飞机抗坠毁设计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然通用飞机的座椅抗坠撞适航规范已经颁布多年,但是过去国内通用航空市场较小,鲜有人研究飞机坠撞响应。在国际上抗坠撞航空座椅由于体积大、重量大,也没有得到广泛应用,多数通用飞机选择申请豁免该条款。随着通用航空业的不断发展,飞行事故也日益增加,飞行员的人身安全应当得到更好的保障,为此,近年飞机结构抗坠撞的研究逐渐增加,关于飞机结构抗坠撞的设计要求、设计准则、关键零部件的设计方法、试验手段、仿真方法等都有了很大的发展。国内通用航空业近期发展很快,对飞机的抗坠撞能力研究有比较迫切的市场需求,商用客机和军用飞机也需要考虑迫降情况的乘员安全。本文对飞机抗坠撞技术的设计准则、设计方法和试验方法进行了研究并研究了坠撞模拟仿真技术。
     1.深入分析了坠撞条件、坠撞载荷以及有关抗坠撞规范条文,比较了不同规范下抗坠撞要求的区别,确定了农林五型飞机需要取证的坠撞条件;
     2.分析可能导致乘员损伤的飞机坠撞结构损坏,提出通过能量吸收保护乘员的机身结构抗坠撞设计准则,提出了一些机身结构、机翼结构的抗坠撞设计措施;
     3.分析了乘员座椅的设计要求,比较了不同朝向、不同连接方式的座椅对坠撞安全性能的影响,分析了座椅结构的强度和变形的设计要求,研究了椅垫缓冲吸能对人体的保护,提出了座椅的试验方法和结果确认原则;
     4.介绍了农林五型飞机的抗坠撞设计要求和该机的抗坠撞设计特点,介绍了农林五飞机的坠撞试验设计和试验结果,对该机进行了瞬态动力学仿真模拟研究,并对结果进行了分析和比较。
Nowadays, more and more interests are focused on the research of the crash response after many years ignoring because of the limits of internal market dimensions in decades after the crashworthiness standard of commuter aircraft was issued. Most of the commercial aircrafts applied for exemption of it based on considerations of economy, size and weight of crashworthiness seats. With the development of general aviation industry, people are suffering more air accidents, and personal safeties of crews are concerned farther more. Consequently, research on anti-aircraft structures of collisions are increased dramatically, and the structure of anti-aircraft crash collision design requirements, design criteria, key parts of the design, testing tools, simulation methods and so on, are great and rapidly developed. Booming of the internal general aviation industry also perform more pressing market demands. Safeties of crews for both commercial and military aircrafts in the case of forced landing are also considered more important. In the present paper, the crashworthiness technical criteria for the design are analyzed according to standard crashworthiness provisions, crashing conditions and structures, design and test methods are studied, and the crash collision simulation technology are examined, as follows:
     1. The plane crashing condition while the collision occurred are analyzed, the structure load of the crash collision and the crashworthiness on standardized provisions are studied in details. Different parameters on the requirements of the crashworthiness in different standard are compared. Crash conditions of the N-5 aircraft are proved.
     2. Kinds of the plane structure collision damage which lead crew damage are analyzed. Criteria of energy absorption to protect the crew against the fuselage structure design are confirmed, and fuselage structures, wing structures of the anti-collision crash design measures are sued.
     3. Influences of the different seats towards, different ways of connecting to crash safety performance, and the seats structural strength and stiffness of the design requirements are analyzed, according to the crew seat design requirements. Padded energy absorptions on the human body protection are studied. Principles of seat experimental and results confirmed method are brought forward.
     4. The crashworthiness design demands and crashworthiness features of the type N-5 aircraft are concerned. The crash experiment design and results are illustrated. Transient dynamics simulations for type N-5 aircraft are done and results are compared with the experiment.
引文
[1]旋翼机和轻型定翼机耐坠毁文集,第一卷,《耐坠毁设计指南》,直升机技术编辑组,1981.7。
    [2]曾晓平,国外有关飞机坠毁撞击安全性资料概述,航空航天工业部301所,1991.10。
    [3] J.F.M. Wiggenraad. Crashworthiness Research at NLR(1990-2003), NLR-TP-2003-317.
