锂离子电池用含磷酸酯阻燃剂电解液的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与金属锂电池相比,锂离子电池有较高的安全性,但是在过充、过热、挤压等极端条件下锂离子电池仍然会出现爆炸、起火等现象。目前,车用动力电池的发展对锂离子电池提出了更高的安全要求。由于锂离子电池使用易燃的有机电解液,电解液的热稳定性对电池的安全性至关重要。本文采用自熄时间法(SET)、差示扫描量热法(DSC)、线性扫描(SLV)、循环伏安(CV)及充放电测试等研究了磷酸酯类阻燃剂对电解液性能的影响及其与正负极材料的兼容性,并采用电化学阻抗谱(EIS)对电极的界面性质进行了研究,X射线光电子能谱(XPS)对电极的表面成分进行了分析。
     研究了磷酸三甲酯(TMP)、二甲基甲基磷酸酯(DMMP)及亚甲基二磷酸四异丙酯(TPPP)三种烷基磷酸酯对锂离子电池常用电解液热稳定性的影响,发现DMMP具有最高的阻燃能力。研究了含有DMMP的电解液与正极材料(LiFePO_4和LiCoO_2)、石墨负极材料的兼容性,结果表明,相对于LiCoO_2,DMMP与LiFePO_4材料具有更好的兼容性;DMMP电解液与石墨负极的兼容性较差,在1mol·L-1 LiPF6 / EC:DEC:EMC (1:1:1,vol)+ 10%DMMP电解液中,石墨电极首次库仑效率仅为41.1%,而在不含DMMP的同种电解液中,石墨的首次库仑效率为86.1%。XPS测试结果表明,DMMP在石墨表面的还原分解是石墨首次库仑效率降低的主要原因。
     采用密度泛函理论研究了阻燃剂、溶剂、成膜添加剂双乙二酸硼酸锂(LiBOB)和氟代碳酸乙烯酯(FEC)的最低未占据分子轨道(LUMO)及最高占据分子轨道(HOMO),结果显示,LiBOB和FEC的还原能力比DMMP强,可以在石墨电极表面优先成膜。进而研究了LiBOB、FEC对石墨在1mol·L-1 LiPF6 / EC:DEC:EMC (1:1:1,vol) +10%DMMP电解液中的电化学性能的影响,发现LiBOB和FEC都能够大大提高石墨与该电解液的兼容性,首次不可逆容量损失明显减小,石墨脱锂容量得到明显提高。XPS分析表明,FEC和LiBOB的使用抑制了DMMP在石墨表面的还原分解。
     研究了亚磷酸三苯酯(TPPi)和磷酸三苯酯(TPP)两种苯基磷酸酯阻燃剂对电解液基本物理性质的影响,结果发现,TPPi的加入能够提高电解液的耐热能力,但是会降低电解液的电导率,含有TPPi的电解液具有较低的氧化电位,只能用于以LiFePO_4为正极材料的电池。进而研究了含TPPi的电解液与正负极材料的兼容性,发现TPPi与LiFePO_4及石墨材料均有较好的兼容性。含有10%TPPi的电解液不仅对LiFePO_4/石墨电池300次循环的循环性能影响较小,而且对LiFePO_4电极的过充电有一定的钳制作用。XPS及SEM分析表明,过充会在电极表面形成较厚的钝化膜。TPP对电解液的电化学窗口影响较小,能够与LiCoO_2材料兼容,6%以下TPP的使用对LiCoO_2/石墨电池250次循环性能的影响较小,而且能够提高LiCoO_2/石墨电池的安全性。
     采用醇盐水解法制备了Sb_2O_3包覆LiMn2O_4材料, XRD测试结果表明,Sb_2O_3包覆并不影响LiMn2O_4材料本体的结构。对Sb_2O_3包覆LiMn2O_4材料的电化学性能测试表明,Sb_2O_3能够提高LiMn2O_4材料的循环稳定性,但是初始容量有所降低。热稳定性测试表明,Sb_2O_3与TPP同时在LiMn2O_4材料中使用时会有协同阻燃作用,能够进一步提高LiMn2O_4材料的热稳定性。
Lithium ion batteries have higher safety than lithium battery. However, lithium ion batteries will ignite or explode under extreme conditions, such as overcharge, excessive heating, crushing and so on. At present, with the development of power battery for hybrid electric vehicle or electric vehicle, the research of high-safety lithium ion batteries is becoming more urgent. Because the frequently used electrolyte of lithium ion battery is flammable, the thermal stability of electrolyte is very important to the safety of batteries. In this dissertation, the safety mechanism and methods of improving battery safety were reviewed. Effect of phosphate flame-retardant on performance of electrolyte was studied by self-extinguishing time method (SET), differential scanning calorimetry (DSC), and linear sweep voltammetry (LSV). The compatibility between phosphate and cathodes and anodes was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), charge-discharge test and X-ray photoelectron spectroscopy (XPS).
     The effects of trimethyl phosphate (TMP), dimethyl methyl phosphate (DMMP) and methylene diphosphate isopropoxide (TPPP) on the thermal stability of electrolyte were investigated and the results showed that DMMP have the highest flame-retardant capability. The compatibility of DMMP-contained electrolyte with cathodes (LiFePO_4, LiCoO_2) and anode (graphite) materials was investigated. The results showed that the LiFePO_4 had better compatibility with DMMP than that of LiCoO_2. On the other hand, DMMP had poor compatibility with graphite. The first coloumbic efficiency was 86.1% in the electrolyte without DMMP, but the efficiency was decreased to 41.1% with addition of 10% DMMP due to the decomposition of DMMP on the graphite surface.
     The highest unoccupied molecular orbit (HOMO) and lowest occupied molecular orbit (LUMO) of flame-retardants, LiBOB and FEC were investigated by the density functional theory. The results showed that LiBOB and FEC have higher reduction ability than DMMP and can form passivation film preferentially. Furthermore, electrochemical properties of graphite electrode were studied in 1mol·L-1 LiPF6 / EC: DEC: EMC (1:1:1, vol) +10%DMMP with LiBOB or FEC. The compatibility of graphite and DMMP was improved by LiBOB or FEC. The first irreversible capacity loss decreased significantly and the discharge capacity increased obviously. Analysis of the electrodes after passivation film formation revealed that FEC and LiBOB inhibited the reduction of DMMP on the graphite surface.
