范围(100mg/kg或1000mg/kg)。针对中国电子电气业在遵守RoHS符合性实践中存在的诸多问题,本文采用GC-MS,ICP-OES,UV-Visible分光光度法等,对我国南方和香港地区各类电子电气产品中六种有害物质进行痕量分析,建立了一套标准的六种有害物质初步筛选、萃取、定性、定量分析方法,并对此方法体系的影响因素进行分析,对其相对标准偏差、回复率、再现率、检出限、线性关系等进行评估,得出了优化测试参数,在此条件下其检测的精密度达到或高于国际IEC 62321标准,满足RoHS测试要求。
     针对六种有害物质仪器分析程序中存在的问题,本文提出了一些解决的新方法。首先,针对光谱分析中背景线漂移、光谱交迭等问题的引发因素如材质效应、外来离子干扰、非目标元素的发射等,提出了如IEC、两点纠正法、多波长选择和SPE在线流动吸附等解决方法;其次,针对PBBs/PBDEs痕量分析过程中PCB、PCN、HCB等干扰,提出了MSPD法,以YMC ODS-C18作为载体进行吸附分离,成功地消除了持久性有机污染物负面影响;再次,针对卤素其它类同系物对溴类阻燃剂分析中的干扰,提出了NICI-和EI-两种GC-MS电离模式并用,可以同时洞察PBBs/PBDEs分子链断裂后阴离子碎片[Br]-, [HBr2]-和分子链段离子碎片[M+2]+,[M+4]+,[M+6]+,[M+8]+的滞留峰,增加了对溴系阻燃剂的选择性;此外,还讨论了EDXRF筛选中试样自身形状、照射面积、照射时间、厚度等因素对激发强度的影响,并对目标元素次级辐射、共存离子散射、吸收等问题提出了参数拟合法进行回归处理,可更准确地获得目标物的谱线强度与检测浓度之间的关系曲线。上述这些方法使分析的精确度和准确性得以提高。
     超低含量物质的检出限是光谱、色谱分析中的“瓶颈”问题,本文对六价铬、铅、镉的超痕量分析开展研究。选用两种不同吸附剂进行富集处理,即锯屑富集Cr(Ⅵ)和分离Cr(Ⅲ)、MWCNTs富集Pb2+, Cd2+并消除Hg分析中干扰,对过程的影响因素和热力学、动力学参数ΔGο,ΔHο,ΔSο进行研究,结果显示,方法能使目标物浓缩50~100倍,使检出限低至μg/L, ng/L水平。
     本文还建立了反向神经网络逼近模型,在不改变样本数据空间拓朴结构前提下,将n-D空间样本点映射到2-D平面上并实现对样本数据的搜索寻优,获得了最佳Cr(Ⅵ)萃取和PBB索氏提取条件,此计算结果与真实值之间的误差ξ<0.05%,为实验优化设计提供了理论基础。
     针对RoHS符合性实践对企业带来的经济负荷,借鉴日本SONY公司绿色化管理理念,提出了绿色“采购——生产——销售”三链环法对电子电气产品进行绿色管理与监控,对我国大陆及香港地区的电子电气业绿色化管理具有指导意义。
The threaten of hazardous substances contained in electronic and electrical equipment (EEE) to environment is of high concern, therefore, European Council and Parliament issued the RoHS Directive to restrict the maximal concentration value (MCV) of six substances ? lead (Pb), cadmium (Cd), mercury (Hg), hexavalent chromium (Cr6+), polybrominated biphenyls (PBBs),and polybrominated diphenylethers (PBDEs) ? contained in the new EE products put on the EU market at the trace level (100mg/kg or 1000mg/kg). To comply with the RoHS regulation, EE industries in Hong Kong and China South are facing with great challenges. In this work, GC-MS, ICP-OES, UV-Visible Spectrophotometry were employed to determine the trace concentrations of the above six hazardous substances, and a standard method system for screening primarily, extraction, qualitative and quantitative analyses of the six substances was established and their factors were analyzed. By evaluating the relative standard deviation (R.S.D), recovery, repeatability, limit of detection, linear relation etc., the optimum parameters were given and thus the precision of analysis was equal to or higher than the IEC 62321 standard, meeting the requirement of RoHS.
     Several methods were proposed to solve the issues in the process of the instrumental analysis on the six hazardous substances. Firstly, by means of interelement correction (IEC), multi-wavelengths, two-point correction, and SPE online flow-injection adsorption method etc., background shift and spectra overlap caused by matrix effect, ambient ion interferences, emission of non-analytes in ICP-OES analysis were eliminated. Secondly, in order to overcome the interferences from PCB, PCN, HCB in the process of determination of PBBs/PBDEs, a matrix solid-phase dispersion (MSPD) method with YMC ODS-C18 as carrier was employed, which completely removed the negative influences of the persistent organic pollutants (POPs). Thirdly, by combining GC-NICI-MS with GC-EI-MS, brominated isomers or ramifications were distinguished from other halogen compounds in which anion fragment retention peaks of [Br]-, [HBr2]- and molecule chain fragment peaks of [M+2]+,[M+4]+,[M+6]+,[M+8]+ were observed simultaneously, and thus the selectivity to brominated retardant flames was greatly improved. Besides, effects of sample shape, thickness, screening area and screening time etc. on X-ray emission intensities of analytes during EDXRF screening were discussed, and in order to eliminate secondary excitation of analytes, absorption, X-ray dispersion of coexisting ions etc., a parameter simulation regression analysis was established, the results showed that a satisfactory function curve between emission intensities and concentration of analytes was obtained. The above means can improve the precision and reliability on the determinations of six hazardous substances.
     The limit of detection (LOD) on the ultralow substance content is a“bottleneck”of the spectral and chromatographic technologies. The determination of the ultratrace concentration of Cr6+, Pb, Cd were studied by enriching/preconcentrating method with two adsorbents: sawdust and multi-walled carbon nanotubes (MWCNTs). The former was used to enrich Cr(VI) and separate Cr(III), the later was employed to enrich Pb2+, Cd2+ and removal the interference during Hg determination. In order to enhance enrichment efficiency, thermodynamic and dynamic parameters such asΔGο,ΔHο,ΔSοwere discussed. The result showed that the objective content in the sample solutions was concentrated about 50-100 fold, and LOD was minimized toμg·L-1, ng·L-1 level.
     Furthermore, an optimized imminent model based on back-propagation neural network for experimental data was programmed. The n-D internet relation of sample data can be reduced dimensionly on 2-D plane without loss of real information, and along the trend direction, an optimal point was found out. Using this model to optimize the operational condition of Cr(VI) extraction and PBBs soxhlet extraction, the error (ξ) between simulation and real value was less than 0.05%, which provided a theoretic basis of actual experimental optimization design.
     Pointing to the economic pressure for RoHS compliance and based on SONY green management system, a“stocking-producing-saling”tri-chain method on supervising the EE products was established, and it is meaningful to guide the green products management of electronic and electrical industries in China Mainland and Hong Kong.
引文
[1] European Parliament/Council of the European Union, Directive 2002/95/EC of the European Parliament and of the Council on the restriction of the use of certain hazardous substances in electrical and electronic equipment, Official Journal of the European Union, 2003,1, 23:19-37.
    [2] European Parliament/Council of the European Union, Directive 2002/96/EC of the European Parliament and of the Council on waste electrical and electronic equipment, Official Journal of the European Union, 2003, 1, 27: 24-37.
    [3] Official Journal of the European Union,Applications of lead, mercury, cadmium and hexavalent chromium, which are exempted from the requirements of Article 4(1),2005: 10-11. http://www.isoyes.net.cn/xiazai/211.html
    [4] Montse M., Marta S., Joan F., et al. Air concentrations of PCDD/Fs, PCBs and PCNs using active and passive air samplers, Chemosphere, 2008, 70: 1637-1643.
    [5] Domingo J.L., Schuhmacher M., Muller L., et al. Evaluating the environmental impact of an old municipal waste incinerator: PCDD/F levels in soil and vegetation samples,J. Hazard., 2000, 76: 1-12.
    [6] Sabine P., Ronald B., and Gisa T., The flame retardants tetrabromobisphenol A and tetrabromobisphenol A-bisallylether suppress the induction of interleukin-2 receptorαchain (CD25) in murine splenocytes, Toxicology, 2003, 184,1: 11-22.