    [4] Military Standard MIL-STD-1290 (AV), Light Fixed- and Rotary-Wing Aircraft Crashworthiness, 25 January 1974.
    [5] Giavotto V, Caprile C, Sala G. The design of helicopter crashworthiness. AGARD, Proceedings of the 66th Meeting of the Structures and Material Panel—Emerge absorption of Aircraft Structure as an Aspect of Crashworthiness. Luxembourg, 1988(6):1– 9.
    [6] Och F. Crashworthiness activities on MBB helicopters. AGARD, Proceedings of the 66th Meeting of the Structures and Material Panel—Emerge absorption of Aircraft Structure as an Aspect of Crashworthiness. Luxembourg, 1988(5):1– 22.
    [7] Fasanella EL, Boitnott RL, Lyle KY, Jackson KE. Full-scale crash test and simulation of a composite helicopter. Proceeding of the International Crashworthiness Conference ICRASH2000, London, UK, 2000.
    [8] Alfaro-Bou, E., and Vaughan, V. L. Jr., Light Airplane Crash Tests at Impact Velocities of 13 and 27 m/sec, NASA TP 1042, Nov. 1977.
    [9] Castle, C. B., and Alfaro-Bou, E., Light Airplane Crash Tests at Three Flight-Path Angles, NASA TP 1210, June 1978.
    [10] Hayduk, R. J., Comparative Analysis of PA-31-350 Chieftan (N44LV) Accident and NASA Crash Test Data, NASA TM 80102, Oct. 1979.
    [11] Castle, C. B., and Alfaro-Bou, E., Light Airplane Crash Tests at Three Roll Angles, NASA TP 1477, October 1979.
    [12] Vaughan, V. L., Jr., and Alfaro-Bou, E., Light Airplane Crash Tests at Three Pitch Angles, NASA TP 1481, November 1979.
    [13] Vaughan, V. L., Jr., and Hayduk, R. J., Crash Tests of Four Identical High-Wing Single-Engine Airplanes, NASA TP 1699, April 1980.
    [14] Williams, M. S., and Fasanella, E. L., Crash Tests of Four Low-Wing Twin-Engine Airplanes with Truss-Reinforced Fuselage Structure, NASA TP 2070, September 1982.
    [15] Carden, H. D., Correlation and Assessment of Structural Airplane Crash Data with FlightParameters at Impact, NASA TP 2083, November 1982.
    [16] Carden, H. D., Impulse Analysis of Airplane Crash Data with Consideration Given to Human Tolerance, SAE Paper 830748, April 1983.
    [17] Castle, C. B., and Alfaro-Bou, E., Crash Tests of Three Identical Low-Wing Single-Engine Airplanes, NASA TP 2190, Sept. 1983.
    [18] Hurley, T. R. and Vandenburg, J. M., editors, Small Airplane Crashworthiness Design Guide, AGATE Report Reference No. AGATE-WP3.4-034043-036, Simula Technologies Reference No. TR-98099, April 2002.
    [19] Singley, G. T., III, Full-Scale Crash Testing of a CH-47C Helicopter, Proceedings of the 32nd V/STOL Forum of the American Helicopter Society, Washington, D.C., May 1976.
    [20] Burrows, L., Lane, R., and McElhenney, J., CH-47 Crash Test (T-40) Structural, Cargo Restraint, and Aircrew Inflatable Restraint Experiments, USARTL-TR-78-22, April 1978.
    [21] Smith, K. F., Full-Scale Crash Test (T-41) of the YAH-63 Attack Helicopter, USAAVSCOM TR-86-D-2, April 1986.
    [22] Thomson, D. T., and Clarke, C.W., Advanced Composite Airframe Program (ACAP) Militarization Test and Evaluation (MT&E) Volume I- Landing Gear Drop Test, USAAVSCOM TR-88-D-22A, August 1989.
    [23] Pilati, B. P., and Jones, L. E., Active Crew Restraint Demonstration, Proceedings of the American Helicopter Society 50th Annual Forum and Technology Display, Washington, DC, May 11-13, 1994.
    [24] Perschbacher, J.P., Clarke, C., Furnes, K., and Carnell, B., Advanced Composite Airframe Program (ACAP) Militarization Test and Evaluation (MT&E) Volume V- Airframe Drop Test, USAATCOM TR 88-D-22E, March 1996.