     The effect of triphenyl phosphite (TPPi) and triphenyl phosphate(TPP) on the performance of electrolyte was investigated. At the same time, the compatibility of electrolyte containing TPPi or TPP with cathodes and anode materials was researched. These results showed that the electrolyte with TPPi have high thermal stability and low conductivity. TPPi can only be used for battery employed LiFePO_4 as cathode due to the decreased anodic potential. TPPi has excellent compatibility with graphite and LiFePO_4. The cyclic performance of LiFePO_4/graphite cells was not affected by 10%TPPi and the potential of LiFePO_4 electrode was restrained during overcharged. The passivation film was formed on the surface of LiFePO_4 electrode during overcharged. The electrochemical window was not affected by TPP. Charge-discharge performance of LiCoO_2/graphite was still excellent in the electrolyte containing 6% TPP during 250 cycles, while the safety of LiCoO_2/graphite cells was improved by TPP. Sb_2O_3 coated LiMn2O_4 was prepared by alkoxide hydrolysis method. X-ray diffraction exhibited that Sb_2O_3 coating did not affect the structure of LiMn2O_4. The electrochemical test showed that the cyclic performance of LiMn2O_4 was enhanced by Sb_2O_3 but the first discharge capacity decreased. The thermal stability of LiMn2O_4 with Sb_2O_3 and TPP was investigated by means of differential scanning calorimetry. The results showed that the thermal stability of LiMn2O_4 can be elevated by synergistic effect of Sb_2O_3 and TPP.
引文
1 S. Tobishima, J. Yamaki. A consideration of lithium cell safety. J. Power Sources. 1999, 81-82: 882-886
    2 K. Mizushima, P. C. Jones, P. J. Wiseman, et al. LixCoO2 (0    3 D. D. MacNeil, J. R. Dahn. Test of Reaction Kinetics Using Both Differential Scanning and Accelerating Rate Calorimetries As Applied to the Reaction of LixCoO2 in Non-aqueous Electrolyte. J. Phys. Chem. A. 2001, 105: 4430-4439
    4 Q. Huang, M. Yan, Z. Jiang. Thermal study of organic electrolytes with fully charged cathodic materials of lithium-ion batteries. J. Solid State Electrochem. 2008, 12: 671-678
    5 Y. B. He, Z. Y. Tang, Q. S. Song. The thermal stability of fully charged and discharged LiCoO2 cathode and graphite anode in nitrogen and air atmospheres. Thermochimica Acta. 2008, 480: 15-21
    6 Y. Baba, S. Okada, J.Yamaki. Thermal stability of LixCoO2 cathode for lithium ion battery. Solid State Ionics. 2002, 148: 311-316
    7 D. D.MacNeil, L. Christensen, J. Landucci. An autocatalytic mechanism for the reaction of LixCoO2 in electrolyte at elevated temperature. J. Electrochem. Soc. 2000,147 (3): 970-979
    8 Z. Zhang, D. Fouchard, J. R. Rea. Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells. J. Power Sources. 1998, 70(1):16-20
    9 D. D. MacNeil, T. D. Hatchard, J. R. Dahn. A comparison between the high temperature electrode/electrolyte reactions of LixCoO2 and LixMn2O4 J. Electrochem. Soc. 2001, 148 (7): A663-667
    10 E. P. Roth, D.H. Doughty, J. Franklin. DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based bindersm. J. Power Sources, 2004, 134 (2): 222-234
    11 G. Chen, T. J. Richardson. Thermal instability of Olivine-type LiMnPO4 cathodes. J. Power Sources. 2010, 195(4): 1221-1224
    12 J. Jiang, J. R. Dahn. Reactivity of Liy[NixCo1-2xMnx]O2 (x=0.1, 0.2, 0.35, 0.45, and 0.5; y=0.3, 0.5) with nonaqueous solvents and electrolytes studied by ARC. J. Electrochem. Soc. 2005, 152(3): A566-569
    13 N. Yabuuchi, T. Ohzuku. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3 O2 for advanced lithium-ion batteries. J. Power Sources. 2003, 119-121(1): 171 -174
    14 I. Belharouak, Y. K. Sun, J. Liu, et al. LiCo1/3Ni1/3Mn1/3O as a suitable cathode for high power applications. J. Power Sources. 2003, 123(2): 247-252
    15 I. Belharouak, W. Lu, D. Vissers, et al. Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3CO1/3Mn1/3)O2. Electrochem. Commun. 2006, 8(2): 329-335
    16 A. Yamada, S. C. Chung, K. Hinokuma. Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 2001, 148 (3): A224-A229
    17 M. Takahashi, S. Tobishima, K. Takei, et al. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics. 2002, 148 (3-4): 283-289
    18 D. D. MacNeil, Z. Lu, Z. Chen, et al. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J. Power Sources. 2002, 108 (1-2): 8-14
    19 H. F. Xiang, H. Wang, C. H. Chen. Thermal stability of LiPF6-based electrolyte and effect of contact with various delithiated cathodes of Li-ion batteries. J. Power Sources. 2009, 191(2): 575-581
    20 J. Jiang, J. R. Dahn. Effects of particle size and electrolyte salt on the thermal stability of Li0.5CoO2. Electrochim. Acta. 2004, 49(16): 2661-2666
    21 J. Jiang, J. R. Dahn. ARC studies of the reaction between Li0FePO4 and LiPF6 or LiBOB EC/DEC electrolyte. Electrochem. Commun. 2004, 6(7): 724-728
    22 D. D. MacNeil, J. R. Dahn. Can an electrolyte for lithium-ion batteries be too stable? J.Electrochem.Soc. 2003, 150(1): A21-A28
    23 D. Aurbach, Y. Ein-Eli, B. Markovsky, et al. The study of electrolyte - solutions based on ethylene and diethyl carbonates for rechargeable Li batteries.