    [7] Gomez M., Factors associated with exposure in occupational safety and health administration data. AIHAJ, 1997, 58: 186–195.
    [8] National Institute for Occupational Safety and Health, Criteria for a recommended standard: Occupational exposure to inorganic lead, revised criteria. DHEW (NIOSH) Publication, 1978: 78–158.
    [9] Anttila A., Heikkila P., Mydyri E., et al. Risk of nervous system cancer among workers exposed to lead. J Occup. Env. Med., 1996, 38: 131-136.
    [10] Anttila A., Heikkila P., Pukkala E., et al. Excess lung cancer among workersexposed to lead. Scan J Work Environ Health, 1995, 21: 460-469.
    [11] International Agency for Research on Cancer (IARC), Some metals and metallic compounds. IARC Monographs, 1980, 23: 325-415.
    [12] International Agency for Research on Cancer (IARC), Overall evaluation of carcinogenicity: an updating of IARC Monographs Vols. 1 to 42. IARC Monographs, 1987, 1-42: 230-232.
    [13] Ames K.C., Prych E. A., Background concentrations of metals in soils from selected regions in the State of Washington. Tacoma, WA: U.S. Geological Survey, Water-Resources Investigations Report 95-4018, prepared in cooperation with Washington State Department of Ecology. 1995: 32-34.
    [14] Delistraty D.A., Yokel J., Ecotoxicity of river and spring sediment along the Hanford Reach. Bull Environ. Contam. Toxicol.,1998, 61: 754–761.
    [15] Johnson A., Norton D., Yake B., et al. Transboundary metal pollution of the Columbia River (Franklin D. Roosevelt (Lake). Bull Environ Contam Toxicol., 1990, 45: 703–710.
    [16] Manugistics, Statgraphics Plus, Version 4.0 Professional System. Rockville, MD: Manugistics, Inc., 1998.
    [17] Ng K.C. and Caruso J.A., Anal. Chem., 1983, 55: 13-15.
    [18] Lidc D.R., Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 73rd ed., 1992.
    [19] Tao S., Shijo Y., Wu L. and Lin L., Analyst, 1994, 119: 1455.
    [20] Environmental Criteria, Regulated by the Environmental Agency of Japan, 1970.
    [21] Commission of the European Communities: Criterial (dose/effect relationship) for mercury, Pregamon, Oxford, 1978.
    [22] Yoshida K., Sasaki R., Okamoto Y., et al. Impact of nuclear factor kappa B activity for local tumor controllability by radiotherapy in patients with T 1/T2N0 laryngear cancer, International Journal of Radiation Oncology *Biology* Physics, 2007, 69(3): 436-442.
    [23] Jacques H. B., Maartje J. H., Liesbeth J.B., et al. Cardiotoxic effects of tangential breast irradiation in early breast cancer patients: The role of irradiated heart volume,International Journal of Radiation Oncology *Biology* Physics, 2007, 15(4): 1131-1138.
    [24]徐忠华,须贺唯知,世界的制造据点中国大陆也将引进有害物质使用法规, RoHS绿色指令:全球环境规范和无铅焊接技术.东京大学先端科学技术研究中心,2006.
    [25] Fanna P., Ian T. C., Donald M., Assessing the environmental fate of chemicals of emerging concern: a case study of the polybrominated diphenylethers. Environmental Pollution, 2002, 117: 195-213.
    [26] Michael M., Paul K.S., An Asian quandary: where have all of the PBDEs gone? Marine Pollution Bulletin. 2004, 49: 375-382.
    [27] Boer J.,Wester P. G.,Van H. A.,et al. Polybrominated diphenyl ethers in influents,suspended particulate matter,sediments,sewage treatment plant and effluents and biota from the Netherlands [J]. Environ. Pollut.,2003, 122, 1:63–74.
    [28] Ashraf H.,Ae J.,Go T.,et al. Time trends of atmospheric PBDEs inferred from archived U.K. Herbage [J]. Environ.Sci. Technol.,2005,39, 8:2436–2441.
    [29] Wang D.,Cai Z.,Jiang G. B.,et al. Determination of polybrominated diphenyl ethers in soil and sediment from an electronic waste recycling facility [J]. Chemosphere,2005,60, 6:810–816.
    [30] Jakobsson K., Thuresson K., Rylander L., et al. Exposure to polybrominated diphenyl ethers and tetrabromobisphenol A among computer technicians [J]. Chemosphere,2002,46, 5:709–716.
    [31] Martin M.,Lam P. K.,Richardson B. J., An Asian quandary:where have all of the PBDEs gone? [J]. Mar. Pollut. Bull.,2004,49, 5/6:375–382.
    [32] Shinsuke T., PBDEs: an emerging group of persistent pollutants. Marinepollution Bulletin 49, 2004: 369-370.
    [33]索尼技术标准,在部件和设备中包含的限制使用物质的管理标准, 2002.
    [34] SONY公司,企业标准SS-00259《零件和材料中环境相关物质的管理规定(第二版)》, 2004.
    [35]罗道军, RoHS指令解析与符合性实践方法.中国赛宝实验室, 2005.
    [36] Japan Electronics and Information Technology Industries Association. Lead-free roadmap 2002 offfical version 2.1[EB/OL]. http://tsc.jeita.or.jp/TSC/COMMS/7_EASM/english/leadfree/data/roadma, p-v21-eHP.ppt.
    [37] http://210.254.215.73/jeita_eps/green/009.html.
    [38]倪兆明,电子制造商关注无铅生产技术发展趋势[EB/OL]. http://www.ebnchina.com.
    [39] RoHS和WEEE发展趋势及各国规范,http: //www.rohscn.com.
    [40] IBM公司,企业标准ES 46G3372,July 28, 2003.
    [41] Environmental Criteria, Regulated by the Environmental Agency of Japan, 1970.
    [42] Han S.K., Hong S. K., Lee J. W., et al. Structural and optical properties of non-polar A-plane ZnO films grown on R-Plane sapphire substrates by plasma-assisted molecular-beam epitaxy, Journal of Crystal Growth, 2007, 309(1): 121-127.
    [43] Joan R. D., Method for Environmental Trace Analysis. Joan Wiley & Sons Ltd, 2003.
    [44] Martin S. P. and Widmer R., Key drivers of the e-waste recycling system: assessing and modeling e-waste processing in the informal sector in Delhi, Environmental Impact Assessment Review, 2005, 25: 472-491.
    [45] Roger R., Introduction to Environmental Analysis. Joan Wiley & Sons Ltd, 2002.
    [46] Production, Import and Export Amount. Aanalysis Yearbook. 2000.
    [47] Zheng L. and Chen Z. W., Strengthen waste electrical and electronic equipment management immediately, Recycling Research, 2001, 22: 18-21.
    [48] Lin F. C. and Wang J., Output prediction and countermeasure study for waste computers in China, Shanghai Environmental Science, 2003, 22: 479-82.
    [49] http://www.researchandmarkets.com/reportinfo.asp?report_id=29689
    [50] Richard C. C., Assessing the migration to lead-free electronic products, Thesis for Ph.D., University of Maryland, 2001.
    [51] James H., Lead (Pb)-Free Packaging Strategy 2000-2003. Dec.2001 Update”.
    [52]刘一波,吴懿平,吴丰顺,邬博义,张金松,无铅焊料的知识产权状况分析,电子元件与材料, 2004, 23, 4: 39-41.
    [53]吴丰顺,王磊,吴懿平,安兵,张金松,刘一波,电子产品无铅化的环保新问题,电子元件与材料,2004, 23, 11: 71-74.
    [54]中华人民共和国信息产业部,电子信息产品污染控制管理办法(第39号),2006年2月28日. http://www.mii.gov.cn/art/2006/03/02/art_521_7344.html.
    [55] Wang E., Two EU Directives Approaching, Chinese Supply Chain Changing, 2004. Http://homea.people.com.cn/GB/41391/ 3274203.html [9 May 2005] .
    [56] Wang H.T., The impact of RoHS on Chinese home appliance Industry, Electrical Appliance. 2005, 11:50-51 (in Chinese).
    [57] Wu G. P., The Progress and Strategy of Complying with EU WEEE and RoHS in China’s electrical household appliance industry. Electric Machine and Electric Apparatus Technologies, 2004, 4:1-5 (in Chinese).
    [58] http://info.china.alibaba.com/news/detail/v5000441-d5733423.html.