    [25] Boitnott, R. L.; Jackson, K. E.; Fasanella, E. L.; Kellas, S. Full-Scale Crash Test of the Sikorsky Advanced Composite Airframe Program Helicopter,”Proceedings of the American Helicopter Society Forum 56, Virginia Beach, VA, May 2-4, 2000.
    [26] Jackson, K. E., Fasanella, E. L., Boitnott, R. L., McEntire, J., and Lewis, A., Occupant Responses in a Full-Scale Crash Test of the Sikorsky ACAP Helicopter, Proceedings of the AHS Forum 58, Montreal, Canada, June 11-13, 2002.
    [27] Burrows, L. T., Verification Testing of a UH-1 Wire Strike Protection System (WSPS), USAAVRADCOM-TR-82-D-35, U.S. Army Applied Technology Laboratory, Ft. Eustis, VA, November 1982.
    [28] Boitnott, R. L., Crash Verification Test of Modified External Fuel Tanks, VTD Internal Report, VTD NR 00-03, June 2000.
    [29] Robertson, H., Banks, F., and Nolan, K., Development and Testing of a Crashworthy External Fuel System for the UH-60, AH-64, and RAH-66 Helicopters, Proceedings of the 59th AHS Forum, Phoenix, AZ, May 6-8, 2003.
    [30] Giri, J. and Hooper, E., Beech Starship Occupant Protection Evaluation in Emergency Landing Scenario, SAE Paper 891015, April 1989.
    [31] Terry, J. E., Hooper, S. J. and Nicholson, M., Design and Test of an Improved Crashworthiness Small Composite Airframe– Phase II Report, NASA SBIR Contract NAS1-20427, Terry Engineering, Andover, Kansas, October 1997.
    [32] Terry, J. E., Design and Test of an Improved Crashworthiness Small Composite Airplane, SAE Paper 2000-01-1673, Presented at the SAE General Aviation Technology Conference and Exposition, Wichita, KS, 2000: 9-11.
    [33] Hayduk, R. J., editor, Full-Scale Transport Controlled Impact Demonstration, NASA CP 2395, April 1985.
    [34] Fasanella, E. L., Alfaro-Bou, E., and Hayduk, R. J., Impact Data from a Transport Aircraft During a Controlled Impact Demonstration, NASA TP 2589, September 1986.
    [35] Kindervater C, Georgi H, K.orber U. Crashworthy design of aircraft subfloor structural components. AGARD, Proceedings of the 66th Meeting of the Structures and Material Panel—Energy absorption of Aircraft Structure as an Aspect of Crashworthiness, Luxembourg, 1988, 12: 1–24.
    [36] Kindervater C, Kohlgr.uber D, Johnson A. Composite vehicle structural crashworthiness—a status of design methodology and numerical simulation techniques. International Journal of Crashworthiness, 1999, 4(2):213–30.
    [37] Bisagni C. Crashworthiness of helicopter subfloor structural components. Aircr Eng Aerosp Technol, 1999, 71(1): 6–11.
    [38] Sotiris Kellas, Norman F. Knight. Design, Fabrication, and Testing of Composite Energy-Absorbing Keel Beams for General Aviation Type Aircraft. NASA/CR-2002-212133, 2002.
    [39] H. M. Lankarani, M. G. Mirza. Parametric study of crashworthy bulkhead designs. DOT/FAA/AR-02/103, 2002.
    [40] MIL-STD-1290(A), LIGHT FIXED AND ROTARY-WING AIRCRAFT CRASHRESISTANCE, 1988.10.
    [41] Research for Crashworthiness of Aircraft Structures, National Aerospace Laboratory NLR, NLR Annual Report, 2000.
    [42] M. Mahé, H. Ribet, F. Le Page. Composite fuselage crash FE modeling dedicated to enhance the design in correlation with full scale drop test. Mec. Ind. 2001(2):5-17.
    [43] Brite-Euram project CRASURV, Commercial Aircraft - Design for Crash Survivability, CT96-0207, 1996-1999.