    2. Graphite-electrodes. J. Electrochem. Soc. 1995, 142(7): 2882-2890
    24 R. I. R. Blyth, H. Buqa, F. P. Netzer. XPS studies of graphite electrode materials for lithium ion batteries. Appl. Surf. Sci. 2000, 167: 99-106
    25 Y. Ein-Eli. A new perspective on the formation and structure of the solidelectrolyte interface at the graphite anode of Li-ion cells. Electrochem. Solid-State Lett. 1999, 2: 212-214
    26 H. Bryngelsson, M. Stjerndahl, T. Gustafsson, et al. How dynamic is the SEI? J. Power Sources. 2007, 174: 970-975
    27 R. Yazami. Surface chemistry and lithium storage capability of the graphite- lithium electrode. Electrochim. Acta. 1999, 45(1-2): 87-97
    28 H. Yang, H. Bang, K. Amine. Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway. J. Electrochem. Soc. 2005, 152(1): A73-A79
    29 J. W. Jiang, J. R. Dahn. Effects of solvents and salts on the thermal stability of LiC6. Electrochim. Acta. 2004, 49(26): 4599-4604
    30 Y. S. Park, S. M. Lee. Effects of particle size on the thermal stability of lithiated graphite anode. Electrochim. Acta. 2009, 54 (12): 3339-3343
    31 Y. S. Park, H. J. Bang, S. M. Oh. Effect of carbon coating on thermal stability of natural graphite spheres used as anode materials in lithium-ion batteries. J. Power Sources. 2009, 190: 553-557
    32 A. M. Andersson, K. Edstrom, J. O. Thomas, et al. Characterisation of the ambient and elevated temperature performance of a graphite electrode. J. Power Sources. 1999, 81: 8-12
    33 M. Holzapfel, F. Alloin, R. Yazami. Calorimetric investigation of the reactivity of the passivation film on lithiated graphite at elevated temperatures. Electrochim. Acta. 2004, 49(4): 581-589
    34 Y. D. Wang, J. R. Dahn. Comparison of the reactions between LixSi or Li0.81C6 and nonaqueous solvent or electrolytes at elevated temperature. J. Electrochem. Soc. 2006, 153(12): A2188-A2191
    35 D. Wang, J. R. Dahn. Comparison of the reaction of LixSi or Li0.81C6 with 1 M LiPF6 EC: DEC electrolyte at high temperature. Electrochem. Solid-State Lett. 2006, 9(7): A340-A343
    36 N. S. Choi, I. A. Profatilova, S. S. Kim, et al. Thermal reactions of lithiated graphite anode in LiPF6-based electrolyte. Thermochim. Acta. 2008, 480 (1-2): 10-14
    37 H. H. Lee, C. C. Wan, Y. Y. Wang. Thermal stability of the solid electrolyte interface on carbon electrodes of lithium batteries. J. Electrochem. Soc. 2004, 151(4): A542-A547
    38 I. Watanabe, J. Yamaki. Thermal gravimetry-mass spectrometry studies on the thermal stability of graphite anodes with electrolyte in lithium-ion battery. J. Power Sources. 2006, 153(2): 402-404
    39 I. Watanabe, D. Takayuki, J-I. Yamaki, et al. Thermal stability of disordered carbon negative-electrode materials prepared from peanut shells. J. Power Sources. 2008, 176: 347-352
    40 A. D. Pasquier. Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries. J. Electrochem.Soc. 1998, 45:472-477
    41 P. Biensan. On safety of lithium-ion cells. J. Power Sources. 1999, 81-82: 906-912
    42 H. Yang, H. Bang, K. Amine, et al. Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway. J. Electrochem Soc. 2005, 152(1): A73-A79
    43 Z. R. Lu, L. Yang, Y. J. Guo. Thermal behavior and decomposition kinetics of six electrolyte salts by thermal analysis. J. Power Sources. 2006, 156(2): 555-559
    44 J. S. Gnanaraj, E. Zinigrad, M. D. Levi, et al. A comparison among LiPF6, LiPF3(CF2CF3)3 (LiFAP), and LiN(SO2CF2CF3)2 (LiBETI) solutions: electrochemical and thermal studies. J. Power Sources. 2003, 119: 799-804
    45 K. Tasaki, K. Kanda, S. Nakamura, et al. Decomposition of LiPF6 and stability of PF5 in Li-ion battery electrolytes Density functional theory and molecular dynamics studies. J. Electrochem. Soc. 2003, 150(12): A1628-A1636
    46 C. L. Campion, W. T. Li, B. L. Lucht. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J. Electrochem.Soc. 2005, 152(12): A2327-A2334
    47 B. Ravdel, K. M. Abraham, R. Gitzendanner, et al. Thermal stability of lithium-ion battery electrolytes. J. Power Sources, 2003, 119: 805-810
    48 T. Kawamura, A. Kimura, M. Egashira, et al. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. J. Power Sources. 2002, 104: 260-264
    49 G. G. Botte, R. E. White, Z. M. Zhang. Thermal stability of LiPF6 EC: EMC electrolyte for lithium ion batteries. J. Power Sources. 2001, 97-98: 570-575
    50 J. S. Gnanaraj, E. Zinigrad, L. Asraf, et al. A detailed investigation of the thermal reactions of LiPF6 solution in organic carbonates using ARC and DSC.J. Electrochem. Soc. 2003, 150(11): A1533-A1537
    51 W. T. Li, C. Campion, B. L. Lucht, et al. Additives for stabilizing LiPF6-based electrolytes against thermal decomposition. J. Electrochem. Soc. 2005, 152(7): A1361-A1365
    52 H. Maleki, G. P. Deng, A. Anani, et al. Thermal stability studies of Li-ion cells and components. J. Electrochem. Soc. 1999, 146(9): 3224-3229
    53 Ph. Biensan, B. Simon, J. P. Pérès. On safety of lithium-ion cells. J. Power Sources. 1999, 81-82: 906-912
    54 T. D. Hatchard, D. D. MacNeil, A. Basu, et al. Thermal model of cylindrical and prismatic lithium-ion cells. J. Electrochem. Soc. 2001, 148: A755-761
    55 R. A. Leising, M. J. Palazzo, E. S. Takeuchi, et al. Abuse testing of lithium-ion batteries - Characterization of the overcharge reaction of LiCoO2/graphite cells. J. Electrochem Soc. 2001, 148(8): A838-A844
    56 R. Spotnitz, J. Franklin. Abuse behavior of high-power lithium-ion cells. J. Power Sources. 2003, 113: 81-100
    57 Y. Saito, K. Takano, A. Negishi. Thermal behaviors of lithium-ion cells during overcharge. J. Power Sources. 2001, 97-98: 693-696
    58 R. A. Leising, M. J. Palazzo, E. S. Takeuchi, et al. A study of the overcharge reaction of lithium-ion batteries. J. Power Sources. 2001, 97-98: 681-683
    59 C. H. Doh, D. H. Kim, H. S. Kim, et al. Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test. J. Power Sources. 2008, 175(2): 881-885
    60 P. G. Balakrishnan, R. Ramesh, T. P. Kumar. Safety mechanisms in lithium-ion batteries. J. Power Sources. 2006, 155(2): 404-414
    61 S. S. Zhang, K. Xu, T. R. Jow. Study of the charging process of a LiCoO2- based Li-ion battery. J. Power Sources. 2006, 160(2): 1349-1354
    62 D. Belov, M. H. Yang. Investigation of the kinetic mechanism in overcharge process for Li-ion battery. Solid state ionics. 2008, 179(27-32): 1816-1821.