    [59] Volkovic L. V., Trace Element Analysis, Taylor and Francis, London, 1975.
    [60] ATSDR, Toxicological profile for Chromium (final report), NTIS Accession No. PB 2000-108022. Agency for Toxic Substances and Disease Registry, Atlanta, GA, 2000: 461.
    [61] International Agency for Research on Cancer, Chromium, nickel and welding, IARC Monographs on the Evaluation of Carcinogenic Risk to Humans, vol. 49, IARC Scientific Pubblications, IARC, Lyon, 1999.
    [62] Cranston R. E., Murray J. W., Anal Chim Acta, 1978, 99: 275.
    [63] Zhan H. F., Hoizbecher J., Ryan D. E., Anal Chim Acta, 1983,149: 385.
    [64] Pankow J. F., Janauer G. E., Anal Chim Acta, 1974,69: 97.
    [65]戚文彬,朱岩,丁善林,叶惠芬,岩矿测试,1991,10: 97.
    [66] Padarauskas A., Schwedt G., Talanta, 1995, 42: 693.
    [67] Jen J. F., Ou-Yang G. L., Chen C. S., et al. Analyst, 1993, 113: 1281.
    [68] Sturgeon R.E., Willie S.N., and Berman S.S., Anal. Chem.. 1989, 61: 1867.
    [69] Eid Z., Characterization and Treatment of the soil of an industrial site contaminated with Cr(VI), J. Environ. Sci. Health A 1996, 31, 1: 227–247.
    [70] Yoshimura K., Ohashi S.H., Talanta, 1978, 25: 103.
    [71] Narvin I., Soylak M., Kayakirimaz K., et al. 2002,Anal Lett., 35: 1437.
    [72] Rychlovsky P., Krenzelok M., Volhenjnova R., 1998, Collect Czech Chem Commun., 63: 2025.
    [73] Tunceli A., Rehber T. A., Talanta 57, 2002:1199.
    [74] Mondal B.C., Das D., Das A.K., Talanta 56, 2002: 145.
    [75]罗津新. TBP萃淋树脂分离GFAAS法测定水与废水中的铬(Ⅲ)和铬(Ⅵ)[J].中国环境监测, 1999, 15, 4: 36-38.
    [76] Manzoori J.L., Sorouraddin M.H., Shemiran F., Anal.Lett. 29, 1996: 2007.
    [77] Vassileva E., Hadjiivanow K., Stoychev T., et al. Analyst 125, 2000: 693.
    [78] Sahayam A.C., Arunachalam J., Gangadharan S. C., J. Anal. Sci. Spectros. 43 1998: 4.
    [79] Midgett M. R., Fishman M. J., At Absorp Newslett, 1967,6: 128.
    [80] Geddes A. F., Tarter J. G., Anal Lett, 1988, 21, 5: 857.
    [81] Kotas J., Stasicka Z., Environmental Pollution. 2000,107: 263.
    [82] Florence T.M., and Batley G.E., CRC Crit. Rev. Anal. Chem., September 1980: 219-267.
    [83] Skrzydlewska E., Bdlcerzak M., Vanhaecke F., Anal. Chim. Acta 479, 2003: 191.
    [84]申金山,李献锐.罗丹明B-I-3离子缔合物共振散射测定环境水样中的Cr(Ⅲ)和Cr(Ⅵ)[J].分析化学, 2001, 29, 8: 944-946.
    [85]刘海玲,刘树深,陈英淼.聚酰胺富集分离环境水中铬(Ⅲ)和铬(Ⅵ)[J].分析化学, 1998, 26, 8: 963-967.
    [86] Yoshimura K. Application of ion-exchanger phase absorptionmetry to flow analysis. Determination of trace amounts of chromium(Ⅵ) in water[J]. Analyst, 1988, 113: 471-475.
    [87] Ohis K., Riemer G., Fresenin’s Z., Determination Chromium (Ⅲ) and Chromium (Ⅵ) in Water by Lon-exchang flame Atomic Absorption Spectrometry[J] . Anal Chem., 1984, 317: 774.
    [88]汤桂娜,贺仕军,王保宁.多元校正-紫外可见分光光度法同时测定Cr (Ⅵ)与Cr (Ⅲ) [J] .分析化学, 1995, 23, 4: 383.
    [89]余建新,曾汉和.出口手套皮革中水溶性六价铬含量的测定[J].分析测试学报, 1998, 17, 6: 59-61.
    [90] Sperling M., Xu S. K., Kelz B. Determination of chromium(Ⅲ)and chromium(Ⅵ) in water using flow injection on line perconcentration with selective absorption on activated alumina and flame atomic absorption spectrometric detection [J]. Anal Chem.,1992, 64: 3101-3108.
    [91]洪正隆,陈红斌,黄梅.离子交换火陷原子吸收法测定水中铬(Ⅲ)和铬(Ⅵ)[J].分析化学, 1991, 19, 4: 484-486.
    [92] Krull I. S., Panaro K. W., Gershman L. L., J. Chromatogr. Sci., 1983, 346: 653.
    [93] Padarauskas A., Schwedt G., Talanta, 1995, 42: 693.
    [94] Sahayam H., Katz S. A., Sci. Total Environ., 1989, 86: 59.
    [95]何江,梁奇峰,丘基祥,铅的痕量分析技术,广东微量元素科学,2003,10,9: 21-29.
    [96]李华禄,刘汉东,刘延湘.流动注射在线萃取FAAS法测定天然水中铅[J] .武汉教育学院学报, 2000 ,19, 3: 15-18.
    [97]陈兰菊,郑连义,赵地顺,等.流动注射-导数火焰原子吸收光谱测定植物油中的镍、锰、铬和铅[J] .分析测试技术与仪器, 2002 , 8, 3: 178-181.
    [98]王爱霞,张宏,刘琳琳.流动注射在线分离富集火焰原子吸收法测定环境样品中的铅和镉[J] .分析化学, 2001, 29, 11: 1284-1287.
    [99]蒋桂华,刘春明,王晓菊,准液膜分离富集—火焰原子吸收法测定痕量镁、铅,光谱学与光谱分析,19,5: 732-733.
    [100]张秀尧.在线流动注射螯合树脂预富集石英缝管增敏火焰原子吸收法测定水中痕量铅[J] .分析化学, 2000, 28, 12: 1493-1496.
    [101]王光明,焦传英.共沉淀预富集-火焰原子吸收光谱法测定水中的铅和镉[J] .光谱实验室, 2002 , 19, 5: 680-683.
    [102]薛平,苑利.微波消解-火焰原子吸收法测定竹叶青酒中的重金属含量[J] .食品与发酵工业, 2001 ,27, 5: 54-56.
    [103]开小明,张群,凌必文,等.基体改进剂和L′vov平台技术石墨炉原子吸收光谱法测定全血中铅[J] .光谱学与光谱分析, 2001 , 21, 2: 244-246.
    [104]蒙若兰,胡德斌.石墨炉台技术测定痕量铅-硝酸钯-硝酸镁混合基体改进剂[J ] .重庆建筑大学学报,1999 , 21, 3: 86-90.
    [105]陈恒初,刘汉东,汤志勇,等.悬浮液进样平台石墨炉原子吸收光谱法测定生物样品中痕量铅[J] .光谱实验室, 1998 , 15, 1: 44-46.
    [106] Rosa, C.R., Moraes M., Neto J.A.G., et al. Effect of modifiers on thermal behaviour of Se in acid digestates and slurries of vegetables by graphite furnace atomic absorption spectrometry. Food Chem., 2002, 79: 517–523.
    [107]郑恩,喻海雅,谢晖,石墨炉原子吸收光谱法测定水处理剂中微量铅、镉,光谱学与光谱分析,2000年,20,3: 379-380.
    [108]吴仪贞,边东风,郁保宁,等. DB-HEA101型氢化物电热原子化器及其应用[J] .分析仪器, 1998, 3: 39-42.
    [109]沈志武,董银根,沈惠君. VA—90氢化物发生-原子吸收光谱法测定食品中痕量铅[J] .光谱学与光谱分析, 2000 , 20, 3: 390-392.
    [110]仇佩虹,张华杰,林丽.流动注射氢化物发生-加热石英管-原子吸收法测定血清铅[J] .分析化学, 2000, 28, 9: 1183.
    [111]裴如俊,郭玉敏,张丽.氢化物发生-原子荧光光谱法测定废水中痕量铅[J ] .中国环境监测, 2000 ,16, 3: 30-31.