    [44] J.F.M. Wiggenraad, D. Santoro, F. Lepage, C. Kindervater and H. Climent Ma?ez, Development of a crashworthy composite fuselage concept for a commuter aircraft, NLR-TP-2001-108.
    [45]杨嘉陵,吴卫华,赵岩,涂展春,郭光海,胡茂和.跪式起落架在武装直升机坠毁过程中能量吸收能力研究(I)——数值仿真计算.航空学报, 2002, 23(1): 23– 27.
    [46]杨嘉陵,吴卫华,赵岩,涂展春,郭光海,胡茂和.跪式起落架在武装直升机坠毁过程中能量吸收能力研究(II)——理论模型分析方法.航空学报, 2002, 23(1): 28– 32.
    [47]罗漳平,向锦武.直升机起落架抗坠毁性能的有限元仿真评估.航空学报, 2003, 24(3): 216– 219.
    [48]何欢,陈国平,张家滨.带油箱结构的机身框段坠撞仿真分析,航空学报, 2008, 29(3): 627– 633.
    [49] JSSG-2010-7, DEPARTMENT OF DEFENSE JOINT SERVICE SPECIFICATION GUIDE, Crew Systems Crash Protection Handbook, 1998.10.
    [50] Eiband, A. M., HUMAN TOLERANCE TO RAPIDLY APPLIED ACCELERATIONS: A SUMMARY OF THE LITERATURE, NASA Memorandum 5-19-59E, National Aeronautics and Space Administration, Washington,D.C., June 1959.
    [51] Beeding,E.L.,Jr. and Mosely, J.D., HUMAN DECELERATION TESTS, AFMDC-TN-60-2, Holloman Air Force Base, New Mexico, January 1960.
    [52] Crash Survival Design Guide, TR-71-22.
    [53] Shanahan DF, Shanahan M O. Kinematics of U.S. Army helicopter crashes 1980-1985. Aviation, Space and Environmental Medicine, 1989, 60: 112– 121.
    [54] Shanahan DF. Crash experience of the U.S. Army black hawk helicopter. Aircraft accidents: Trends in aerospace medical investigation techniques. Neuilly-Sur-Seine, France:AGARD CP 532,1992,40: 1– 9.
    [55] Turnbow, J.W., Robertson, S.H., and Carroll, D.F., DYNAMIC TEST OF ANEXPERIMENTAL TROOP SEAT INSTALLATION IN AN H-21 HELICOPTER, Aviation Crash Injury Research of Flight Safety Foundation; Trecom Technical Report 63-62, U.S. Army Aviation Material Laboratories, Fort Eustic, Virginia, November 1963.
    [56] Turnbow, J.W., et al, AIRCRAFT PASSENGER-SEAT-SYSTEM RESPONSE TO IMPULSIVE LOADS, Aviation Crash Injury Research of Flight Safety Foundation; USSAVLABS Technical Report 67-17, U.S. Army Aviation Material Laboratories, Fort Eustic, Virginia, August 1967, AD-661, 088.
    [57] MIL-STD-1333, Military standard, AIRCREW STATION GEOMETRY FOR MILITARY AIRCRAFT.
    [58] Jr. Rasmussen RR, Kaleps I. The USAF advanced dynamic anthropomorphic manikin: ADAM. In: SAFE Association, ed. Proceedings of 24th annual symposium SAFE Association, San Antonio, Texas, 1986. Van Nuys, CA: SAFE Association, 1986, 88– 91.
    [59] White RP, Bartol AM. ADAM: The next step in the development of the true human analog. Safe J, 1987, 17(1):50– 57.
    [60] Frisch PH. Design and development of an enhanced biodynamic manikin. AD-A284725, 1994.
    [61]柳松杨.标准动态仿真假人的研究,航空军医, 2004, 32(5): 197– 200.
    [62]马红磊,刘炳坤,姜世忠,王涛,杨鸿慧,姜俊成. SZM510与Hybrid III假人着陆冲击响应特性的比较研究,航天医学与医学工程, 2005, 18(5): 344– 346.
    [63] C.E. Clauser, J.T. McConville, J.W. Young, Weight, volume and center of mass of segments of the human body, Wright Patterson Air Force Base, Ohio AMRL-TR-69–70, 1969.