    63 T. Ohsaki, T. Kishi, T. Kuboki, et al. Overcharge reaction of lithium-ion batteries. J. Power Sources. 2005, 146(1-2): 97-100
    64 J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries. Nature. 2001, 414(6861): 359-367
    65 M. Takahashi, S. Tobishima, K. Takei. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries. J. Power Sources. 2001, 97-98: 508-511
    66 A. K. Padhi, K. S. Nanjun, J. B. Goodenough. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem Soc. 1997, 144(5): 1188-1192
    67 S. L. Bewlay, K. Konstantinov, G. X. Wand, et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Materials Letters. 2004, 58:1788-1791
    68 I. Belharouak, Y. K. Sun, J. Liu, et al. LiNi1/3Co1/3Mn1/3O2 as a Suitable Cathode for High Power Application. J. Power Sources. 2003, 132(2):247-252
    69 H. Kobayashi, Y. Arachi, T. Kamiyama, et al. Investigation on Lithium De- intercalation Mechanism for LiNi1/3Co1/3Mn1/3O2. J. Power Sources. 2005, 146(1): 640-644
    70 M. S. Whittingham. Lithium Batteries and Cathode Materials. J. Chem Rev. 2004, 104: 4271-4302
    71 D. Liu, Z. Wang, L. Chen. Comparison of Structure and Electrochemistry of Al-and Fe-doped LiNi1/3Co1/3Mn1/3O2. Electrochim Acta. 2006, 51(20): 4 199-4203
    72 M. Kageyama, D. Li, K. Kobayakawa, et al. Structural and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2-xFx Prepared by Solid State Reaction. J Power Sources. 2006, 157 (2): 494-500
    73 Y. H. Ding, P. Zhang, Y. Jiang, et al. Effect of Rare Earth Elements Doping on Structrue and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 for lithium ion battery. Solid State Ionics. 2007, 178: 967-971
    74 S. B. Jang, S. H. Kang, K. Amine, et al. Synthesis and Improved Electrochemical Performance of Al(OH)3-coated LiNi1/3Co1/3Mn1/3O2 Cathode Materials at Elevated Temperature. Electrochim. Acta. 2005, 50(20): 4168 - 4173
    75 R. Guo, P. F. Shi, X. Q. Cheng, et al. Effect of ZnO Modification on the Performance of LiNi0.5Co0.25Mn0.25O2 Cathode Material. Electrochim. Acta. 2009, 50(20): 4168-4173
    76 J. Cho, T. G. Kim, C. Kim, et al. Comparison of Al2O3 and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell. J. Power Sources. 2005, 146: 58-64
    77 J. Xiang, C. Chang, L. Yuan, et al. A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials for lithium ion battery. Electrochem. Commun. 2008, 10: 1360-1363
    78 H. J. Kweon, J. J. Park, J. W. Seo, et al. Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoO2 in a Li-ion cell. J. Power Sources. 2004, 126: 156-162
    79 Z. R. Zhang, J. Li, Y. Yang. The effects of decomposition products of electrolytes on the thermal stability of bare and TiO2-coated delithiated Li1-xNi0.8Co0.2O2 cathode materials. Electrochim. Acta. 2006, 52: 1442-1450
    80 S. Madhavi, G. V. S. Rao, B. V. R. Chowdari, et al. Effect of aluminium doping on cathodic behaviour of LiNi0.7Co0.3O2. J. Power Sources. 2001, 93: 156-162
    81 Z. Chen, J. R. Dahn. Effect of a ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5 V. Electrochem. Solid-State Lett. 2002, 5: 213-216
    82 Y. Bai, Y. F. Yin, N. Liu, et al. New concept of surface modification to LiCoO2. J. Power Sources. 2007, 174: 328-334
    83 J. Cho, Y. W. Kim, B. Kim, et al. A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. Angew. Chem. Int. Ed. 2003, 42: 1618-1621
    84 J. Cho. Improved thermal stability of LiCoO2 by nanoparticle AlPO4 coating with respect to spinel Li1.05Mn1.95O4. Electrochem. Commun. 2003, 5: 146-148
    85 J. Cho, T. G. Kim, C. Kim, et al. Comparison of Al2O3- and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell. J. Power Sources. 2005, 146: 58-64
    86 G. Li, Z. Yang, W. Yang. Effect of FePO4 coating on electrochemical and safety performance of LiCoO2 as cathode material for Li-ion batteries. J. Power Sources. 2008, 183: 741-748
    87 S. H. Lee, B. K. Koo, J. C. Kim, et al. Effect Of Co3(PO4)2 coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechargeable batteries. J. Power Sources. 2008, 184: 276-283
    88 J. Cho, J. G. Lee, B. Kim, et al. Control of AlPO4-nanoparticle coating on LiCoO2 by using water or ethanol. Electrochim. Acta. 2005, 504: 4182-4187
    89 Z. Yang, W. Yang, D. G. Evans, et al. Enhanced overcharge behavior and thermal stability of commercial LiCoO2 by coating with a novel material. Electrochem. Commun. 2008, 10: 1136-1139
    90 S. T. Myung, K. Izumi, S. Komaba, et al. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries. Chem. Mater. 2005, 17: 3695-3704
    91 B. C. Park, H. B. Kim, S. T. Myung, et al. Improvement of structural and electrochemical properties of AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode materials on high voltage region. J. Power Sources. 2008, 178: 826-831
    92 B. C. Park, H. B. Kim, S. T Myung, et al. Electrochemical and thermal characterization of AlF3-coated Li[Ni0.8Co0.15Al0.05]O2 cathode in lithium-ion cells. J. Power Sources. 2008, 179: 347-350