    [112]杨宝玺.氢化物发生原子荧光光谱法测定水中铅[J] .中国公共卫生, 2001 , 17, 10: 926.
    [113]傅昀,王文桂,谢克金,等.利用多功能LB-HG型雾化氢化物发生器与电感耦合等离子体原子发射光谱联用测定人发中砷、锑、汞、铅[J] .分析化学, 1998 , 26, 4: 431-434.
    [114]谯斌宗,杨元,文君,等.连续氢化物发生端视ICP-AES法直接测定纯净水中痕量铅[J] .中国卫生检验杂志, 2001 , 11, 4: 385-386.
    [115]范哲锋.化妆品中的Hg、As和Pb的微波消解-氢化物发生ICP-AES法测定[J] .分析测试学报, 2001, 20, 1: 56-57.
    [116]黎源倩,杨经国,郑欣,等.流动注射-二极管阵列检测分光光度法同时测定铅和镉[J] .分析化学,1998 , 26, 7: 843-846.
    [117]杨经国,黎源倩,哈文清,等.用于多组分同时测定的流动注射-CCD阵列探测分光光度装置研究[J] .光谱学与光谱分析, 1999, 19 (2) : 212-214.
    [118]中华人民共和国卫生部卫生法制与监督司.生活饮用水卫生规范[M].北京:中华人民共和国卫生部, 2001,164-169.
    [119]陈永辉,冷原子荧光光谱法测定水中痕量汞,分析测试技术与仪器,2005,12: 292-295.
    [120]朱振中,李在均,虞学俊等.二溴对甲基偶氮甲磺光度法测定食品中微量铅[J ] .无锡轻工大学学报,1997 , 17, 3: 82-85.
    [121]范晓燕,董杰. Pb(Ⅱ)-双硫腙-PAR水相光度法测定样品中铅[J] .理化检验化学分册, 2001 , 37, 6: 258-260.
    [122]杨超.束胶分光光度法测定双硫腙金属络合物[J] .中国卫生检验杂志, 2002 , 12, 1: 41.
    [123]吴伟明,杜海燕,戎关镛.离子交换树脂相分光光度法测定水中的铅[J] .南方冶金学院学报, 1998 ,19, 2: 142-145.
    [124]张永航,赵中一,金继红,等.固相反射散射分光光度法测定化妆品中的铅[J] .环境科学与技术, 2001, 2: 44-45.
    [125]范大和,严金龙,孙汝东.阳极溶出方波伏安法测定食醋的痕量铅[J] .山东化工, 2000 , 29, 6: 40-41.
    [126]徐泽民,顾永诈,徐慧等.示差脉冲阳极溶出伏安法测定中药川附子痕量铅镉[J] .四川环境, 2000 ,19, 3: 38-39.
    [127]梁永,贺宝芝.溶出伏安法与计算机差谱技术联合测定尿中铅、锌、铜、镉[J] .中国工业医学杂志,2000 , 13, 5: 310-312.
    [128]杨天鸣,邓敏,钟利. PVC膜修饰粉末微电极溶出伏安法测定水中铅(Ⅱ) [J] .分析实验室, 1999 ,18, 5: 27-30.
    [129]易洪潮,刘明芳,黄文胜,等.蒙脱石修饰电极伏安法同时测定人血中的铅、镉[J] .湖北民族学院学报(自然科学版) , 2001, 19, 3: 63-66.
    [130]傅晖蓉,黄盈煜,胡桂莲.同位镀汞微分电位溶出快速测定焦糖色素铅含量[J] .中国卫生检验杂志, 2001 , 11, 4: 442.
    [131]吴四维,付敏,黄宗卿.椭圆法用于阴极溶出伏安法测定铅的研究[J].渝州大学学报(自然科学版),1999, 16, 2: 66-68.
    [132]黎艳飞,张正奇.用色谱膜法富集阴极吸附溶出伏安法测定空气中的镍铜铅镉[J] .分析测试学报, 1999,18, 1: 72-74.
    [133]陈立钦,杨晓红.硫杂冠醚PVC膜铅(Ⅱ)离子选择电极的研制[J] .武汉化工学院学报, 1998 , 20, 2: 9-11.
    [134]居红芳,陈朗星,何锡文等.新型杯芳烃为载体的铅离子选择电极[J] .分析化学, 2001, 29, 10: 1121-1124.
    [135]李建平,彭图治,张雪君.铋膜电极电位溶出法测定痕量铅、镉、锌[J] .分析化学, 2002, 30, 9: 1092-1095.
    [136]魏显有.分析测试通报, 1991 , 10, 6: 68.
    [137]徐斌,张海丽,叶永康,等.铅-茜素紫-邻菲罗啉体系的极谱行为及应用[J] .分析试验室, 2001, 20, 2: 67-70.
    [138]李欣欣,化学发光法用于对环境和生物样品的分析测定[M],华中科技大学,2005:1-5.
    [139]李卫华,王占玲,李建中,等.以偶合反应流动注射化学发光法测定铅[J] .分析化学, 1998 , 26 (2) : 219-221.
    [140] Liu Y.M., Cheng J.K., Highly sensitive chemiluminescence detection of copper(II) in capillary electrophoresis with field-amplified sample injection, Electrophoresis, 2002, 23, 4: 556-558.
    [141] Liu Y.M., Liu E.B., Cheng J.K., Ultrasensitive chemiluminescence detection of sub-M level Co(II)in capillary lectrophoresis,J.Chromatogr.A., 2001, 939: 91-97.
    [142] Liu E.B., Liu Y.M., Cheng J.K., Ultrasenstive chemiluminescence detection of a mvanadium(IV) by capillary electrophoresis.Anal.Chim.Acta.,2002, 456, 2: 177-181.
    [143] Paleologos E. K., Vlessidis A. G., Karayannis M. I., et al. On-line sorption preconcentration of metals based on mixed micelle cloud point extraction prior to their determination with micellar chemiluminescence: Application to the determination of chromium at ngl-1 levels. Anal.Chim.Acta., 2003, 477, 2: 223-231.
    [144]卫洪清,刘二保,梁建功,程介克,毛细管电泳化学发光法用于铁形态的分析.山西师范大学学报(自然科学版), 2004,18, 4: 74-78.
    [145] Yang W.P., Zhang Z.J., Deng W., Simultaneous, sensitive and selective on-line chemiluminescence determination of Cr(III)and Cr(VI)by capillary electrophoresis. Anal.Chim.Acta., 2003, 485, 2: 169-177.
    [146] Ren J.C., Huang X.Y., Sensitive and Universal Indirect Chemiluminescence Detection for Capillary Electrophoresis of Cations Using Cobalt(II)as a Probe Ion, Anal.Chem., 2001, 73: 2663-2668.
    [147]刘华俊,李玉清,赵燕萍,曾昊.电化学分离富集抑制铜化学发光法测定汞的研究.襄樊学院学报,2002,23,2: 39-41.
    [148] Tsukagoshi K., Hashimoto M., Nakajima R., et al., Anal Sci., 2000,16: 1111-1112.
    [149] Liu B.F., Ozaki M., Utsumi Y., Chemiluminescence Detection for a Microchip Capillary Electrophoresis System Fabricated in Poly(dimethylsiloxane). Anal.Chem., 2003, 75: 36-41.
    [150]苏荣国,林金明,屈锋等.金属离子Cu, Co, Ni的微芯片电泳分离及化学发光检测.化学学报, 2003, 61, 6: 885-888.
    [151]徐溢, Bessoth F., Manz A.,用微芯片实现流动注射化学发光方法测定水样中的铬(III).分析化学, 2000, 7: 876-878.
    [152]纪新明,朱节清,徐洪杰.用XRF法测量聚氯乙烯塑料制品中铅的含量[J] .核技术, 2002 , 25, 6: 447-450.
    [153]谢明勇,温辉梁.用全反射X-射线荧光法及氢化物发生原子吸收对福建乌龙茶进行元素分析[J] .食品科学, 2000 , 21, 1: 51-54.
    [154]田琳,金泰广田共.体内骨铅含量测量的研究进展[J].中华劳动卫生职业病杂志, 2002 , 20, 5: 387-389.
    [155]王军,赵墨田.同位素稀释质谱法测定国际比对水样中的铅[J].分析化学, 1998 , 26, 4: 418-421.
