烷基锌促进末端炔与亚胺的不对称加成反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
末端炔对C=O和C=N双键的不对称加成反应是近年来有机合成研究领域的热点之一,本文主要讨论了C2对称β-羟基酰胺类配体的合成及在不对称催化苯乙炔和醛的加成反应中的应用,以及二烷基锌促进的末端炔对手性叔丁基亚磺酰亚胺和对甲基苯磺酰亚胺的不对称加成反应研究。本论文包括以下四个部分:
     1.炔丙胺是合成天然产物、药物和复杂有机分子的重要砌块,在天然产物全合成和药物合成中可以作为关键中间体,本章对近年来金属催化的末端炔烃对C=N双键的加成反应研究进行了总结。
     2.以天然氨基酸为原料,设计合成了一系列C2对称β-羟基酰胺类手性配体,并将其应用于催化苯乙炔对醛的不对称加成反应,实验发现ZnEt2.Ti(OPr)4和溶剂对催化效果有非常大的影响,经过一系列条件优化,获得了很好的产率(82-94%yield)和较高的ee值(52-98%ee)。
     3.首次报道了二乙基锌促进的末端炔对手性叔丁基亚磺酰亚胺的不对称加成合成2-烯基-3-炔基胺。二乙基锌与末端炔首先生成炔基锌,在回流条件下与亚胺进行加成反应得到目标产物,该反应对芳香族及脂肪族的炔和亚胺都有很好的适用性,以最高94%的产率和>99:1的非对映选择性得到了目标产物;通过X-单晶衍射确定了产物的绝对构型;并在对反应机理研究的基础上提出了一个合理的机理。
     4.首次报道了二甲基锌和BINOL类配体不对称催化末端炔与对甲基苯磺酰亚胺的加成反应,在最佳条件下,考察了不同炔对芳香族和杂芳香族对甲基苯磺酰亚胺的加成,以很高的产率(51-92%yield)和很好的ee值(82-99%ee)得到了2-烯基-3-炔基胺;通过改变炔的加入顺序实现了两分子不同炔对亚胺加成的选择性问题。
The catalytic addition of terminal alkynes to C=O and C=N double bond is one of the major research endevors in synthetic chemistry over the past decades. In this paper, we mainly discuss the design and synthesis of some new C2-symmetric bis(β-hydroxy amide) ligands and their applications in the enantioselective addition of alkynylzinc to aldehydes, and dialkylzinc promoted asymmetric addition of alkynes to chiral N-tert-butylsulfinylimines and N-tosylaldimines. This thesis is composed of four parts as below:
     1. Propargylic amines are highly useful building blocks in organic synthesis. This part provides an overview of the most significant advances in the preparation of propargylic amines via the direct addition of alkynes to imines and carbon nitrogen electrophiles in the presence of metal catalysts or promoters.
     2. A series of chiral C2-symmetric bis(β-hydroxy amide) ligands was synthesized via the reaction of isophthaloyl dichloride and amino alcohols derived from L-amino acids. The amount of ZnEt2, Ti(O'Pr)4 and solvents had a strong effect on the asymmetric alkynylation of aldehydes, and the propargyl alcohols were obtained in high yields (82-94% yield) and high enantiomeric excesses (52-98% ee) under optimized conditions.
     3. The first direct approach for the asymmetric synthesis of (E)-2-arylidene-1,4-diphenylbut-3-yn-l-amines by addition of alkynylzinc to chiral N-tert-butyl-sulfinylimines was reported. The alkynylzinc was formed in situ from dialkylzinc and terminal alkynes reacted with imines under reflux conditions affording the disired products. Following this methodology, a number combination of various alkynes and imines to give the products with excellent diastereoselectivitis and good yields (up to 92% yield and up to>99:1 dr). The stereochemistry of the compounds was determined by X-ray crystallography. On the basis of a number of experimental observations, we gave an explanation for the new reaction mechanism.
     4. We have reported the first procedure for the catalytic enantioselective additon of terminal alkynes to N-tosylaldimines to give N-tosyl-(E)-(2-en-3-ynyl)-amines by using dimethylzinc and BINOL-type ligands. The reaction works with a variety of aromatic and heteroaromatic N-tosylaldimines, and with different alkynes, providing the expected products with good yields (51-92% yield) and high enantiomeric excesses (82-99% ee). In particular, this method could be used to deal with two different alkynes to give diversified products successfully.
引文
[1](a) Fox, M. E; Li, C; Marino, J. P; Jr; Overman. L. E. Enantiodivergent total syntheses of (+)-and (-)-scopadulcic acid A. J. Am. Chem. Soc.1999,121,5467-5480.
    (b)Marshall'J. A; Wang, X-J. Synthesis of enantioenriched homo-propargylic alcohols through diastereoselective SE'additions of chiral allenylstannanes to aldehydes. J. Org. Chem.1992,57,1242-1252.
    (c)Roush', W. R.; Sciotti, R. J. Enantioselective total synthesis of (-)-chlorothricolide. J. Am. Chem. Soc.1994,116,6457-6458.
    (d)Konishi, M.; Ohkuma, H.; Tsuno, T.; Oki, T. J. Am. Chem. Soc.1990,112,3715-3716
    (e)Brandt, K.; Porwolik, I.; Olejnik, A.; Shaw, R. A.; Davies, D. B.; Hursthouse, M. B; Sykara, G. D. Regioselective
    sodium cation-assisted synthesis of the first is trans-annular cyclotri-phosphazatriene derivatives of a chiral ligand type. J. Am. Chem. Soc.1996,118, 4496-4497.
    [2](a) Havey, D. F.; Sigano, D. M. Synthesis of cyclopropylpyrrolidines via reaction of N-allyl-N-propargylamides with a molybdenum carbene complex. effect of substituents and reaction conditions.J. Org. Chem.1996,61,2268-2272.
    (b) Arcadi, A.; Cacchi, S.; Cascia, L.; Fabrizi, G.; Marinelli, F.Preparation of 2,5-disubstituted oxazoles from N-propargylamides. Org. Lett.2001,3,2501-2504.
    (c) Yamamoto, Y.; Hayashi, H.; Saigoku, T.; Nishiyama, H. Domino coupling relay approach to polycyclic pyrrole-2-carboxylates. J. Am. Chem. Soc.2005,127, 10804-10805.
    [3](a) Porco, J. A.; Jr.; Schoenen, F. J.; Stout, T. J.; Clardy, J.; Schreiber, S. L.; Transannular Diels-Alder route to systems related to dynemicin A. J. Am. Chem. Soc.1990,112,7410-7411.
    (b)Nicolaou, K. C.; Hwang, C.-K.; Smith, A. L. Wendeborn, S. V. Synthesis of dynemicin A models. J. Am. Chem. Soc.1990,112, 7416-7418;
    (c)Yoon, T.; Shair, M. D.; Danishefsky, S. J.; Schulte, G K. Experiments directed toward a total synthesis of dynemicin A:A solution to the stereochemical problem. J. Org. Chem.1994,59,3752-3754.
    (d)Nicolaou, K. C.; Zhang, H.; Chen, J. S. Crawford, J. J.; Pasunoori, L. Total synthesis and stereochemistry of uncialamycin. Angew. Chem., Int. Ed.2007,46,4704-4707.
    (e) Nicolaou, K. C.; Chen, J. S.; Zhang, H.; Montero, A. Asymmetric synthesis and biological properties of uncialamycin and 26-epi-uncialamycin. Angew. Chem., Int. Ed.2008,47,185-189.
    (f)Jiang, B; Xu, M. Highly enantioselective construction of fused pyrrolidine systems that contain a quaternary stereocenter:concise formal synthesis of (+)-Conessine. Angew. Chem., Int. Ed.2004,43,2543-2546.
    (g) Fleming, J. J.; Bois, J. D.. A synthesis of (+)-saxitoxin. J. Am. Chem. Soc.2006, 128,3926-3297.
    (h)Trost, B. M.; Chung, C. K.; Pinkerton, A. B. Stereocontrolled total synthesis of (+)-streptazolin by a palladium-catalyzed reductive diyne cyclization. Angew. Chem. Int. Ed.2004, 43,4327-4329.