    93 S. B. Jang, S. H. Kang, K. Amine, et al. Synthesis and improved electrochemical performance of Al (OH)3-coated Li[Ni1/3Mn1/3Co1/3]O2 cathode materials at elevated temperature. Electrochim. Acta. 2005, 50: 4168-4173
    94 Y. J. Kang, J. H. Kim, S. W. Lee, et al. The effect of Al(OH)3 coating on the Li[Li0.2Ni0.2Mn0.6]O2 cathode material for lithium secondary battery. Electrochim. Acta. 2005, 50: 4784-4791
    95 H. S. Kim, M. Z. Kong, K. Kim, et al. Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries. J. Power Sources. 2007, 171: 917-921
    96 S. Y. Lee, S. K. Kim, S. Ahn. Nano-encapsulation of LiCoO2 cathodes by a novel polymer electrolyte and its influence on thermal safeties of Li-ion batteries. Electrochem. Commun. 2008, 10: 113-117
    97 S. Y. Lee, S. K. Kim, S. Ahn. Performances and thermal stability of LiCoO2 cathodes encapsulated by a new gel polymer electrolyte. J. Power Sources. 2007, 174: 480-483
    98 K. H. Jeong, H. W. Ha, N. J. Yun, et al. Zr-doped Li[Ni0.5-xMn0.5-xZr2x]O2 (x=0, 0.025) as cathode material for lithium ion batteries. Electrochim. Acta. 2005, 50: 5349-5353
    99 T. Tsuji, M. Nagao, Y. Yamamura, et al. Structural and thermal properties of LiMn2O4 substituted for manganese by iron. Solid State Ionics. 2002, 154-155: 381-386
    100 P. Y. Liao, J. G. Duh, H. S. Sheu. Structural and thermal properties of LiNi0.6-xMgxCo0.25Mn0.15O2 cathode materials. J. Power Sources. 2008, 183: 766-770
    101 S. Madhavi, G.V. S. Rao, B. V. R. Chowdari, et al. Cathodic properties of (Al, Mg) co-doped LiNi0.7Co0.3O2. Solid State Ionics. 2002, 152-153: 199-205
    102 G. H. Kim, M. H. Kim, S. T. Myung, et al. Effect of fluorine onLi[Ni1/3Co1/3Mn1/3]O2-zFz as lithium intercalation material. J. Power Sources. 2005, 146: 602-605
    103 S. H. Kang, K. Amine. Layered Li(Li0.2Ni0.15+0.5zCo0.10 Mn0.55-0.5z)O2Fz cathode materials for Li-ion secondary batteries. J. Power Sources. 2005, 146: 654-657
    104 J. Arai, H. Katayama, H. Akahoshi. Binary mixed solvent electrolytes containing trifluoropropylene carbonate for lithium secondary batteries. J. Electrochem. Soc. 2002, 149(2): A 217-A 226
    105 K. Sato, I. Yamazaki, S. Okada, et al. Mixed solvent electrolytes containing fluorinated carboxylic acid esters to improve the thermal stability of lithium metal anode cells. Solid State Ionics. 2002, 148: 463-466
    106 J. I. Yamaki, I. Yamazaki, M. Egashira, et al. Thermal studies of fluorinated ester as a novel candidate for electrolyte solvent of lithium metal anode rechargeable cells. J. Power Sources. 2001, 102: 288-293
    107 M. Ihara, B.T. Hang, K. Sato, et al. Properties of carbon anodes and thermal stability in LiPF6/methyl difluoroacetate electrolyte. J. Electrochem. Soc. 2003, 150(11): A1476-A1483
    108 J. Arai. A novel non-flammable electrolyte containing methyl nonafluorobutyl ether for lithium secondary batteries. J. Appl. Electrochemistry. 2002, 32(10): 1071-1079
    109 J. Arai. Nonflammable methyl nonafluorobutyl ether for electrolyte used in lithium secondary batteries. J. Electrochem. Soc. 2003, 150 (2): A219-A228
    110 J. Arai. No-flash-point electrolytes applied to amorphous carbon/ Li1+xMn2O4 cells for EV use. J. Power Sources. 2003, 119: 388-392
    111 K. Naoi, E. Iwama, N. Ogihara, et al. Nonflammable Hydrofluoroether for Lithium-Ion Batteries: Enhanced Rate Capability, Cyclability, and Low-Temperature Performance. J. Electrochem. Soc. 2009, 156(4): A272-A276
    112 K. Naoi, E. Iwama, Y. Honda, et al. Discharge Behavior and Rate Performances of Lithium-Ion Batteries in Nonflammable Hydrofluoroethers (II). J. Electrochem. Soc. 2010, 157 (2): A190-A195
    113 X. M. Wang, E. Yasukawa, S.J. Kasuya. Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries II. The Use of an Amorphous Carbon Anode. J. Electrochem. Soc. 2001, 148 (10): A1066-A1071
    114 X. M. Wang, E. Yasukawa, S. J. Kasuya. Nonflammable Trimethyl PhosphateSolvent-Containing Electrolytes for Lithium-Ion Batteries, I. Fundamental Properties. J. Electrochem. Soc. 2001, 148 (10): A1058-A1065
    115 B. S. Lalia, T. Fujita, N. Yoshimoto, et al. Electrochemical performance of nonflammable polymeric gel electrolyte containing triethylphosphate. J. Power Sources. 2009, 186: 211-215
    116 K. Xu, M. S. Ding, S. S. Zhang, et al. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes. J. Electrochem. Soc. 2002, 149(5): A622-A626
    117 Y. E. Hyung, D. R. Vissers, K. Amine. Flame-retardant additives for lithium-ion batteries. J. Power Sources. 2003, 119-121: 383-387
    118 H. Y. Xu, S. Xie, Q. Y. Wang, et al. Electrolyte additive trimethyl phosphite for improving electrochemical performance and thermal stability of LiCoO2 cathode. Electrochim. Acta. 2006, 52: 636-642
    119 X. L. Yao, S. Xie, C.H. Chen, et al. Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries. J. Power Sources. 2005, 144: 170-175