    [156]彭秀红,倪师军,尹观,等.海相化学碳酸盐沉积中的铅同位素测定[J] .矿物岩石地球化学通报, 2001 ,20, 1: 66-68.
    [157] Alaee M., Wenning R. J., Chemosphere, 2002, 46, 5: 579.
    [158] Anderson O., Blomkvist G., Chemosphere, 1981, 10, 9: 1051.
    [159] Martinez A.,Ramil M.,Montes R.,et al. Development of a matrix solid-phase dispersion method for the screening of polybrominated diphenyl ethers and polychlorinated biphenyls in biota samples using gas chromatography with electron-capture detection [J]. J. Chromatogr. A,2005,1072, 1: 83–91.
    [160] Haglund P. S., Zook D. R., Buser H. R., et al. Environ SciTechnol, 1997, 31, 11: 3281.
    [161] Hale R. C., La Guardia M. J., Harvey E. P., et al. Environ Sci Techno l, 2001, 35, 23: 4585.
    [162] Ackerman L. K., Wilson G. R., Simonich S. L., Anal Chem, 2005, 77, 7: 1979.
    [163] North K. D., Environ Sci. Technol., 2004, 38, 4: 484.
    [164] Bj?rklund J.,Tollback P.,Hiarne C.,et al. Influence of the injection technique and the column system on gas chromatographic determination of polybrominated diphenyl ethers [J]. J. Chromatogr. A,2004,1041, 1/2:201–210.
    [165]王亚伟,张庆华,刘汉霞,等.高分辨气相色谱-高分辨质谱测定活性污泥中的多溴联苯醚[J].色谱,2005,23, 5: 492–495.
    [166]杨永亮,潘静,李悦,等.青岛近岸沉积物中持久性有机污染物多氯萘和多溴联苯醚[J].科学通报,2003,48, 21: 2244–2251.
    [167]陈社军,麦碧娴,曾永平,等.珠江三角洲及南海北部海域表层沉积物中多溴联本醚的分布特征[J].环境科学学报,2005,25, 9: 1265–1271.
    [168]陈社军,麦碧娴,曾永平等,沉积物中多溴联苯醚的测定,环境化学,2005, 24, 4.
    [169] Eljarrat E. , De C. A. , Barcelo D., Potential chlorinated and brominated interferences on the polybrominated diphenyl ether determinations by gaschromatography–mass spectrometry [J]. J. Chromatogr. A,2003,1008, 2:181–192.
    [170]萧达辉,肖前,周明辉等,红外光谱法定性筛选电子电气产品中多溴联苯或多溴联苯醚.中国塑料, 2005, 19, 12: 74-78.
    [171]欧寿铭等,厦门港和筼筜湖沉积物中多溴联苯醚类防火剂(PBDEs)的色谱一质谱联机同位素稀释法测定,研究报告,福建分析测试,2006,15, 1.
    [172] The Standing Committee of the National People's Congress (NPC) of the People's Republic of China, Cleaner Production in China, The 28th Session, 2002. http://www.chinacp.org.cn/eng/cppolicystrategy/cp_law2002.html
    [173]中华人民共和国全国人民代表大会常务委员会,中华人民共和国固体废物污染环境防治法,中华人民共和国主席令第31号(修订),2004. http://www.zhb.gov.cn/law/law/200412/t20041229_65299.htm
    [174]林木松,张宏亮,钟丁平,陈刚,EDXRF法快速测定煤灰中各种元素的含量,电站系统工程,2007, 23, 5: 53~54.
    [175]钟金昌.分析化学[M].水利电力出版社, 1985, 56-60.
    [176] Kramar U. J., Geochem. Explor., 1997, 58: 73-80.
    [177] Nguyen T. H., Boman J., Leermakers M., X-ray Spectrometry, 1998, 27, 4: 265-276.
    [178] Boyle J. F., X-ray Spectrometry, 1999, 28, 3: 178-182.
    [179] Linke R., Schreiner M., Energy dispersive X-ray fluorescence analysis and electron probe microanalysis of medieval silver coins [J], Microchim Acta, 2000, 133: 165-170.
    [180] Wagner B., Bulska E., Hulanicki A., et al., Topochemical investigation of ancient manuscripts [J], Fresenius J. Anal. Chem., 2001, 369, 7-8: 674-679.
    [181] Watanabe M., Higashi Y., Tanaka T., Difference between corrosion products formed on copper exposed in Tokyo in summer and winter [J], Corrosion Science, 2003, 45: 1439-1453.
    [182] Yamashita M., Nagano H., Structure of protective rust layers formed on weathering steels by long-time exposure in the industrial atmospheres of Japan and NorthAmerica [J], ISIJ International, 1998, 38: 285-290.
    [183] Hubler R., Cozza A., Marcondes T. L, et al. Wear and corrosion of thin films [J], Surface and Coatings Technology, 2001, 142-144: 1078-1083.
    [184] Kyotani T., Iwatsuki M., Multi-element analysis of environmental samples by X-ray fluorescence spectrometry using a simple thin-layer sample preparation technique [J], Analyst, 1998, 123: 1813-1816.
    [185] Bradeley D. A., Farquharson M. J., X-ray Spectrometry, 1999, 28, 4: 270-274.
    [186] Civici N., Grieken R. V., X-ray Spectrometry, 1997, 26, 4: 147-152.
    [187] Forster R. D., X-ray Spectrometry, 2000, 29, 6: 467-474.
    [188] Sbarato V. M., Sanchez H. J., Applied Radiation and Isotope, 2001, 54, 5: 737-740.
    [189]吉昂,陶光仪,卓尚军等,X-射线荧光光谱分析[M],北京:科学出版社,2003.
    [190] Kallithrakas K. N., Katasanos A. A., Touratsoglou J., Trace element analysis of Alexander the Great’s silver tetradrachms minted in Macedonia [J], Nucl. Instr. and Meth. In Phys Res. 2000, B171: 342-349.
    [191] Wadsak M., Constantinides I., Multianalytical study of patina formed on archaeological metal objects from Bliesbruck-Reinheim [J], mikrochim Acta. 2000, 133: 159-164.
    [192] Arauo M. F., Cruz A., Humanes M., et al., Elemental composition of demospongiae from the eastern atlantic-coastal waters [J]. Chemical Speciation and Bioavailability, 1999, 11: 25-36.
    [193] Bradner D., Wheelerp H. D., Chemical analysis of ferrous base alloys utilizing the fundamental parameters technique assisted by standards of similar and dissimilar materials [J]. The Rigaku Journal. 1998, 15: 28-40.
    [194] Buhrke V.E., Jenkins R., Smith D. K., X射线荧光和X射线衍射分析的样品制备实用指导,Wiley-VCH.
    [195] International Electrotechnical Committee, Procedures for the Determination of Levels of Six Regulated Substances in Electrotechnical Products, IEC TC 111 Working Group,2005: 13-25.
    [196] ASTMC 982 Guide for Selecting Components for Energy-Dispersive X-RayFluorescence Systems, Annual Book of ASTM Standards, 12 (1).
    [197] ISO 8754: 2003, Petroleum products– Determination of the sulfur content– Energy-dispersive X-ray fluorescence spectrometry.
    [198] Manso M., Carvalho M. L., Elemental identification of document paper by X-ray fluorescence spectrometry, J.Anal. At Spectrom., 2007, 22: 164-170.
    [199] Fernandez-Ruiz R., Bermudez V., Determination of the Ta and Nb ratio in LiNb1-xTaxO3 by total reflection X-ray fluorescence spectrometry, Spectrochimica Acta Part B 60, 2005: 231-235.
    [200]中华人民共和国信息产业部,中华人民共和国电子行业标准——电子信息产品中有毒有害物质的检测方法,SJ-T11365, 2006, ICS 31.020
    [201]吉昂,陶光仪,卓尚军等.X-射线荧光光谱分析[ M ].北京:科学出版社,2003,3: 87-184.
    [202]宋苏环,黄衍信,谢涛等.波长色散型X-射线荧光光谱仪与能量色散型X-射线荧光光谱仪的比较[J].现代仪器使用与维修,1998,4: 26-27.
    [203]曹利国,丁益民,黄志琦.能量色散X-射线荧光分析方法[M].成都:成都科技大学出版社, 1998, 4.
    [204]庹先国,四川省地学核技术应用开发重点实验室年报,成都:成都科技大学出版社, 1996.