    (i)Davidson, M. H.; McDonald, F. E. Stereoselective synthesis of D-desosamine and related glycals via
    tungsten-catalyzed alkynol cycloisomerization. Org. Lett.2004,6,1601-1603.
    [4]Shibasaki, M.; Ishida,Y.; Iwasaki, G..; Iimori, T.; Asymmetric Synthesis of the Carbapenem Antibiotic (+)-PS-5. J. Org. Chem.1987,52,3488-3489.
    [5]Wright, J. L.; Gregory, T. F.; Kesten, S. P.; Boxer, P. A.; Serpa, K. A.; Meltzer, L. T.; Wise, L. D.; Espitia, S. A.; Konkoy, C. S.; Whittemore, E. R.; Woodward, R. M. Subtype-selective N-methyl-D-aspartate receptor antagonists:Synthesis and biological evaluation of 1-(heteroarylalkynyl)-4-benzylpiperidines.J. Med. Chem. 2000,43,3408-3419.
    [6](a) Kauffman, G.S.; Harris, G.D.; Dorow, R. L.; Stone, B. R. P.; Parsons, R. L.; Jr.; Pesti, J. A.; Magnus, N. A.; Fortunak, J. M.; Confalone, P. N.; Nugent, W. A. An efficient chiral moderator prepared from inexpensive (+)-3-carene:synthesis of the HIV-1 non-nucleoside reverse transcriptase inhibitor DPC 963. Org. Lett.2002,2, 3119-3121;
    (b)Yu, P. H.; Davis, B.; Boulton, A. A. Aliphatic propargylamines: potent, selective, irreversible monoamine oxidase B inhibitors. J. Med. Chem.1992, 35,3705-3713.
    [7]Wakefield, B. J. Organolithium Methods in Organic Synthesis, Academic Press, London,1988, chapter 3, pp.32.
    [8]Wakefield, B. J., Organomagnesium Methods in Organic Synthesis, Academic Press, London,1995, chapter 3, pp.46.
    [9](a) Harada, T.; Fujiwara, T.; Iwazaki, K.; Oku, A.; Tandem cyclization of alkynyl-metals bearing a remote leaving group via cycloalkylidene carbenes. Org. Lett. 2000,2,1855-1857.
    (b)Rosas, N.; Sharma, P.; Alvarez, C.; Gomez, E.; Gutierrez, Y.; Mendez, M.; Toscano, R. A.; Maldonado, L. A. A novel method for the synthesis of 5,6-dihydro-4H-oxocin-4-ones:6-endo-dig versus 8-endo-dig cyclizations. Tetrahedron Lett.2003,44,8019-8022.
    (c)Ding, C.-H.; Chen, D.-D.; Luo, Z.-B.; Dai, L.-X.; Hou, X.-L. Highly diastereoselective synthesis of N-tert-butylsulfinylpropargylamines through direct addition of alkynes to N-tert-butanesulfinimines. Synlett 2006,1272-1274.
    [10]Huffman, M. A.; Yasuda, N.; DeCamp, A. E.; Grabowski, E. J. J. Lithium alko-xides of cinchona alkaloids as chiral controllers for enantioselective acetylide addition to cyclic N-acyl ketimines. J. Org. Chem.1995,60,1590-1594.
    [11]Bloch, R. Additions of organometallic reagents to C=N bonds:Reactivity and selectivity. Chem. Rev.1998,98,1407-1438.
    [12]Brown, B. R. In The Organic Chemistry of Aliphatic Nitrogen Compounds. Oxford University Press:Oxford.1994.
    [13]Yamada, K; Tomioka, K. Copper-catalyzed asymmetric alkylation of imines with dialkylzinc and related reactions. Chem. Rev.2008,108,2874-2886.
    [14]Frantz, D. E.; Fssler, Roger.; Carreira, E. M., Catalytic in situ generation of Zn(II)-alkynilides under mild conditions:A novel C=N addition process utilizing terminal acetylenes. J. Am. Chem. Soc.1999,121,11245-11246.
    [15]Fischer, C.; Carreira, E. M. Zn-alkynylide additions to acyl iminiums. Org. Lett. 2004,6,1497-1499.
    [16]Pinet, S.; Pandya, S. U.; Chavant, P. Y.; Ayling A.; Valle'e, Y. Dialkylzinc-assisted alkynylation of nitrones. Org. Lett.2002,4,1463-1466.
    [17](a) Jiang, B.; Si, Y.-G. Lewis acid promoted alkynylation of imines with terminal alkynes:simple, mild and efficient preparation of ropargylic amines. Tetrahydron Lett.2003,44,6767-6768.
    (b)Lee, K. Y.; Lee, C. G.; Na, J. E.; Kim. J. N. Alkynylation of N-tosylimines with aryl acetylenes promoted by ZnBr2 and N,N-diisopropylethylamine in acetonitrile. Tetrahydron Lett.2005,46,69-74.
    (c) Ramu, E. Varala, R.; Sreelatha, N.; Adapa; S. R. Zn(OAc)22H2O:a versatile catalyst for the one-pot synthesis of propargylamines. Tetrahydron Lett.2007,48, 7184-7190.
    (d)Kantam, M. L.; Balasubrahmanyam, V.; Shiva Kumar, K. B.; Venkanna, G. T. Efficient one-pot synthesis of propargylamines using zinc dust. Tetrahydron Lett.2007,48,7332-7334.
    [18](a) Zani, L.; Alesi, S.; Cozzi, P. G.; Bolm, C., Dimethylzinc-mediated alkynylation of imines. J. Org. Chem.2006,71,1558-1562.
    (b)Labonne, A.; Zani, L.; Hintermann, L.; Bolm, C. Redox-neutral.synthesis of β-amino aldehydes from imines by an alkynylation/hydration sequence. J. Org. Chem.2007,72,5704-5708.
    [19]Li, C.-J. Wei, C. Highly efficient grignard-type imine additions via C-H activation in water and under solvent-free conditions. Chem. Commun.2002,268-269.
    [20](a) Black, D. A.; Arndtsen, B. A. Copper-catalyzed coupling of imines, acid Chlorides, and alkynes:A Multicomponent route to propargylamides. Org. Lett, 2004,6,1107-1110.
    (b)Black, D. A.; Arndtsen, B. A. Metal catalyzed multicom-ponent syntheses of secondary propargylamides and oxazoles from silylimines, acid chlorides, and alkynes. Tetrahydron 2005,61,11317-11321.
    [21]Park, S. B.; Alper, H., An efficient synthesis of propargylamines via C-H activation catalyzed by copper(Ⅰ) in ionic liquids. Chem. Commun.2005,1315-1317.
    [22](a) Kantam, M. L.; Laha, S.; Yadav, J.; Bhargava, S. An efficient synthesis of propargylamines via three-component coupling of aldehydes, amines and alkynes catalyzed by nanocrystalline copper(Ⅱ) oxide. Tetrahydron 2008,49,3083-3086.
    (b)Patil, M. K.; Keller, M.; Reddy, B. M.; Pale, P.; Sommer, J. Copper zeolites as green catalysts for multicomponent reactions of aldehydes, terminal alkynes and amines:An Efficient and green synthesis of propargylamines. Eur. J. Org. Chem. 2008,4440-4445.
    (c)Wang, M.; Li, P.; Wang, L. Silica-immobilized NHC-CuI complex:An efficient and reusable catalyst for A3-coupling (aldehyde-alkyne-amine) under solventless reaction conditions. Eur. J. Org. Chem.2008,2255-2261.
    [23]Bariwal, J. B.; Ermolat'ev, D. S.; Eycken, V. E. V. Efficient microwave-assisted synthesis of secondary alkylpropargylamines by using A3-coupling with primary aliphatic amines. Chem. Eur. J.2010,16,3281-3284.
    [24]Sreedhar, B.; Reddy, P. S.; Prakash, B. V.; Ravindra, A. Ultrasound-assisted rapid and efficient synthesis of propargylamines. Tetrahydron Lett.2006,46,7019-7022.
    [25]Fischer, C.; Carreira, E. M. Direct addition of TMS-acetylene to aldimines catalyzed by a simple, commercially available Ir(I) complex. Org. Lett.2001,3, 4319-4321.