    120 Q. S. Wang, J. H. Sun, Enhancing the safety of lithium ion batteries by 4- isopropyl phenyl diphenyl phosphate. Materials Letters. 2007, 61: 3338-3340
    121 Q. S. Wang, J. H. Sun, C. H. Chen. Enhancing the thermal stability of LiCoO2 electrode by 4-isopropyl phenyl diphenyl phosphate in lithium ion batteries. J. Power Sources. 2006, 162: 1363-1366
    122 H. F. Xiang, Q. Y. Jin, C. H. Chen, et al. Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries. J. Power Sources. 2007, 174: 335-341
    123 N. Yoshimoto, Y. Niida, M. Egashira, et al. Nonflammable gel electrolyte containing alkyl phosphate for rechargeable lithium batteries. J. Power Sources. 2006, 163: 238-242
    124 H. Ota, A. Kominato, W. J. Chun, et al. Effect of cyclic phosphate additive in non-flammable electrolyte. J. Power Sources. 2003, 119-121:393-398
    125 E. G. Shim, T. H. Nam, J. G. Kim, et al. Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive. J. Power Sources. 2007, 172: 919-924
    126 E.G. Shim, T. H. Nam, J. G. Kim, et al. Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries. J. Power Sources.2008, 175: 533-539
    127 D. Zhou, W. Li, C. Tan, et al. Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries. J. Power Sources. 2008, 184: 589-592
    128 J. K. Feng, Y. L. Cao, X. P. Ai, et al. Tri-(4-methoxythphenyl) phosphate: A new electrolyte additive with both fire-retardancy and overcharge protection for Li-ion batteries. Electrochim. Acta. 2008, 53: 8265-8268
    129 K. Xu,M. S. Ding, S. Zhang, et al. Evaluation of Fluorinated Alkyl phosphate as Flame Retardants in Electrolytes for Li-ion Batteries I. Physical and Electrochemical Properties. J. Electrochem. Soc. 2003, 150(2): A161-A169
    130 K. Xu,S. Zhang, J. L. Allen, et al. Evaluation of Fluorinated Alkyl phosphate as Flame Retardants in Electrolytes for Li-ion Batteries, II performance in Cell. J. Electrochem. Soc. 2003, 150(2): A170-A175
    131 S. Zhang, K. Xu, T. R. Jow. Tis (2, 2, 2-trifluoroethyl) phosphiteas a co-solvent for nonflammable electrolytes in Li-ion batteries. J. Power Sources. 2003, 113(1): 166-172
    132 Y. He, Q. Liu, Z. Tang, et al. The cooperative effect of tri(β-chloromethyl) phosphate and cyclohexyl benzene on lithium ion batteries. Electrochim. Acta. 2007, 52: 3534-3540
    133 S. Izquierdo-Gonzales, W. Li, B. L. Lucht. Hexamethyl phosphoramide as a flame retarding additive for lithium-ion battery electrolytes. J. Power Sources. 2004, 135: 291-296
    134 B. K. Mandal, A. K. Padhi, Z. Shi, et al. Thermal runaway inhibitors for lithium battery electrolytes. J. Power Sources. 2006, 161: 1341-1345
    135 T. Tsujikawa, K. Yabuta, T. Matsushita, et al. Characteristics of lithium-ion battery with non-flammable electrolyte. J. Power Sources. 2009, 189: 429-434
    136 Q. Zhang, H. Wang, M. Yoshio, et al. Improved thermal stability of LiCoO2 by cyclotriphosphazene additives in lithium-ion batteries. Chem. Lett. 2005, 34: 1012-1013
    137 Q. Wang, S. M. Zakeeruddin, I. Exnar, et al. A new strategy of molecular overcharge protection shuttles for lithium ion batteries. Electrochem. Commun. 2008, 10: 651-654
    138 M. N. Golovin, D. P. Wilkinson, J. T. Dudley, et al. J. Electrochem. Soc. 1992, 139 (1): 105-104
    139 C. S. Cha, X. P. Ai, H. X. Yang. Polypyridine complexes of iron used as redoxshuttles for overcharge protection of secondary lithium batteries. J. Power Sources. 1995, 54: 255-258
    140 J. B. Kerr, M. Tian. Electrochemical storage cell containing a substituted anisole or di-anisole redox shuttle additive for overcharge protection and suitable for use in liquid organic and solid polymer electrolytes. 2000, US patent, 6045952
    141 C. Buhrmester, J. Chen, L. Moshurchak, et al. Studies of aromatic redox shuttle additives for LiFePO4-based Li-ion cells. J. Electrochem. Soc. 2005, 152(12): A2390-A2399
    142 J. Chen, C. Buhrmester, J. R. Dahn. Chemical overcharge and overdischarge protection for lithium-ion batteries. Electrochem. Solid-State Lett. 2005, 8(1): A59-A62
    143 J. R. Dahn, J. Jiang, L. Moshurchak, et al. High-rate overcharge protection of LiFePO4-based Li-ion cells using the redox shuttle additive 2,5-ditertbutyl -1,4- dimethoxybenzene. J. Electrochem. Soc. 2005, 152(6): A1283-A1289
    144 J. K. Feng, X. P. Ai, Y. L. Cao, et al. A highly soluble dimethoxybenzene derivative as a redox shuttle for overcharge protection of secondary lithium batteries. Electrochem. Commun. 2007, 9: 25-30
    145 L. M. Moshurchak, C. Buhrmester, J. R. Dahn. Spectroelectrochemical studies of redox shuttle overcharge additive for LiFePO4-based Li-ion batteries. J. Electrochem. Soc. 2005, 152(6): A1279-1282
    146 L. M. Moshuchak, M. Bulinski, W. M. Lamanna, et al. Direct comparison of 2, 5-di-tert-butyl-1, 4-dimethoybenzene and 4-tert-butyl-1, 2-dimethoxybenzene as redox shuttles in LiFePO4-based Li-ion cells. Electrochem. Commun. 2007,