    [205]庹先国,梁兴中,EDXRF中复杂基体效应的一种校正方法研究,核技术,1998,8: 482-486.
    [206] Wobrauschek P., Kregsamer P., X-Ray Spectrometry [M]. Heyden and Son, Ltd., London, 1991: 20-23.
    [207] Hegedus F., Wobrauschek P., X-Ray Spectrometry [M]. Philips Technical Library, Springer-Verlag New York, N ,Y.,1993:22-277.
    [208] Van Kan J. A., Vis R. D., X-Ray Spectrum [M]. Marcel Dekker, Inc., N. Y., 1995:24-58.
    [209] Lachance G. R., Traill R. J., Canadian Spectroscopy [M]. University of California Press, Berkeley, 1996.
    [210]宋植堤,覆层厚度测试技术,北京:水利电力出版社, 1992. 1~6, 21~58:170-177.
    [211]尤金P,伯廷著,高新华译,X-射线光谱分析导论,北京:地质出版社, 1981: 369-374.
    [212] Dieter G.,Liu X. K., Formation causes and testing method of Cr (VI ) traces in chrome-tanned leather. China Leather, 2001, 30, 23.
    [213]俞旭峰,缪诗聪,皮革中六价铬的检测,中国皮革, 2001, 30, 13: 10-11.
    [214]吉林大学化学系译,仪器分析原理[M],上海:上海科学技术出版社,1981:213-235.
    [215] Foit J., Cuadros M., Reyes M. R., Influence of Varions factors on chromium (VI) formation by photo [J], JSLTC, 1999, 83: 300-306.
    [216] Agrawal Y. K., Rev. Anal. Chem., 1980, 4: 237.
    [217] Agrawal Y. K., Patel S. A., Rev. Anal. Chem., 1982, 6: 49.
    [218] Li S., Deng N., Zheng F., et al. Talanta 60, 2003: 1097.
    [219] Kotas Z. S., Environ. Pollut. 2000, 107, 263.
    [220] Rodríguez S., Castillo E., Carda M., et al. Tetrahedron 2002, 58, 6: 1185.
    [221]董维宪,硕士学位论文[M],北京师范大学,北京, 1984, 73-75.
    [222] Florence T. M., Yvonne J. F., Anal. Chim. Acta 1980, 116, 1: 175.
    [223] International Electronic Committee (IEC), Procedures for the Determination of Levels of Regulated Substances in Electrotechnical Products, Project No. 62321, 2002.
    [224] Balarama Krishna M. V., Chandrasekaran K., Talanta 2005, 65, 135.
    [225] Cornelis R., Anal. Chem. 1994, 15, 339.
    [226] Isshiki K., Sohrin Y., Karatani H., et al. Preconcentration of chromium(III) and chromium(VI) in sea water by complexation with quinolin-8-ol and adsorption on macroporous resin. Analytica Chimica Acta, 1989, 224: 55-64.
    [227] Demirata B., Tor I., Filik H., et al. Anal. Chem., 1996, 356: 375.
    [228] Morocco M.T., Newman G.P., Syty A., J. Anal. Atom. Spectrom. 5, 1990, 29.
    [229] Chwastowska J., Skwara W., Sterlinska E., et al. Speciation of chromium in mineral waters and salinas by solid-phase extraction and graphite furnace atomic absorption spectrometry, Talanta 66, 2005, 1345–1349.
    [230] Bailey S.E., Olin T.J., Bricka R.M., et al. A review of potentially low-cost sorbents for heavy metals, Water Res. 33, 1999, 2469-2479.
    [231] Dahbi, S., Azzi, M., Guardia M., Removal of hexavalent chromium from wastewaters by bone charcoal, Fresenius J. Anal. Chem, 1999, 363: 404-407.
    [232] Narim I., Soylak M., Elci L., et al. Determination of trace metal ions by AAS in natural water samples after preconcentration of pyrocatechol violet complexes on an activated carbon column,Talanta 52, 2000: 1041-1046.
    [233] Cerutti S., Silva M.F., Gasquez J.A., et al. Spectrochim. Acta Part B 58, 2003: 43.
    [234] Yunes N., Moyano S., Cerutti S., et al. Talanta 59, 2003, 943.
    [235] Cerutti S., Moyano S., Gasquez J.A., et al. Spectrochim. Acta Part B 58, 2003: 2015.
    [236] Sanna L., Jonna J., Sirpa P., et al. Anal Spectrom, 2003, 18: 84.
    [237] Manzoori J.L., Sorouvaddin M.H., Shemirani F., Talanta, 1995, 42: 1151.
    [238] Yalcin S., Apak R., Anal Chim. Acta., 2004, 505: 25.
    [239] Lujan J. R., Darnall D. W., Stark P. C., et al. Solvent Extr. Ion Exch., 1994, 12: 803.
    [240] Ummat R. M., Hasany M. S., Sadiq M. S., Talanta, 2005, 66: 166.
    [241] Kiran B., Kaushik A., Kaushik C. P., Response surface methodological approach for optimizing removal of Cr(VI) from aqueous solution using immobilized cyanobacterium, J. Chem. Eng., 2007,126: 147-153.
    [242] Baral S. S., Das S. N., Rath P., Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust, J. Biochem. Eng., 2006, 31, 216-222.
    [243] Gasser M. S., Morad G. H., Aly H. F., Batch kinetics and thermodynamics of chromium ions removal from waste solutions using synthetic adsorbents, J. Hazard. Mater., 2007, 142: 118-129.
    [244] Sharma Y. C., Weng C. H., Removal of chromium (VI) from water and wastewater by using riverbed sand: kinetic and equilibrium studies, J. Hazard. Mater., 2007, 142: 449-454.
    [245] Baral S. S., Das S. N., Rath P., et al. Chromium removal by calcined bauxite, J. Biochem. Eng., 2007, 34: 69-75.
    [246] Shukla A., Zhang Y. H., Dubey P., et al. The role of sawdust in the removal of unwanted materials from water, J. of Hazard. Mater., B95, 2002, 137~152.
    [247] Ibrahim N. A., Hashem A., Abou-Shosha M. H., Polyplast. Technol. Eng., 36, 1997, 963.
    [248] Young R. N., McDonald G., Randall J. M., J. Appl. Polym. Sci., 23, 1979, 1027.
    [249]付献彩,沈文霞,姚天扬(南京大学物理化学教研室)编,物理化学(第四版,下册),高等教育出版社,1990。
    [250] Namasivayam C., Ranganathan K., Removal of Cd(II) from wasterwater by adsorption on“waste”Fe(III)/Cr(III) gydroxide, Water Research, 29, 7, 1995:1737-1744.
    [251] Ho Y.S., McKay G., The sorption of lead(II) ions on peat, Water Res. 33,1999: 578–584.
    [252] Achari V. S., Anirudhan T. S., Phenol removal from aqueous systems by sorption on Jackwood sawdust. Ind. J. Chem. Technol., 1995, 2: 137-141.
    [253] Hayes K.F., Papelis C., Leckie J.O., Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. J. Colloid Interface Sci., 1987, 125: 717-726.
    [254] Niwas R., Gupta U., Khan A.A., et al. Colloids Surfaces A: Physicochem. Eng. Aspects 164, 2000: 115.
    [255] International electrotechnical committee (IEC), Procedures for the Determination of Levels of Regulated Substances in Electrotechnical Products, 2005 International Electrotechnical Commission conference in Italy, No. 62321, Ed.1, 2002, 8: 22.
    [256] Haji S., Dadfarnia A.M., Jafari S., et al. Flame atomic absorption spectrometric determination of trace amounts of silver in aqueous sample after solid phase extraction using octadecyl silica membrane disks modified by 2-[(2-mercaptophenyliminio) methyl]phenol. Can. J. Anal. Sci. Spect. 2006. 51, 194-199.
    [257] Hakim L., Sabarudin A., Oshima, M., et al. Synthesis of novel chitosan resin derivatized with serine diacetic acid moiety and its application to on-line collection/concentration of trace elements and their determination using inductivelycoupled plasma-atomic emission spectrometry. Anal. Chim. Acta 588, 2007: 73-81.
    [258] Hosseini M.S., Sarab A. R. R., Cr(III)/Cr(VI) speciation in water samples by extractive separation using Amberlite CG-50 and final determination by FAAS. Int. J. Environ. Anal. Chem. 87, 2007: 375-385.