    [26](a) Wei, C. Li, C.-J., A Highly efficient three-component coupling of aldehyde, alkyne, and amines via C-H activation catalyzed by gold in Water. J. Am. Chem. Soc.2003,125,9584-9585.
    (b)Huang, B.; Yao, X.; Li, C.-J. Diastereoselective synthesis of a-oxyamines via gold, silver and copper-catalyzed, three-component couplings of α-oxyaldehydes, alkynes, and amines in water. Adv. Synth. Catal. 2006,348,1528-1532
    (c)Shore, G.; Yoo, W.-J.; Li, C.-J.; Organ, M. G Propargyl amine synthesis catalysed by gold and copper thin films by using microwave-assisted continuous-flow organic synthesis (MACOS). Chem. Eur. J.2010,16, 126-133.
    (d)Zhang, X.; Corma, A. Supported gold(III) catalysts for highly efficient three-component coupling r eactions. Angew. Chem. Int. Ed.2008,47, 4358-4361.
    (e)Chng, L. L.; Yang, J.; Wei, Y; Ying, J. Y. Semiconductor-gold nanocomposite catalysts for the efficient three-component coupling of aldehyde, amine and alkyne in water. Adv. Synth. Catal.2009,351,2887-2896.
    [27](a) Wei, C.; Li, Z.; Li, C.-J. The first silver-catalyzed three-component coupling of aldehyde, alkyne and amine. Org. Lett.2003,5,4473-4475.
    (b)Ji, J-X.; Au-Yeung, T. T.-L.; Wu, J.; Yip, C. W.; Chan, A. S. C. Efficient synthesis of β, γ-alkynyl a-amino acid derivatives by Ag(I)-Catalyzed Alkynylation of a-imino esters. Adv. Synth. Catal.2004,346,42-44.
    (c)Dodda, R.; Zhao, C.-G. Silver(Ⅰ) triflate-catalyzed direct synthesis of N-PMP protected a-aminopropargylphosphonates from terminal alkynes. Org. Lett.2007,9,165-167.
    [28](a) Li, P.; Zhang, Y.; Wang, L. Iron-catalyzed ligand-free three-component coupling reactions of aldehydes, terminal alkynes, and amines. Chem. Eur. J.2009,15, 2045-2049
    (b)Sreedhar, B.; Kumar, A. S.; Reddy, P. S. Magnetically separable Fe3O4 nanoparticles:an efficient catalyst for the synthesis of propargylamines. Tetrahydron Lett.2010,51,1891-1895.
    [29]Namitharan, K.; Pitchumani, K. Nickel-catalyzed solvent-free three-component coupling of aldehyde, alkyne and amine. Eur. J. Org. Chem.2010,411-415
    [30](a) For a review on reaction of tert-butanesulfinyl imines, see:Ellman, J. A.; Owens, T. D.; Tang, T. P. N-tert-butanesulfinyl Imines:versatile Intermediates for the asymmetric synthesis of amines. Acc. Chem. Res.2002,35,984-995.
    (b)For a review on reaction ofp-toluenesulfinyl imines, see:Zhou, P.; Chen, B.-C.; Davis, F. A. Recent advances in asymmetric reactions using sulfinimines (N-sulfinyl imines). Tetrahedron 2004,60,8003-8030.
    [31]Ding, C.-H.; Chen, D.-D.; Luo, Z.-B.; Dai, L.-X.; Hou, X.-L. Highly diastereo-selective synthesis of N-tert-butylsulfinylpropargylamines through direct addition of alkynes to N-tert-butanesulfinimines. Synlett 2006,1272-1274.
    [32]Patterson, A. W.; Ellman, J. A. Asymmetric synthesis of α,α-dibranched pro-pargylamines by acetylide additions to N-tert-butanesulfinyl ketimines. J. Org. Chem.2006,71,7110-7112.
    [33]Chen, B.-L.; Wang, B.; Lin, G.-Q. Highly diastereoselective addition of alkynyl-magnesium chlorides to N-tert-butanesulfinyl aldimines:A practical and general Access to chiral α-branched Amines.J. Org. Chem.2010,75,941-944.
    [34]Turcaud, S.; Berhal, F.; Royer, J. Diastereoselective alkynylation of N-p-tolyl-sulfinylimines with aluminum acetylides. J. Org. Chem.2007,72,7893-7897.
    [35]Topic, D.; Aschwanden P.; Falssler, R.; Carreira E. M. ZnCl2-mediated stereoselective addition of terminal alkynes to D-(+)-mannofuranosyl nitrones, Org. Lett.2005,7,5329-5330.
    [36]Lo, V. K.-Y.; Wong, Y.; Wong, M.-K.; Che, C.-M. Gold(Ⅲ) salen complex-cataly-zed synthesis of propargylamines via a three-component coupling reaction. Org. Lett.2006,8,1529-1532.
    [37]Benamer, M.; Turcaud, S.; Royer, J. Diastereoselective alkynylation of chiral phosphinoylimines:preparation of optically active propargylamines. Tetrahydron Lett.2010,51,645-648.
    [38]Wu, T. R.; Chong, J. M. Asymmetric synthesis of propargylamides via 3,3'-disubstituted binaphthol-modified alkynylboronates. Org. Lett.2006,8,15-18.
    [39]Gonzalez, A. Z.; Canales, E.; Soderquist, J. A.N-Propargylamides via the asymmetric Michael addition of B-alkynyl-10-TMS-9-borabicyclo-[3.3.2]-decanes to N-acyl-imines. Org. Lett.2006,8,3331-3334.
    [40]Yin, C.; Hui, X.-P.; Xu, P.-F.; Niu, L.-F.; Chen, Y.-F.; Wang, B.-H. Development and application of a new general method for the asymmetric synthesis of (E)-(2-en-3-ynyl)-amines. Adv. Synth. Catal.2009,351,357-362.
    [41](a) Zani, L. Bolm, C. Direct addition of alkynes to imines and related C=N electrophiles:Aconvenient access to propargylamines, Chem. Commun.2006, 4263-4275.
    (b)Yamada, K.; Tomioka, K.,Copper-catalyzed asymmetric alkylation of imines with dialkylzinc and related reactions. Chem. Rev.2008,108,2874-2886.
    (c)Trost, B. M. Weiss, A. H. The enantioselective addition of alkyne nucleophiles to carbonyl groups. Adv. Synth. Catal.2009,351,963-983.
    (d)Li, C-J. The development of catalytic nucleophilic additions of terminal alkynes in water. Acc. Chem. Res.2010,43,581-590.
    [42]Wei, C.; Li, C.-J. Enantioselective direct-addition of terminal alkynes to imines catalyzed by copper(Ⅰ) pybox complex in water and in toluene. J. Am. Chem. Soc. 2002,124,5638-5639.
    [43]Wei, C.; Mague, J. T.; Li, C.-J. Cu(Ⅰ)-catalyzed direct add-ition and asymmetric addition of terminal alkynes to imines. Proc. Natl. Acad. Sci. U.S.A.2004,101, 5749-5754.
    [44]Bisai, A.; Singh, V. K. Enantioselective one-pot three-component synthesis of propargylamines. Org. Lett.2006,8,2405-2408.
    [45](a) Ji, J.-X.; Wu, J.; Chan, A. S. C. Catalytic asymmetric alkynylation of a-imino ester:A versatile approach to optically active unnatural a-amino acid derivatives. Proc. Natl. Acad. Sci. U.S.A.2004,102,11196-11120.
    (b)Shao, Z.; Wang, J. Ding, K.; Chan, A. S. C. Unprecedented effects of additives and ligand-to-metal ratio on the enantiofacial selection of copper-catalyzed alkynylation of a-imino ester withaArylacetylenes. Adv. Synth. Catal.2007,349,2375-2379.
    (c)Liu, J.; Liu, B.; Jia, X.; Lia, X.; Chan, A. S. C. Asymmetric addition of alkynes to imines in water catalyzed with a recyclable Cu(Ⅰ)-bis(oxazoline) and stearic acid system. Tetrahedron:Asymmetry 2007,18,396-399.
    (d)Rosa, J. N.; Santos, A. G.; Afonso, C. A. M. Enantioselective addition of alkynes to imines in ionic liquids. J. Mol. Catal. A:Chem.2004,214,161-165.