    9(7): 1497-1501
    147 Z. H. Chen, K. Amine. Degradation pathway of 2, 5-di-tert-butyl-1, 4- dimethoxy- benzene at high potential. Electrochim. Acta. 2007, 53: 453-458
    148 M. Taggougui, B. Carr′e, P. Willmann, et al. 2, 5-difluoro-1, 4-dimethoxy -benzene for overcharge protection of secondary lithium batteries. J. Power Sources. 2007, 174(2): 1069-1073
    149 D. Sun, S. V. Rosokha, J. K. Kochi. Donor-acceptor (electronic) coupling in the precursor complex to organic electron transfer: Intermolecular and intramolecular self-exchange between phenothiazine redox centers. J. Am. Chem. Soc. 2004, 126(5): 1388-1401
    150 C. Buhrmester, L. M. Moshurchak, R. L. Wang, et al. Possible redox shuttle additives for chemical overcharge and overdischarge protection for lithium-ion batteries. J. Electrochem. Soc. 2006, 153(2): A288-A294
    151 C. Buhrmester, L. M. Moshurchak, R. L. Wang, et al. The use of 2, 2, 6, 6-tetramethylpiperinyl-oxides and derivatives for redox shuttle additives in Li-ion cells. J. Electrochem. Soc. 2006, 153(10): A1800-A1804
    152 M. Taggougui, B. Carr′e, P. Willmann, et al. Application of a nitroxide radical as overcharge protection in rechargeable lithium batteries. J. Power Sources. 2007, 174(2): 643-647
    153 Z. H. Chen, Q. Z. Wang, K. Amine. Understanding the stability of aromatic redox shuttles for overcharge protection of lithium-ion cells. J. Electrochem. Soc. 2006, 153 (12): A2215-A2219
    154 Z. H. Chen, K. Amine. Bifunctional electrolyte additive for lithium-ion batteries. Electrochem. Commun. 2007, 9(4): 703-707
    155 S. L. Li, X. P. Ai, J. K. Feng, et al. Diphenylamine: A safety electrolyte additive for reversible overcharge protection of 3.6V-class lithium ion batteries. J. Power Sources. 2008, 184(2):553-556
    156 L.M. Moshurchak, C. Buhrmester, R.L. Wang, et al. Triphenylamines as a class of redox shuttle molecules for the overcharge protection of lithium-ion cells. J. Electrochem. Soc. 2008, 155(2): A129-A131
    157 L. M. Moshurchak, C. Buhrmester, R. L. Wang, et al. Comparative studies of three redox shuttle molecule classes for overcharge protection of LiFePO4- based Li-ion cells. Electrochim. Acta. 2007, 52(11): 3779-3784
    158 L. F. Xiao, X. P.Ai, Y. L. Cao, et al. Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries. Electrochim. Acta. 2004, 49(24): 4189-4196
    159 X. M. Feng, X. P. Ai, H. X. Yang. Possible use of methylbenzenes as electrolyte additives for improving the overcharge tolerances of Li-ion batteries. J. Applied Electrochemistry. 2004, 34(12): 1199-1203
    160 Q. Zhang, C. Qiu, Y. Fu, et al. Xylene as a New Polymerizable Additive for Overcharge Protection of Lithium Ion Batteries. Chinese Journal of Chemistry. 2009, 27(8), 1459-1463
    161 H. Mao. Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries. 1999, US Patent, 5879834
    162 K. Abe, Y. Ushigoe, H. Yoshitake, et al. Functional electrolytes: Novel type additives for cathode materials, providing high cycleability performance. J. Power Sources. 2006, 153: 328-335
    163 K. Roh, C. K. Park, J. Lee, et al. Electrolyte composition for lithium secondary battery having low swelling level at high temperature. 2004, WO pat, 2004006379
    164唐致远,刘强,陈玉红等.环己苯过充添加剂在锂离子电池中的应用.化工学报. 2007, 58: 476-480
    165 M.Q. Xu, L.D. Xing, W.S. Li, et al. Application of cyclohexyl benzene as electrolyte additive for overcharge protection of lithium ion battery. J. Power Sources. 2008, 427-431
    166 B. Wang, Q. Xia, P. Zhang, et al. N-Phenylmaleimide as a new polymerizable additive for overcharge protection of lithium-ion batteries. Electrochem. Commun. 2008, 10(5): 727-730
    167 Y. Watanabe, H. Morimoto, S-i. Tobishima, Electrochemical properties of aryladamantanes as new overcharge protection compounds for lithium cells. J. Power Sources. 2006, 154(1): 246-254
    168 J. K. Feng, Y.L. Cao, X.P. Ai, et al. Tri-(4-methoxythphenyl) phosphate: A new electrolyte additive with both fire-retardancy and overcharge protection for Li-ion batteries. Electrochim. Acta. 2008, 53(28): 8265-8268
    169 K. Shima, K. Shizuka, M. Ueb, et al. Reaction mechanisms of aromatic compounds as an overcharge protection agent for 4 V class lithium-ion cells. J. Power Sources. 2006, 161(2): 1264-1274
    170 H. Lee, S. Kim, J. Jeon, et al. Proton and hydrogen formation by cyclohexyl benzene during overcharge of Li-ion batteries. J. Power Sources. 2007, 173(2): 972-978
    171 K. Abe, Y. Matsumori, A. Ueki. Nonaqueous electrolytic solution and lithium secondary batteries. 2003, EP pat, 1361622
    172 Y. S. Chen, C. C. Hu, Y. Y. Li, et al. The importance of heat evolution during the overcharge process and the protection mechanism of electrolyte additives for prismatic lithium ion batteries. J. Power Sources. 2008, 181(1): 69-73