    [259] Li Q.M., Wu H.W., Liu G.G., Determination of trace zinc by spectrophotometry after preconcentration on microcrystalline phenolphthalein, Acta Chim. Sin. 64, 2006: 1169-1172.
    [260] U.S. EPA, Test Methods for Evaluating Solid Waste,Method 7130, November 1986.
    [261] U.S. EPA, Test Methods for Evaluating Solid Waste,Method 3010, 3050, November 1986.
    [262] U.S. EPA, Test Methods for Evaluating Solid Waste,Method 3030, 1982.
    [263] U.S. EPA, Test Methods for Evaluating Solid Waste,Method 7000,November 1986.
    [264] U.S. EPA, Methods for Chemical Analysis of Water and Wastes, Method 213.1, 1983.
    [265] Charun Y., John G. F., Analytica Chimica Acta, 2006, 557: 296-303.
    [266] Shiquan T., Takahiro K., Analytica Chimica Acta, 1995, 310: 369-375.
    [267] Charies B. B., and Kenneth J. F., Concepts, Instrumentation, and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry, PerkinElmer Corp., 1997.
    [268] ISO 5725 Series: Accuracy (trueness and Precision ) of measurement methods and results.
    [269] Charles B. B., Kenneth J. F., Concepts, Instrumentation, and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry. Perkin Elmer Corp., Ed.2, Norwalk, 1999, USA.
    [270] Awad A. M., George A. Z., Aristidis N. A., et al. Analytica Chimica Acta, 2006, 565: 81-88.
    [271] Joachim N., Atomic Spectroscopy, 20, 3, 1999.
    [272] Bettinelli M., Beone G. M., Spezia S., et al. Analytica Chimica Acta, 2000,424:289-296.
    [273] Zarcinas B. A., The Science of the Total Environment, 2002,95: 241-244.
    [274] Awad A. M., George A. Z., Aristidis N. A., et al. Analytica Chimica Acta, 2006,565: 81-88.
    [275] Jianrong C., Khay C. T., Analytica Chimica Acta, 2001, 450: 215-222.
    [276] McIntire G. L., Crit. Rev. Anal. Chem. 1990, 21: 257.
    [277] Carboneli V., Mauri A. R., Salvador A., et al. J. Anal. At. Spectrom., 1991, 6: 581-584.
    [278] Joachim N., Atomic Spectroscopy, 20, 3, 1999.
    [279] Zang H.M., Fu R.W., Removal of metal ions by activated carbon, Technol. Water Treatment 15, 1989: 132–136.
    [280] Peng X., Li Y., Luan Z., et al. Chem. Phys. Lett. 376, 2003: 154-158.
    [281] Zhou Q., Xiao J., Wang W., et al. Talanta 68, 2006: 1309-1315.
    [282] Biesaga M., Pyrzynska K., J. Sep. Sci. 29, 2006: 2241-2244.
    [283] Li Y.H., Di Z., Ding J., et al. Water Res. 39, 2005: 605-609.
    [284] Frackowiak E., Bguin F., Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40, 2002: 1775-1787.
    [285] Long R.Q., Yang R.T., J. Am. Chem. Soc. 123, 2001: 2058-2059.
    [286] Li Y.H., Wang S.G., Cao A.Y., et al. Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem. Phys. Lett., 2001, 350: 412-416.
    [287] Odom T.W., Huang J.L., Kim P., et al. Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391, 1998: 62-64.
    [288] Balkanski M., Physical properties of carbon nanotubes in: R. Saito, G. Dresselhaus, M.S. Dresselhaus (Eds.), Imperial College Press, London, 1998, Mater. Sci. Eng. B 76, 2000: 241-242.
    [289] Dai L., He P., Li S., Functionalized surfaces based on polymers and carbon nanotubes for some biomedical and optoelectronic applications, Nanotechnology 14, 2003: 1081-1097.
    [290] Lu C., Chiu H., Liu C., Removal of zinc(II) from aqueous solution by purifiedcarbon nanotubes: kinetics and equilibrium studies, Ind. Eng. Chem. Res. 45, 2006, 2850-2855.
    [291] Lu C., Liu C., Removal of nickel (II) from aqueous solution by carbon nanotubes, J. Chem. Technol. Biotechnol. 81,2006: 1932-1940.
    [292] Aualitia T. V., Pickering W. F., The specific sorption of trace amounts of Cu, Pb and Cd by inorganic particulates. War. Air Soil Pollut. 35, 1987: 171-185.
    [293] Azab M. S., Peterson P. J., The removal of cadmium from water by the use of biological sorbents. Wat. Sci. Technol. 21, 1989: 1705-1706.
    [294] Tan T. C., Teo W. K., Water Res. 21, 1987: 1183.
    [295] Dakiky M., Khamis M., Manassra A., et al. Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents, Adv. in Envir. Research 6, 2002: 533-540.
    [296] Bailey S.E., Olin T.J., Bricka R.M., et al. A review of potentially low-cost sorbents for heavy metals, Water Res. 33, 1999: 2469-2479.
    [297] Gil R. A., Cerutti S., Gasquez J. A., et al. Preconcentration and speciation of chromium in drinking water samples by coupling of on-line sorption on activated carbon to ETAAS determination, Talanta 68, 2006: 1065-1070.
    [298] Pesavento M., Profumo A., Alberti G., et al. Adsorption of Lead (II) and copper (II) on activated carbon by complexation with surface functional groups, Analytica Chimica Acta 480, 2003: 171-180.
    [299] Lu C., Chiu H., Bai H., Comparisons of adsorbent cost for the removal zinc (II) from aqueous solution by carbon nanotubes and activated carbon, J. Nanosci. Nanotechnol. 7,2007: 1647-1652.
    [300] Yan H. L., Jun D., Zhaokun L., et al. Carbon 41, 2003: 2787.
    [301] Zhijie J., Zhengyuan W., Ji L., et al. Carbon 37, 1999: 903.
    [302]曾卫环,王红娟,彭峰,碳纳米管对铅离子的吸附性能研究,广东华工,第1期,2005:9-11.
    [303] Yang X. G., Jackwerth E., Untersuchungen Z., Adsorptiven Anreinchung von Elementspuren on Adsorberharzen, Fresen. Z. Anal. Chem. 327, 1987, 179-185.
    [304] Jackwerth E., Yang X. G., Xu C., Untersuchungen zur adsorptive Anreicherung vonElementspuren an Adsorberharzen, Fresen. Z. Anal. Chem. 334, 1989, 514-520.
    [305] Li Y. H., Wang S., Luan Z., et al. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes, Carbon 41, 2003, 1057-1062.
    [306] Lu C., Chiu H., Adsorption of zinc (II) from water with purified carbon nanotubes, Chem. Eng. Sci. 61,2006: 1138-1145.
    [307] Yan H. L., Xechao D., Ding J., et al. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes, Water Res. 39, 2005: 605-609.
    [308] Wang H. J., Zhou A. L., Peng F., et al. Mechanism study on adsorption of acidified multiwalled carbon nanotubes, J. of Colloid and Interface Sci. 2007: 1-7.
    [309] Weng C.H., Huang C.P., Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash, Colloid Surf. A 247, 2004: 137-143.
    [310] Long R.Q., Yang, R.T., Carbon nanotubes as superior sorbent for dioxin removal, J. Am. Chem. Soc. 123, 2001: 2058-2059.
    [311] Agnihotri S., Rood M.J., Rostam-Abadi M., Adsorption equilibrium of organic vapors on single-walled carbon nanotubes, Carbon 43, 2005: 2379-2388.
    [312] Gauden P.A., Terzyk A.P., Rychlicki G., et al. Thermodynamic properties of benzene adsorbed in activated carbons and multi-walled carbon nanotubes, Chem. Phys. Lett. 421, 2006: 409-414.
    [313] Tuzen M., Saygi K. O., Soylak M., Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes, J. of Hazardous Materials, accepted 11 July 2007.
    [314] Renner R., Environ. Sci. Technol., 2000, 34: 223.
    [315]国家环境保护总局.关于加强废弃电子电气设备环境管理的公告,2003年8月26日.
    [316] Shinsuke T., PBDEs: an emerging group of persistent pollutants. Marine Pollution Bulletin 49,2004:369-370.