    [46]Wang, J.; Shao, Z.; Yu, K. D. W. Y.; Chan, A. S. C. Copper(Ⅰ)-catalyzed asymmetric addition of terminal alkynes to β-imino esters:an efficient and direct method in the synthesis of chiral β3-alkynylβ2,2-dimethyl amino acid derivatives. Adv. Synth. Catal.2009,351,1250-1254.
    [47]Tilliet, M.; Lundgren, S.; Moberg, C.; Levacher, V, Polymer-bound pyridine-bis(oxazoline). preparation through click chemistry and evaluation in asymmetric catalysis. Adv. Synth. Catal.2007,349,2079-2084.
    [48]Irmak, M.; Boysen, M. M. K. A new pyridyl bis(oxazoline)1 igand prepared from d-glucosamine for asymmetric alkynylation of imines. Adv. Synth. Catal.2008,350, 403-405.
    [49]For the enantioselective three-component reaction of aldehydes, amines, and alkynes, see:
    (a)Gommermann, N.; Koradin, C.; Polborn, K.; Knochel, P. Enantio-selective Copper(i)-Catalyzed Three-component reaction for the preparation of propargylamines. Angew. Chem. Int. Ed.2003,42,5763-5766.
    (b)Knopfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, E. M. Readily available biaryl P,N ligands for asymmetric catalysis Angew. Chem. Int. Ed.2004,43,5971-5973.
    (c)Ji, J.-X.; Wu, J.; Chan, A. S. C. Catalytic asymmetric alkynylation of a-imino ester:A versatile approach to optically active unnatural a-amino acid derivatives. Proc. Natl. Acad. Sci.2005,102,11196-11200.
    [50]Nakamura, S.; Ohara, Nakamura, M.; Y.; Shibata, N.; Toru, T. Copper-catalyzed enantioselective three-component synthesis of optically active propargylamines from aldehydes, amines, and aliphatic alkynes. Chem. Eur. J.2010,16,2360-2362
    [51](a) Orlandi, S.; Colombo,F.; Benaglia, M. Chiral diamine-copper(Ⅰ) complexes as asymmetric catalysts in the enantioselective addition of phenylacetylene to imines. Synthesis 2005,1689-1692.
    (b)Maurizio, B.; Diego N.;Gianmaria D. Enantio-selective addition of phenyl and alkyl acetylenes to imines catalyzed by chiral Cu(Ⅰ) complexes. Tetrahydron Lett.2004,45,8705-8705.
    (c)Colombo, F.; Benaglia, M.; Orlandi, S.; Usuelli, F.; Celentano, G. Very mild, enantioselective synthesis of propargylamines catalyzed by copper(Ⅰ)-bisimine complexes. J. Org. Chem.2006, 71,2064-2070.
    (d)Colombo, F.; Benaglia, M.; Orlandi, S.; Usuelli, F.Asymmetric multicomponent copper catalyzed synthesis of chiral propargylamines. J. Mol. Catal. A:Chem.2006,260,128-134.
    [52](a) Liu, B.; Liu, J.; Jia, X.; Huang, L.; Lia, X.; Chan, A. S. C. The synthesis of chiral N-tosylatedaminoimine ligands and their application in enantioselective addition of phenylacetylene to imines. Tetrahedron:Asymmetry 2007,18 1124-1128.
    (b)Liu, B.; Huang, L.; Liu, J.; Zhong, Y.; Li, X.; Chan, A. S. C. Chiral Cu(II) complex catalyzed enantioselective addition of phenylacetylene to N-aryl arylimines. Tetrahedron:Asymmetry 2007,2901-2904.
    (c)Liu, B.; Zhong, Y.; Li, X. Enantioselective addition of phenylacetylene to N-aryl arylimines catalyzed by Cu(II)-pyridine containing N-tosylatedaminoimine ligand complex. Chirality 2009, 21,595-599.
    [53]Koradin, C.; Polborn, K.; Knochel, P., Enantioselective synthesis of propargyl-amines by copper-catalyzed addition of alkynes to enamines. Angew. Chem. Int. Ed. 2002,41,2535-2538.
    [54]Gommermann, N.; Knochel, P. Practical highly enantioselective synthesis of propargylamines through a copper-catalyzed one-pot three-component conden-sation reaction. Chem. Eur. J.2006,12,4380-4392.
    [55]Taylor, A. M.; Schreiber, S. L. Enantioselective addition of terminal alkynes to isolated isoquinoline iminiums. Org. Lett.2006,8,143-146.
    [56](a) Knopfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, E. M. Readily available biaryl P, N ligands for asymmetric catalysis. Angew. Chem., Int. Ed.2004,43,5971-5973.
    (b)Aschwanden, P.; Stephenson, C. R. J.; Carreira, E. M. Highly enantioselective access to primary propargylamines:4-piperidinone as a convenient protecting group. Org. Lett.2006,8,2437-2440.
    [57]Jiang, B.; Si, Y.-G. Highly enantioselective construction of a chiral tertiary carbon center by alkynylation of a cyclic N-acyl ketimine:an efficient preparation of HIV therapeutics. Angew. Chem. Int. Ed.2004,43,216-218.
    [58]Zani, L.; Eichhorn, T.; Bolm, C. Dimethylzinc-mediated, enantioselective synthesis of propargylic amines. Chem. Eur. J.2007,13,2587-2600
    [59]Blay, G.; Cardona, L.; Climent, E.; Pedro, J. R. Highly enantioselective zinc/binol-catalyzed alkynylation of N-sulfonyl aldimines. Angew. Chem., Int. Ed.2008,47, 5593-5596.
    [60]Yan, W.; Mao, B.; Zhu,S.; Jiang, X.; Liu, Z.; Wang, R., Asymmetric addition of terminal alkynes to N-(diphenylphosphinoyl)imines promoted by stoichiometric amounts of a proline-derived β-amino alcohol. Eur. J. Org. Chem.2009,3790-3794.
    [61]Zhu, S.; Yan, W.; Mao, B.; Jiang, X.; Wang, R. Enantioselective nucleophilic addition of trimethylsilylacetylene to N-phosphinoylimines promoted by C2-symmetric proline-derived β-amino alcohol. J. Org. Chem.2009,74,6980-6985.
    [62]Yin, C.; Hu, X.-Q.; Hui, X.-P.; Xu, P.-F. Alkylzinc-mediated addition of alkynes to N-tosylaldimines:enantioselective synthesis of (E)-(2-En-3-ynyl)-amines. Adv. Synth. Catal.2009,351,1512-1516.
    [63]Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. Enantioselective synthesis of propargylamines through Zr-catalyzed addition of mixed alkynylzinc reagents to arylimines. Org. Lett.2003,5,3273-3275.
    [64]Armas, P.; Tejedor, D.; Tellado, F. G Asymmetric alkynylation of imines by cooperative hydrogen bonding and metal catalysis. Angew. Chem. Int. Ed.2010,49, 1013-1016.
    [66]Rueping, M.; Antonchick, A. P.; Brinkmann, C. DualCatalysis:A combined enantioselective brφsted acid and metal-catalyzed reaction—metal catalysis with chiral counterions. Angew. Chem. Int. Ed.2007,46,6903-6906.
    [67]Lu, Y; Johnstone, T. C.; Arndtsen, B. A. Hydrogen-bonding asymmetric metal catalysis with a-amino acids:A simple and tunable approach to high enantioinduction. J. Am. Chem. Soc.2009,131,11284-11285.
    [1](a) Guillarme, S.; Pie, K.; Banchet, A.; Liard, A.; Haudrechy, A. Alkynylation of chiral aldehydes:alkoxy-, amino-, and thio-substituted aldehydes. Chem. Rev. 2006,106,2355-2403.
    (b)Trost, B.; Krische, M. J. Palladium-catalyzed enyne cycloisomerization reaction in an asymmetric approach to the picrotoxane sesquiterpenes.2 second-generation total syntheses of corianin, picrotoxinin, picrotin, and methyl picrotoxate, J. Am. Chem. Soc.1999,121,6131-6141.
    (c) Evans, D. A.; Halstead, D. P.; Allison, B. D. Chelation-controlled stannyl-acetylene additions to β-alkoxy aldehydes promoted by alkylaluminum halide Lewis acids. Tetrahedron Lett.1999,40,4461-4462.