    173 H. Lee, J.H.Lee, S.Ahn, et al. Co-use of cyclohexyl benzene and biphenyl for overcharge protection of lithium-ion batteries. Electrochem. Solid-State Lett. 2006, 9(6): A307-A310
    174 X. M. Wang, E. Yasukawa, S. Kasuya. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries - I. Fundamental properties. J. Electrochem. Soc. 2001, 148: A1058-A1065
    175胡传跃,锂离子电池非水电解液的行为研究.中南大学博士论文. 2005: 112-112
    176吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践.化学工业出版社. 2004:222
    177 H. C. Shin, W. I. Cho, H. Jiang. Electrochemical Properties of Carbon-coated LiFePO4 Cathode Using Graphite, Carbon Black, and Acetylene Black. Electrochim. Acta. 2006, 52: 1472-1476
    178 M. D. Levi, G. Salitra, B. Markovsky, et al. Solid-State Electrochemical Kinetics of Li-ion Intercalaction into Li1-xCoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS. J. Electrochem Soc. 1999, 146(4): 1279-1289
    179 G. C. Chang, H.J. Kim, S. Yu, et al. Origin of graphite exfoliation an investigation of the important role of cointercalation. J. Electrochem Soc. 2000, 147(12): 4391-4398
    180 S. K. Jeong, M. Inaba, Y. Iriyarna, et al. Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: Electrolyte-concentration dependence of electrochemical lithium intercalation reaction, J. Power Sources. 2008, 175 (1) 540-546
    181 W. Lu, Z. Chen, H. Joachin, et al. Thermal and electrochemical characterization of MCMB/LiNi1/3Co1/3Mn1/3O2 using LiBOB as an electrolyte additive. J. Power Sources. 2007, 163:1074-1079
    182 K. Xu, S. S. Zhang, T. R. Jow. LiBOB as additive in LiPF6-based lithium ion electrolytes. Electrochem. Solid-State Lett. 2005, 8(7): A365-A368
    183 Z. H. Chen, Y. Qin, J. Liu, et al. Lithium Difluoro(oxalato)borate as Additive to Improve the Thermal Stability of Lithiated Graphite. Electrochem. Solid-State Lett. 2009, 12(4): A69-A72
    184 Y. X. Wang, S. Nakamura, M. Ue, et al. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: Reduction mechanisms of ethylene carbonate. J. American Chem. Soc. 123(47): 11708-11718
    185 O. Borodin , G. D. Smith, Quantum Chemistry and Molecular DynamicsSimulation Study of Dimethyl Carbonate: Ethylene Carbonate Electrolytes Doped with LiPF6. J. Physical Chem. B. 2009, 113(6):1763-1766
    186 K. Tasaki, K. Kanda, T. Kobayashi, et al. Theoretical studies on the reductive decompositions of solvents and additives for lithium-ion batteries near lithium anodes. J. Electrochem Soc. 2006, 153(12): A2192-A2197
    187 S. H. Yang, W. H. Jo, S. K. Noh, Density functional study of the insertion mechanism for ethylene-styrene copolymerization with constrained geometry catalysts. J. Chem. physics. 2005, 119(3): 1824-1837
    188许杰,姚万浩,姚宜稳等.添加剂氟代碳酸乙烯酯对锂离子电池性能的影响.物理化学学报. 2009, 25(2): 201-206
    189 N. S. Choi, K. H. Yew, K. Y. Lee, et al. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources. 2006, 161: 1254-1259
    190 T. R. Jow, M. S. Ding, K. Xu, et al., Nonaqueous electrolytes for wide- temperature - range operation of Li-ion cells. J. Power Sources. 2003, 119-121(1): 343-348
    191 D. D. MacNeil, L. Christensen, J. Landucci, et al. An autocatalytic mechanism for the reaction of LixCoO2 in electrolyte at elevated temperature. J. Electrochem. soc. 2000, 147: 970-979
    192 M. S. Wu, P. J. Chiang, J. C. Lin, et al. Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests - short-circuit tests. Electrochim. Acta. 2004 , 49:1803-1812
    193 A. Laachachi, M. Cochez, M. Ferriol, et al. Influence of Sb2O3 particles as filler on the thermal stability and flammability properties of poly(methyl methacrylate) (PMMA). Polymer degradation and stability. 2004 , 85(1): 641-646
    194 P. Carty, S. White, Flammability studies on plasticised chlorinated poly(vinyl chloride). Polymer degradation and stability. 1999, 74(12): 2906-2910
    195 F. K. Antia, P. J. Baldry, M. M. Hirschlar, Comprehensive study of the effect of composition on the flame-retardant activity of antimony oxide and halogenated hydrocarbons in thermoplastic polymers. Europe Polymer. 1982, 18(2): 167-174
    196李建军,阻燃剂-性能、制造及应用.化学工业出版社. 2006
    197刘辉机,吴绍吟.含磷酸三甲苯醋、三氧化二锑和三氧化钥的高效、低烟复合阻燃体系在聚氯乙烯电缆料的应用.中国塑料. 2002,16(2): 72-74
    198李宾杰,周静芳,李亚东等.纳米Sb2O3的制备与性能研究.无机化学学报. 2004,20(4):407-411
    199钟永科,金茜,苟华等.斜方三氧化二锑纳米晶的制备.塑料助剂. 2002, 6:19-22
    200甘庆民,杨秉文,立方晶体三氧化二锑的制备研究.材料工程. 1997, 8: 26-27
    201 J. Yu, X. Hu, H Zhan, Y. Zhou, Sb2O3-modified Li1.1CoO2 phase as cathode material for lithium ion battery. J. Power Sources. 2009, 189(1): 697-701
    202 X. Y. Chen, X. Wang, C.H. An, et.al, Synthesis of Sb2O3 nanorods under hydrothermal conditions. Materials Research Bulletin. 2005, 40: 469-474
    203 H. W. Chan, J. G. Duh, S. R. Sheen, Microstructure and electrochemical properties of LBO-coated Li-excess Li1+xMn2O4 cathode material at elevated temperature for Li-ion battery. Electrochim. Acta. 2006, 51(18): 3645-3651

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700