    [317] Sjodin A., Jones R. S., Lapeza C. R., Semiautomated high-throughput extraction and cleanup method for the measurement of polybrominated diphenyl ethers, polybrominated biphenyls and polychlorinated biphenyls in human serum. Anal. Chem., 2004, 76, 7:1921.
    [318] Drohmann D., Tange L., The EU directive implementation-An opportunity for plastics containing brominated flame retardants. 2004’international conference on WEEE & RoHS directives & the third international conference on WEEE recycling. Guangzhou, China, June 2004.
    [319] Ribeiro I. A., Ribeiro M. H. L., Naringin and naringenin determination and control in grapefruit juice by a validated HPLC method, Food Control, Vol. 19, No.4, 2008: 432-438.
    [320] Svensson S., Larstad M., Broo K., et al. Determination of aldehydes in human breath by on-fibre derivatization, solid-phase microextraction and GC-MS, J. of Chromatography B, 860, 1, 2007: 86-91.
    [321] Bechmann B., Gutzki F. M., Tsikas D., Sensitivity enhancement of a GC-MS-MS method for asymmetric dimethylarginine (ADMA) by plasma ultrafiltrate reduction, Anal. Biochem. Vol. 372, No.2, 2008: 264-266.
    [322] Magnuson M. L., Determination of bromated at parts-per-trillion levels by gas chromatography-mass spectrometry with negative chemical ionization, Anal. Chimi. Acta 377, 1998: 53-60.
    [323] Pirard C., Pauw E. D., Focant J. F., New strategy for comprehensive analysis of polybrominated diphenyl ethers, polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls by gas chromatography coupled with mass spectrometry, J. of Chromatography A, 998, 2003:169-181.
    [324] Korytar P., in: Proceedings of the 2nd International Workshop on Brominated Flame Retardants, Stockholm, 2001: 45.
    [325] Darnerud P .O., Atuma S., Aune M., et al. Anal. Chem. 74, 2001: 790.
    [326] Ackerman L. K., Wilson G. R., Simonich S. L., Anal. Chem. 77, 2005, 1979.
    [327] International Electronic Committee (IEC),Procedures for the determination of levels of lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyls, polybrominated diphenylethers in electrotecchnical products, IEC 62321 Ed.1: 31-37.
    [328] EPA 1613 : 1994 : Tetra-through octa-chlorinated dioxins and furans byisotopedilution HRGC/HRMS (用同位素稀释HRGC/HRMS法测定四至八氯二氧(杂)芑和呋喃).
    [329] EPA 8270c:1996:Semivolatile organic compounds by gas chromatography and mass spectrometry(用气相色谱/质谱法检测半挥发性有机化合物).
    [330] Brandrup J., Immergut E.H., Grulke E.A..聚合物手册.1999. VII/497-VII/545.
    [331] Polo M., Gomez-Noya G., Quintana J. B., Development of a solid-phase microextraction gas chromatography/ tandem mass spectrometry method for polybrominated diphenyl ethers and polybrominated biphenyls in water samp les. Anal Chem, 2004, 76, 4:1054.
    [332] Sjodin A., Jones R. S., Lapeza C. R., Semiautomated high-throughput extraction and cleanup method for the measurement of polybrominated diphenyl ethers, polybrominated biphenyls and polychlorinated biphenyls in human serum. Anal Chem, 2004, 76, 7:1921.
    [333] Moreno F. M., Garrido F. A., et al, Trace determination of alpha- and beta-endosulfan and three metabolites in human serum by gas chromatography electron capture detection and gas chromatography tandem mass spectrometry [J], Rapid Commun. Mass Spectrom, 2000, 14: 939-946.
    [334] Helleday T., Tuominrn K. L., Bergman A., et al. Mutat. Res. 1999, 439: 137.
    [335] Meerts I. A. T. M., Luijks E. A. C., Marsh G.., et al. Organohaloogen Compd. 1998, 37: 147.
    [336] Allchin C., Law R., Zegers B., et al. Trends, Anal. Chem. 20, 2001: 591.
    [337] Ryan R. J., Conacher H. B. S., Panopio G.., et al. J. Chromatogr. 541, 1991: 131.
    [338] Bacher R., Ballschmiter K., Chromatogr. 34, 1992: 137.
    [339] Matsumura T., Tsubota H., Ikeda Y., et al. Organohalogen Compd. 35, 1998: 141.
    [340] Halldin K., Berg C., Bergma A., et al. Distribution o fbisphenol A and tetrabromobisphenol A in quail eggs, embryos and laying birds and studies on reproduction variables in adults following in ovo exposure. Arch. Toxicol. 75, 10, 2001: 597-603.
    [341] Herzke D., Kallenborn R., Vetter W., et al. Determination of bioaccumulative brominated flame retardants and natural halogenated compounds in eggs ofNorwegian bird of prey. Organohalogen Compd. 51, 2001: 264-267.
    [342] Vetter W., Alder L., Kallenborn R., et al. Determination of Q1 an unknown organochlorine contaminant in human milk and further environmental samples. Environ. Pollut. 110, 2000: 401-409.
    [343] Marsh G., Hu J., Jakobsson E., et al. Environ. Sci. Technol. 33, 1999: 3033.
    [344] Sjodin A., Carlsson H., Thuresson K., et al. Environ. Sci. Technol. 35, 2001: 448.
    [345] Lkonomou M. G., Fisher M., He T., et al. Organohalogen Compd. 47, 20000: 77.
    [346] Sellstrom U., Kierkegaard A., Jansson B., Environ. Toxicol. Chem. 17, 1998: 1065.
    [347] Martens D., Gfrerer M., Wenzl T., et al. Anal. Bioanal. Chem. 372, 2002: 562.
    [348] Ahmed F. E., Trends Anal. Chem. 20, 2001: 649.
    [349] Boer J. de., Law R. J., J. Chromatogr. A 1000, 2003: 223.
    [350] Lopez-Avila V., Crit. Rev. Anal. Chem. 18, 1999: 43.
    [351] Kishida K., Furusawa N., J. Chromatogr. A 937, 2001: 49.
    [352] Ling Y. C., Huang I. P., Chromatographia 40, 1995: 259.
    [353] Rodil R., Carro A. M., Lorenzo R. A., et al. Proceedings of the VIII International Symposium on Analytical Methodology in Environmental Field, A. Coruna, Spain, 2003: 374.
    [354] International Electrotechnical Commission, Procedures for the determination of levels of six regulated substances (lead, mercury, hexavalent chromium, polybrominated biphenyls, polybrominated biphenyl ether) in electrotechnical products, IEC TC 111, 62321, 2005: 32-34.
    [355] Lai P.F., Prawer S., Bursill L. A., Recovery of diamond after irradiation at high energy and anneling[J], Diamond and Related Materials, 2001, 10, 1: 82-86.
    [356] Kirkpatrick S., Gelatt C.D., et al, Optimization by simulated annealing, J. Science, 1983, 220: 670-680.
    [357]杨建强,罗先香,MATLAB软件工具箱简介,水科学进展,2001,12,2:237-242.
    [358]张延华,Y. M. Xu,面向多学科的新一代程序设计语言,计算机应用研究,1998,16,6:4-8.
    [359]张智星,孙春在,水谷英二等,神经——模糊和软计算[M],西安:西安交通大学出版社,2000:126-130.
    [360]廖明,吴宁,谢品茅等,MATLAB在人工神经网络计算机仿真中的应用[J],计算技术与自动化,1999,18,1:18-21.
    [361] Yan Nie-xiang. Global optimization of nonconvex nonlinear programs using line-up competition algorithm[J] . Computer & Chemical Engineering , 2001 , 9: 43-52.
    [362]鄢烈祥,华丽.工业过程操作优化可视化方法——降维分析法[J] .武汉理工大学学报(自然科学版), 2002, 21, 3: 276-279.
    [363]鄢烈祥,全局优化搜索新算法——列队竞争算法(II)解网络综合问题[J],化工学报,2000.
    [364]鄢烈祥,用列队竞争算法解旅行商问题[J],运筹与管理,1999,3.
    [365]鄢烈祥,麻德贤,过程系统寻优新方法——非线性映射主轴分析法[J],系统工程理论与实践,1999,9.
    [366]江体乾,化工数据处理,北京:化学工业出版社,1984.
    [367]闻新,周露,王丹力,熊晓英,MATLAB神经网络应用设计,科学出版社,2002.
    [368] http://www.instrument.com.cn/show/download/shtml/028433.shtml.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700