    [2]Trosta, B.; Weissb, M. A., The enantioselective addition of alkyne nucleophiles to carbonyl groups. Adv. Synth. Catal.2009,351,963-983.
    [3]Pu, L.; Yu, H. B. Catalytic asymmetric organozinc additions to carbonyl com-pounds. Catalytic asymmetric methallylation of ketones with an (H8-BINOlate)
    Ti-based catalyst. Chem. Rev.2001; 101, 757-824.
    (b)Frantz, D. E.; Fassler, R.; Tomooka, C. S.; Carreira, E. M. The discovery of novel reactivity in the develop-ment of C-C bond-forming reactions:In situ generation of zinc acetylides with ZnⅡ/R3N. Acc. Chem. Res.2000,33,373-381.
    (c)Pu, L. Asymmetric alkynylzinc additions to aldehydes and ketones. Tetrahedron 2003,59,9873-9886.
    [4]Corey, E. J.; Cimprich, K. A. Highly enantioselective alkynylation of aldehydes promoted by chiral oxazaborolidines. J. Am. Chem. Soc.1994,116,3151-3152.
    [5](a) Li, Z.-B.; Liu, T.-D.; Pu, L. Chiral macrocycle-catalyzed highly enantio-selective phenylacetylene addition to aliphatic and vinyl aldehydes. J. Org. Chem. 2007,72,4340-4343.
    (b)Lin, L.; Jiang, X.; Liu, W.; Qiu, L.; Xu, Z.; Xu, J.; Chan, A. S. C.; Wang, R. Highly enantioselective synthesis of y-hydroxy-α,β-acetylenic esters catalyzed by α β-sulfonamide alcohol. Org. Lett.2007,9,2329-2332.
    (c) Gao, G.; Wang, Q.; Yu, X.-Q.; Xie, R.-G.; Pu, L. Highly enantioselective synthesis of y-Hydroxy-α,β-acetylenic esters by asymmetric alkyne addition to aldehydes. Angew Chem. Int. Ed.2006,45,122-125.
    (d)Wolf, C.; Liu, S. Bisoxazolidine-catalyzed enantioselective alkynylation of aldehydes J. Am. Chem. Soc.2006,128, 10996-10997.
    (e)Trost, B. M.; Weiss, A. H.; Jacobi von Wangelin, A. Dinuclear zn-catalyzed asymmetric alkynylation of unsaturated aldehydes. J. Am. Chem. Soc. 2006,128,8-9.
    (f)Hsieh, S.-H.; Gau, H.-M. Asymmetric alkynyl additions to aldehydes catalyzed by tunable oxovanadium(V) complexes of schiff bases of beta-amino alcohols. Synlett 2006,1871-1874.
    (g)Takita, R.; Yakura, K.; Ohshima, T.; Shibasaki, M. Asymmetric alkynylation of aldehydes catalyzed by an In(Ⅲ)/BINOL complex. J. Am. Chem. Soc.2005,127,13760-13760.
    (h)Fang, T. Du, D.-M.; Lu, S.-F.; Xu, J.-X. Synthesis of C3-symmetric tris(β-hydroxy amide) ligands and their Ti(IV) complex-catalyzed enantioselective alkynylation of aldehydes. Org. Lett.2005,7,2081-2084.
    (i)Yamashita, M.; Yamada, K.; Tomioka, K. Catalytic asymmetric addition of terminal alkynes to aldehydes mediated by (1R,2R)-2-(dimethylamino)-1,2-diphenylethanol. Adv. Synth. Catal. 2005,347,1649-1652.
    (j)Li, M.; Zhu, X. Z.; Yuan, K.; Cao, B. X.; Hou, X. L. Highly enantioselective phenylacetylene addition to aldehydes catalyzed by a chiral N,O-ferrocene ligand. Tetrahedron:Asymmetry 2004,15,219-222.
    (k) Dahmen, S. Enantioselective alkynylation of aldehydes catalyzed by [2.2] paracyclophane-based ligands. Org. Lett.2004,6,2113-2116.
    [6](a) Anand, N. K.; Carreira, E. M. A simple, mild, catalytic, enantioselective addition of terminal acetylenes to aldehydes. J. Am. Chem. Soc.2001,123,9687-9688.
    (b)Boyall, D.; Frantz, D. E.; Carreira, E. M. Efficient enantioselective additions of terminal alkynes and aldehydes under operationally convenient conditions. Org. Lett.2002,4,2605-2606.
    (c)Frantz, D. E.; Fassler, R.; Carreira, E. M. Facile enantioselective synthesis of propargylic alcohols by direct addition of terminal alkynes to aldehydes. J. Am. Chem. Soc.2000,122,1806-1807.
    [7](a) Li, Z.-B.; Pu, L. BINOL-salen-catalyzed highly enantioselective alkyne additions to aromatic aldehydes. Org. Lett.2004,6,1065-1068.
    (b)Gao, G.; Moore, D.; Xie, R. G.; Pu, L. Highly enantioselective phenylacetylene additions to both aliphatic and aromatic aldehydes. Org. Lett.2002,4,4143-4146.
    (c)Moore, D.; Pu, L. BINOL-catalyzed highly enantioselective terminal alkyne additions to aromatic aldehydes. Org. Lett.2002,4,1855-1857.
    [8](a) Lu, G.; Li, X.; Chen, G.; Chan, W. L.; Chan, A. S. C. Effective activation of chiral BINOL/Ti(O'Pr)4 catalyst with phenolic additives for the enantioselective alkynylation of aldehydes. Tetrahedron:Asymmetry 2003,14,449-452.
    (b)Li, X. S.; Lu, G.; Kwok, W. H.; Chan, A. S. C. Highly enantioselective alkynylzinc addition to aromatic aldehydes catalyzed by self-assembled titanium catalysts. J. Am. Chem. Soc.2002,124,12636-12637.
    (c)Lu, G.; Li, X.; Chan, W. L.; Chan, A. S. C. Carbohydrate-derived amino-alcohol ligands for asymmetric alkynylation of Aldehydes. Chem. Commun.2002,172-173.
    [9]Liu, Q.-Z.; Xie, N.-S.; Luo, Z.-B.; Cui, X.; Cun, L.-F.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z. Facile preparation of optically pure 7,7'-disubstituted BINOLs and their application in asymmetric catalysis. J. Org. Chem.2003,68,7921-7924.
    [10](a) Xu, Z.; Wang, R.; Xu, J.; Da, C.-S.; Chen, W.-J.; Chen, C. Highly enantioselective addition of phenylacetylene to aldehydes catalyzed by a P-sulfonamide alcohol-titanium complex. Angew Chem. Int. Ed.2003,42,5747-5749.
    (b)Xu, Z.; Chen, C.; Xu, J.; Miao, M.; Yan, W.; Wang, R. Highly enantio-selective addition of phenylacetylene to aldehydes catalyzed by a camphorsulfon-amide ligand. Org. Lett.2004,6,1193-1195.
    [11](a) Chen, Z.-C.; Hui, X.-P.; Yin, C.; Huang, L.-N.; Xu, P.-F.; Yu, X.-X. Cheng, S.-Y. Highly enantioselective addition of phenylacetylene to aldehydes catalyzed by titanium(IV) complexes of β-hydroxy amides. J. Mol. Catal. A:Chem.2007,269, 179-182.
    (b)Huang, L.-N.; Hui, X.-P.; Chen, Z.-C.; Yin, C.; Xu, P.-F.; Yu, X.-X.; Cheng, S.-Y. Enantioselective addition of phenylacetylene to aldehydes catalyzed by silica-immobilized titanium(Ⅳ) complex of β-hydroxyamide.J. Mol. Catal. A: Chem.2007,275,9-13.
    (c)Li, Y.-M.; Tang, Y.-Q.; Hui, X.-P.; Huang, L.-N.; Xu.; P.;-F. Synthesis of new β-hydroxy amide ligands and their Ti(Ⅳ) complex-catalyzed enantioselective alkynylation of aliphatic and vinyl aldehydes. Tetrahedron 2009,65,3611-3614.
    [12]Reetz, M. T.; Drewes, M. W.; Schmitz, A. Stereoselective synthesis of β-amino alcohols from optically active α-amino acids. Angew. Chem., Int. Ed. Engl.1987, 25,1141-1143.
    [13]Noller, C. R. Diethyl zinc Org. Synth. Coll.1943,2,184-186.
    [14]Wu, Y.-J.; Yun, H.-Y.; Wu, Y.-S.; Ding, K.-L.; Zhou, Y. Synthesis of N-a-pyridyl-methyl amino alcohols and application in catalytic asymmetric addition of diethylzinc to aromatic aldehydes. Tetrahedron:Asymmetry 2000,11,3543-3552.
    [15]Mckennon, M. J.; Meyers, A. I. A convenient reduction of amino acids and their derivatives.J. Org. Chem.1993,58,3568-3571.
    [1](a) Ishikawa, T.; Okano, M.; Aikawa, T.; Saito, S. Novel Carbon-carbon bond-forming reactions using carbocations produced from substituted propargyl silyl ethers by the action of TMSOTf. J. Org. Chem.2001,66,4635-4624.
    (b)Ishikawa, T.; Aikawa, T.; Mori, Y.; Saito, S. Diastereoselective allylations of allyl-propargyl hybrid cations:synthesis of conjugated 1,5-dien-7-yne frameworks bearing C(4)-Stereogenic centers. Org. Lett.2004,6,1369-1372.
    (c)Ishikawa, T.; Aikawa, T.; Watanabe, S.; Saito, S. Efficient synthesis of 1,3,5-trisubstituted (pyrrol-2-yl)acetic acid esters via dual nucleophilic reactions of sulfonamides or carbamate with 4-trimethyl-siloxy-(5E)-hexen-2-ynoates:Lewis acid catalyzed SN1 and intra-molecular michael Addition. Org. Lett.2006,8,3881-3884.
    d) Wang, S. H.; Tu, Y. Q.; Chen, P.; Hu, X.-D.; Zhang, F.-M.; Wang, A.-X. KOtBu-promoted three-component coupling of aldehydes and alkynes:Highly efficient synthesis of 1-En-4-yn-3-ols and 2-En-4-yn-l-ols. J. Org. Chem.2006,71,4343-4345.
    (e) Liu,Y.; Song, F.; Song, Z.; Liu, M.; Yan, Bin. Gold-catalyzed cyclization of (Z)-2-En-4-yn-1-ols:Highly efficient Synthesis of fully substituted dihydrofurans and furans. Org. Lett.2005,7,5409-5412.
    (f)Gabriele, B.; Salerno,G.; Fazio, A. General and regioselective synthesis of substituted pyrroles by metal-catalyzed or spontaneous cycloisomerization of (Z)-(2-En-4-ynyl)amines. J. Org. Chem.2003, 68,7853-7861.
    (g)Zhang W.; Werness, J. B.; Tang, W. Base-catalyzed Intra-molecular hydroamination of conjugated enynes, Org. Lett.2008,10,2023-2026.
    (h)Bian, M.; Yao, W.; Ding, H.; Ma, C. Highly efficient access to iminoiso-coumarins and y-Iminopyrones via AgOTf-catalyzed intramolecular enyne-amide cyclization.J. Org. Chem.2010,75,269-272.
    (i)JimnezNfflez, E.; Raducan, M.; Lauterbach, T.; Molawi, K.; Solorio, C. R.; Echavarren, A. M. Evolution of propargyl ethers into allylgold cations in the cyclization of enynes. Angew. Chem. Int. Ed.2009,48,6152-6155.
    [2]Iverson, S. L.; Uetrecht, J. P. Identification of a reactive metabolite of terbinafine: insights into terbinafine-induced hepatotoxicity. Chem. Res. Toxicol.2001,14,175-181.
    [3]Gokhale, V. M.; Kulkarni V. M. Comparative molecular field analysis of fungal squalene epoxidase inhibitors. J. Med. Chem.1999,42,5348-5358.
    [4](a) Doucet, H.; Hierso, J.-C. Palladium-based catalytic systems for the synthesis of conjugated enynes by sonogashira reactions and related alkynylations. Angew. Chem. Int. Ed.2007,46,834-871.
    (b)Deska, Jan.; Kazmaier, U. Stereoselective syntheses and reactions of stannylated peptides. Angew. Chem. Int. Ed.2007,46, 4570-4573.
    (c)Trost, Barry M.; Chan, C.; Ruhter, G. Metal-mediated approach to enynes. J. Am. Chem. Soc.1987,109,3487-3488.
    (d)Nakao, Y.; Hirata, Y.; Tanaka, M.; Hiyama, T. Nickel/BPh3-catalyzed alkynyl-cyanation of alkynes and 1,2-dienes:An efficient route to highly functionalized conjugated enynes. Angew. Chem. Int. Ed.2008,47,385-387.
    (e)Dillinger, S.; Bertus, P.; Pale, P. First evidence for the use of organosilver compounds in Pd-catalyzed coupling reactions;
    A mechanistic rationale for the Pd/Ag-catalyzed enyne synthesis. Org. Lett.2001,3, 1661-1664.
    (f)Hatakeyama, T.; Yoshimoto, Y.; Gabriel, T.; Nakamura, M. Iron-catalyzed enyne cross-coupling reaction. Org. Lett.2008,10,5341-5344.
    [5]Kong, J.-R.; Cho, C.-W.; Krische, M. J. Hydrogen-mediated reductive coupling of conjugated alkynes with ethyl (N-sulfinyl)iminoacetates:Synthesis of unnatural y-amino acids via rhodium-catalyzed C-C bond forming hydrogenation.J. Am. Chem. Soc.2005,127,11269-11276.
    [6](a) Zani, L. Bolm, C., Direct addition of alkynes to imines and related C=N electrophiles:Aconvenient access to propargylamines, Chem. Commun.2006, 4263-4275.
    (b)Yamada, K.; Tomioka, K.,Copper-catalyzed asymmetric alkylation of imines with Dialkylzinc and related reactions. Chem. Rev.2008,108,2874-2886.
    (c)Trost, B. M. Weiss, A. H. The enantioselective addition of alkyne nucleophiles to carbonyl groups. Adv. Synth. Catal.2009,351,963-983. (d) Li, C-J. The development of catalytic nucleophilic additions of terminal alkynes in water. Acc. Chem. Res.2010,43,581-590.
    [7]Frantz, D. E.; Fssler, Roger.; Carreira, E. M. Catalytic in situ generation of Zn(II)-alkynilides under mild conditions:A novel C=N addition process utilizing terminal acetylenes. J. Am. Chem. Soc.1999,121,11245-11246.
    [8]Cozzi, P. G.; Rudolph, J.; Bolm, C.; Norrby, P.-O.|Tomasini, C. Me2Zn-mediated addition of acetylenes to aldehydes and Ketones.J. Org. Chem.2005,70,5733-5736.
    [9]Zani, L.; Alesi, S.; Cozzi, P. G.; Bolm, C. Dimethylzinc-mediated alkynylation of imines. J. Org. Chem.2006,71,1558-1562.
    [10]Blay, G.; Cardona, L.; Climent, E.; Pedro, J. R. Highly enantioselective zinc/binol-catalyzed alkynylation of N-sulfonyl aldimines. Angew. Chem., Int. Ed.2008,47, 5593-5596.
    [11](a) Patterson, A. W.; Ellman, J. A. Asymmetric synthesis of a,a-dibranched propargylamines by acetylide additions to N-tert-butanesulfinyl ketimines. J. Org. Chem.2006,77,7110-7112.
    (b)Ding, C.-H.; Chen, D.-D.; Luo, Z.-B.; Dai, L.-X.; Hou, X.-L. Highly diastereoselective synthesis of N-tert-butylsulfinylpropargyl- amines through direct addition of alkynes to N-tert-butanesulfinimines. Synlett 2006,1272-1274.
    [12](a) Morton, D.; Stockman, R. A. Chiral non-racemic sulfinimines:versatile reagents for asymmetric synthesis. Tetrahedron 2006,62,8869-8905.
    (b)Ellman, J. A.; Owens, T. D.; Tang, T. P. N-tert-butanesulfinyl Imines:versatile inter-mediates for the asymmetric synthesis of amines. Acc. Chem. Res.2002,35,984-995.
    [13]Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman J. A. Synthesis of enantiomerically pure N-tert-butanesulfinyl imines (tert-butanesulfinimines) by the direct condensation of tert-butanesulfinamide with aldehydes and ketones. J. Org. Chem.1999,64,1278-1284
    [14]Reviews on carbometallation, for example:
    (a)I. Marek,; N. Chinkov, D. Banon-Tene, In Metal-Catalyzed Cross-Coupling Reactions,2nd edition; de Meijere, A.; Diederich, F., Eds. Wiley-VCH, Weinheim,2004; pp.395.
    b) D. Banon-Tenne, I. Marek, In Carbometalation Reactions of Zinc Enolate Derivatives In Transition Metals for Organic Synthesis, Beller, M.; Bolm, C. Eds.; Wiley-VCH, 2004,563.
    [15]Noller, C. R. Diehtylzinc. Org. Synth. Coll.1943,2,184-186
    [1](a) Noyori, R. Asymmetric Catalysis in Organic Synthesis, Wiley, New York,1994;
    (b)Comprehensive Asymmetric Catalysis (Eds.:Jacobsen, E. N.; Pfaltz, E. N.; Yamamoto, H.), Springer, Berlin,1999.
    [2](a) Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis; John Wiley & Sons:New York,1988.
    (b)Yamada, K.; Tomioka, K. Copper-catalyzed asymme-tric alkylation of Imines with Daalkylzinc and related reactions, Chem. Rev.2008, 108,2874-2886.
    [3]Examples of application of propargylic alcohols to the synthesis of natural compounds:
    a) Cohen, N.; Lopresti, R. J.; Neukom, C.; Saucy, G.. Asymmetric reductions of alpha. beta.-acetylenic ketones and acetophenone using lithium aluminum hydride complexed with optically active 1,3-amino alcohols J. Org. Chem.1980,45,582-588;
    (b)Overman, L. E.; Bell, K. L. Enantiospecific total synthesis of dendrobatid toxin 251D. A short chiral entry to the cardiac-active pumiliotoxin A alkaloids via stereospecific iminium ion-vinylsilane cyclizations. J. Am. Chem. Soc.1981,103,1851-1853;
    (c)G. Stork, Nakamura, E. J. A simplified total synthesis of cytochalasins via an intramolecular Diels-Alder reaction. J. Am. Chem. Soc.1983,105,5510-5513;
    (d)Trost, B. M.; Hipskind, P. A.; Chung, J. Y. L.; Chan, C. The effect of acetylene substituents on a Pd-catalyzed cycloisomerization. Total synthesis of (-)-Sterepolide and assignment of absolute stereochemistry. Angew. Chem. Int. Ed.1989,28,1502-1504;
    (e)Roush,W. R.; Sciotti, R. J. Enantio-selective total synthesis of (-)-Chlorothricolide. J. Am. Chem. Soc.1994,116,6457-6458;
    (f)Zhu, G.; Lu, X. A Palladium(Ⅱ)-catalyzed construction of alpha.-Methylene-gamma-butyrolactones in optically activef form. total synthesis of (-)-methylenolactocin. J. Org. Chem.1995,60,1087-1089;
    (g) Marshall, J. A.; Borbeau, M. P. Synthesis of enantioenriched propargylic alcohols related to poly-ketide natural products. A comparison of methodologies. Org. Lett. 2003,5,3197-3199.
    [4]Examples of application of propargylic amines to the synthesis of natural com-pounds:
    (a)Porco, J. A.; Schoenen, F. J.; Stout, T. J.; Clardy, J.; Schreiber, S. L. Transannular Diels-Alder route to systems related to dynemicin A. J. Am. Chem. Soc.1990,112,7410-7411;
    (b)Nicolaou, K. C.; Hwang, C.-K.; Smith, A. L.; Wendeborn, S. V. Synthesis of dynemicin A models. J. Am. Chem. Soc.1990,112, 7416-7418;
    (c)Yoon, T; Shair, M. D.; Danishefsky, S. J.; Shulte, G K. Experiments directed toward a total synthesis of dynemicin A:A solution to the stereochemical problem. J. Org. Chem.1994,59,3752-3754;
    (d)Jiang, B.; Xu, M. Highly enantioselective construction of fused pyrrolidine systems that contain a quaternary stereocenter:Concise formal synthesis of (+)-conessine. Angew. Chem. Int. Ed.2004,43,2543-2546.
    (e)Fleming, J. J.; Bois, J. D. A synthesis of (+)-saxitoxin. J. Am. Chem. Soc.2006,128,3926-3927.
    [5](a) Shibasaki, M.; Ishida,Y.; Iwasaki, G.; Iimori, T.; 1,3-Dipoles are not the only reactive species in 2-acylaziridine pyrolyses. J. Org. Chem.1987,52,3488-3489;
    (b)Iverson, S. L.; Uetrecht, J. P. Identification of a reactive metabolite of terbinafine:insights into terbinafine-induced hepatotoxicity. Chem. Res. Toxicol. 2001,14,175-181;
    (c)Gokhale, V. M.; Kulkarni V. M. Comparative molecular field analysis of fungal squalene epoxidase inhibitors. J. Med. Chem.1999,42, 5348-5358.
    [6]For reviews on alkynylation of carbonyl compounds, see:
    (a)Pu, L. Asymmetric alkynylzinc additions to aldehydes and ketones. Tetrahedron 2003,59,9873-9886;
    b) Cozzi, P. G.; Hilgraf, R.; Zimmerman, N. Acetylenes in catalysis:Enantio-selective additions to carbonyl groups and imines and applications beyond. Eur. J. Org. Chem.2004,4095-4105;
    (c)Frantz, D. E.; FHssler, R.; Tomooka, C. S.; Carreira, E. M. The discovery of novel reactivity in the development of C-C bond-forming reactions:In situ generation of zinc acetylides with ZnⅡ/R3N. Acc. Chem. Res.2000,33,373-381;
    (d)Trost, B. M. Weiss, A. H. The enantioselective addition of alkyne nucleophiles to carbonyl groups. Adv. Synth. Catal.2009,351, 963-983.
    (e)Aschwanden, P.; E. M. Carreira in Acetylene Chemistry (Eds.:F. Diederich, P. J. Stang, R. R. Tykwinski), Wiley-VCH,Weinheim,2005, pp.101-138.
    [7]Examples of alkynylation of aldehydes:(a) Wolf, C.; Liu, S. Bisoxazolidine-catalyzed enantioselective alkynylation of aldehydes. J. Am. Chem. Soc.2006,128, 10996-10997;
    (b)Rajaram,A. R.; Pu, L. Regiospecific hydration of y-hydroxy-α,β-acetylenic esters:A novel asymmetric synthesis of tetronic acids. Org. Lett.2006, 8,2019-2021;
    (c)Xu, Z.; Lin, L.; Xu, J.; Yan, W.; Wang, R. Asymmetric addition of phenylacetylene to aldehydes catalyzed by-sulfonamide alcohol-titanium complex. Adv. Synth. Catal.2006,348,506-514;
    (d)Emmerson, D. P. G.; Hems,W.
    P.; Davis, B. G.Carbohydrate-derived amino-alcohol ligands for asymmetric alkynylation of aldehydes. Org. Lett.2006,8,207-210;
    (e)Trost, B. M.; Weiss, A. H.; Wangelin, J. Dinuclear Zn-catalyzed asymmetric alkynylation of unsaturated aldehydes. J. Am. Chem. Soc.2006,128,8-9;
    (f)Gao, G.; Wang, Q.; Yu, X. Q.;.Xie, R. G.; Pu, L. Highly enantioselective synthesis of γ-Hydroxy-α,β-acetylenic esters by asymmetric alkyne addition to aldehydes. Angew. Chem. Int. Ed.2006,45,122-125. Examples of alkynylation of ketones:
    (g)Lu, G.; Li, X.; Li, Y.-M.; Kwang, F. Y.; Chan, A. S. C. Highly enantioselective catalytic alkynylation of ketones-A convenient approach to optically active propargylic alcohols. Adv. Synth. Catal.2006,348,1926-1933;
    (h)Chen, C.; Hong, L.; Xu, Z.-Q.; Liu, L.; Wang, R. Low ligand loading, highly enantioselective addition of phenylacetylene to aromatic ketones catalyzed by schiff-base amino alcohols. Org. Lett.2006,8, 2277-2280.
    [8](a) Koradin, C.; Polborn, K.; Knochel, P. Enantioselective synthesis of propargyl-amines by copper-catalyzed addition of alkynes to enamines. Angew. Chem. Int. Ed. 2002,41,2535-2538;
    (b)Koradin, C.; Gommermann, N.; Polborn, K.; Knochel, P. Synthesis of enantiomerically Enriched propargylamines by copper-catalyzed addition of alkynes to enamines. Chem. Eur. J.2003,9,2797-2811;
    (c)Gommer-mann, N.; Koradin, C.; Polborn, K.; Knochel, P. Enantioselective, copper(Ⅰ)-catalyzed three-component reaction for the preparation of propargylamines. Angew. Chem. Int. Ed.2003,42,5763-5766;
    (d)Gommermann, N. Knochel, P. Practical highly enantioselective synthesis of terminal propargylamines. An expeditious synthesis of (S)-(+)-coniine. Chem. Commun.2004,2324-2325;
    (e)Gommermann, N.; Knochel, P. Practical highly enantioselective synthesis of propargylamines through a copper-catalyzed one-pot three-component condensation reaction. Chem. Eur J.2006,12,4380-4392;
    (f)Taylor, A. M.; Schreiber, S. L. Enantioselective addition of terminal alkynes to isolated isoquinoline iminiums. Org. Lett.2006,8, 143-146;
    (g)Aschwanden, P.; Stephenson, C. R.; J.; Carreira, E. M. Highly
    enantioselective access to primary propargylamines:4-piperidinone as a convenient protecting group. Org. Lett.2006,8,2437-2440.
    [9](a) Wei, C.; Li, C.-J. Enantioselective direct-addition of terminal alkynes to imines catalyzed by copper(Ⅰ) pybox complex in water and in toluene.J. Am. Chem. Soc. 2002,124,5638-5639.
    (b)Wei, C.; Mague, J. T.; Li, C.-J. Cu(Ⅰ)-catalyzed direct add-ition and asymmetric addition of terminal alkynes to imines. Proc. Natl. Acad. Sci. U.S.A.2004,101,5749-5754.
    (c)Li, C-J. The development of catalytic nucleophilic additions of terminal alkynes in water. Ace. Chem. Res.2010,43, 581-590.
    [10]Bisai, A.; Singh, V. K. Enantioselective one-pot three-component synthesis of propergylamines. Org. Lett.2006,8,2405-2408.
    [11]Ji, J.-X.; Wu, J.; Chan, A. S. C. Catalytic asymmetric alkynylation of a-imino ester: A versatile approach to optically active unnatural a-amino acid derivatives. Proc. Natl. Acad. Sci. U.S.A.2004,102,11196-11120.
    [12]Knopfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, E. M. Readily available biaryl P, N ligands for asymmetric catalysis. Angew. Chem. Int. Ed.2004,43,5971-5973.
    [13]Colombo, F.; Benaglia, M.; Orlandi, S.; Usuelli, R.; Celentano, G. Very mild, enantioselective synthesis of propargylamines catalyzed by copper(Ⅰ)-bisimine complexes. J. Org. Chem.2006,71,2064-2070.
    [14]Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. Enantioselective synthesis of propargylamines through Zr-catalyzed addition of mixed alkynylzinc reagents to arylimines. Org. Lett.2003,5,3273-3275.
    [15](a) Jiang, B.; Si, Y.-G. Highly enantioselective construction of a chiral tertiary carbon center by alkynylation of a cyclic N-acyl ketimine:an efficient preparation of HIV therapeutics. Angew. Chem. Int. Ed.2004,43,216-218
    (b)Zani, L.; Eichhorn, T.; Bolm, C. Dimethylzinc-mediated, enantioselective synthesis of propargylic amines. Chem. Eur. J.2007,13,2587-2600.
    (c)Yan, W.; Mao, B.; Zhu,S.; Jiang, X.; Liu, Z.; Wang, R. Asymmetric addition of terminal alkynes to N-(diphenylphosphinoyl)imines promoted by stoichiometric amounts of a proline-derived β-amino alcohol. Eur. J. Org. Chem.2009,3790-3794.
    [16]Blay, G.; Cardona, L.; Climent, E.; Pedro, J. R. Highly enantioselective zinc/ BINOL-catalyzed alkynylation of N-sulfonyl aldimines. Angew. Chem. Int. Ed. 2008,47,5593-5596.
    [17](a) Ding, C.-H.; Chen, D.-D.; Luo, Z.-B.; Dai, L.-X.; Hou, X.-L. Highly diastereoselective synthesis of N-tert-butylsulfinyl propargylamines through direct addition of alkynes to N-tert-butanesulfinimines. Synlett 2006,1272-1274.
    (b) Patterson, A. W.; Ellman, J. A. Asymmetric synthesis of α,α-dibranched propargylamines by acetylide additions to N-tert-butanesulfinyl ketimines. J. Org. Chem.2006,71,7110-7112.
    (c)Lettan, R. B.; Scheidt, K. A. Lewis base-catalyzed additions of alkynes using trialkoxysilylalkynes. Org. Lett.2005,7,3227-3230.
    [18]Turcaud, S.; Berhal, F.; Royer, J. Diastereoselective alkynylation of N-p-tolyl-sulfinylimines with aluminum acetylides. J. Org. Chem.2007,72,7893-7897.
    [19]Wu, T. R.; Chong, J. M. Asymmetric synthesis of propargylamides via 3,3'-disubstituted binaphthol-modified alkynylboronates. Org. Lett.2006,8,15-18.
    [20]Gonzalez, A. Z.; Canales, E.; Soderquist, J. A. N-propargylamides via the asymmetric Michael addition of β-alkynyl-10-TMS-9-borabicyclo[3.3.2]decanes to N-acylimines. Org. Lett.2006,8,3331-3334.
    [21]Rueping, M.; Antonchick, A. P.; Brinkmann, C. DualCatalysis:A combined enantioselective brφsted acid and metal-catalyzed reaction—metal catalysis with chiral counterions. Angew. Chem. Int. Ed.2007,46,6903-6906.
    [22]Lu, Y.; Johnstone, T. C.; Arndtsen, B. A. Hydrogen-bonding asymmetric metal catalysis with α-amino acids:A simple and tunable approach to high enantioinduction. J. Am. Chem. Soc.2009,131,11284-11285.
    [23]Armas, P.; Tejedor, D.; Tellado, F. G., Asymmetric alkynylation of imines by cooperative hydrogen bonding and metal catalysis. Angew. Chem. Int. Ed.2010,49, 1013-1016.
    [24]Yin, C.; Hui, X.-P.; Xu, P.-F.; Niu, L.-F.; Chen, Y.-F.; Wang, B.-H. Development and application of a new general method for the asymmetric synthesis of (E)-(2-en-3-ynyl)-amines. Adv. Synth. Catal.2009,351,357-362.
    [25]Gao, F.; Deng, M.; Qian, C. The effect of coordination on the reaction of N-tosyl imines with diethylzinc. Tetrahedron 2005,61,12238-12243.
    [26]Reviews on carbometallation, for example:(a) Marek, I.; Chinkov, N.; Banon-Tene, D. In Metal-Catalyzed Cross-Coupling Reactions,2nd edition; de Meijere, A.; Diederich, F., Eds. Wiley-VCH, Weinheim,2004; pp.395. b) Banon-Tenne, D.; Marek, I. In Carbometalation Reactions of Zinc Enolate Derivatives In Transition Metals for Organic Synthesis, Beller, M.; Bolm, C. Eds.; Wiley-VCH,2004,563.
    [27]Noller, C. R. Diethylzinc. Org. Syn. Coll.21943, p.184.
    [28]Jennings, W. B.; Lovely, C. J. The titanium tetrachloride induced synthesis of N-phosphinoylimines and N-sulphonylimines directly from aromatic aldehydes Tetrahedron 1991,47,5561-5568.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700