    [64] J.K. Foster, J.O. Kortge, M.J. Wolanin, Hybrid III– a biomechanically based crash test dummy, presented at 21st Stapp Car Crash Conference, 1977.
    [65] J. Davidsoon, BioRID II Final Report, Crash Safety Division, Departement of Machine and Vehicle Design, Chalmers University of Technology, G?teborg, Sweden, 1999.
    [66] H. Cappon, M. Philippens, V. Ratingen, J. Wismans, Development and evaluation of a new rear-impact crash dummy, the RID2, 45th Stapp Car Crash Conference, 2001, 45: 225–238.
    [67]刘宝善,郭小朝,马雪松.中国男性飞行员人体尺寸测量资料分析.人类工效学, 2003, 9(2): 1– 6.
    [68]王黎静,袁修干,李银霞,贾鑫,王永庆,郭文瑾.基于2003年标准数据的中国飞行员人体模型.计算机应用研究, 2005: 194– 195.
    [69]戢敏,袁中凡,林大全.仿真假人人体参数的计算和分析.中国测试技术, 2003, 4: 37– 39.
    [70] A. Noureddine, A. Eskandarian, K. Digges. Computer modeling and validation of a hybrid IIIdummy for crashworthiness simulation, Mathematical and computer modelling, 2002, 35: 885– 893.
    [71]章定国、余春华、蒋维钢、莫艾艾,汽车碰撞中的人体动力学仿真,生物数学学报,1999,14(3):308~313。
    [72]马春生、黄世霖、张金换、白远利,汽车正面碰撞法规中乘员保护指标探讨,公路交通科技,2004(21):94-97。
    [73] TNO Road Vehicle Research Institute. MADYMO V5.2 User's Manual 3D. Netherlands: TNO RVRI, 1996.
    [74] Obergefell, L.A., Gardner, T.R., Kaleps, I., Fleck, J.T. Articulated Total Body Model Enhancements, Volume 2: User’s Guide, January 1988, AAMRL-TR-88-043 (NTIS No. A203-566).
    [75] Huaining Cheng, Annette L. Rizer. Articulated Total Body Model Version V User’s Manual, Biodynamics and Protection Division, Human Effectiveness Directorate, Air Force Research Laboratory, 1998.
    [76]刘延柱.高等动力学,北京:高等教育出版社, 2001.
    [77] Pifko, A. B., Winter, R. and Ogilvie, P. L., DYCAST- A Finite Element Program for the Crash Analysis of Structures, NASA CR 4040, Jan. 1987.
    [78] Fasanella, E. L, Widmayer, E., and Robinson, M. P., Structural Analysis of the Controlled Impact Demonstration of a Jet Transport Airplane, Journal of Aircraft, 1987, 24(4): 274– 280.
    [79] Fasanella, E. L., Carden, H. C., Boitnott, R. L., and Hayduk, R. J., A Review of the Analytical Simulation of Aircraft Crash Dynamics, NASA Technical Memorandum (TM) 102595, January 1990.
    [80]钟志华,汽车耐撞性分析的有限元法.汽车工程, 1994, 16(1):1-11.
    [81] Yang D, Jung D, Song I, Yoo D, Lee J. Comparative investigation into implicit, explicit, and iterative implicit/explicit schemes for the simulation of sheet-metal forming processes. J Mater Process Technol 1995, 50:39–53.
    [82] Zhu Y. Y., Cescotto S. Unified and Mixed Formulation of the 8-node Hexahedral Element by Assumed Strain Method. Computer Methods in Applied Mechanics and Engineering, 1996, 129(1-2):177-209.
    [83] Li K. P., Cescotto S. An 8-node Brick Element with Mixed Formulation for Large Deformation Analysis. Comp. Computer Methods in Applied Mechanics and Engineering, 1997, 141:157-204.
    [84] H Y. K. Nagy L. I. One-point Quadrature Eight-node Brick Element with Hourglass Control. Computer and Structures. 1997, 65(6):893-902.
    [85] Jung D, Yang D. Step-wise combined implicit–explicit finite-element simulation of autobody stamping process. J Mater Process Technol 1998, 83:245–60.
    [86] Noels L, Stainier L, Ponthot J-P. Combined implicit/explicit time integration algorithms for the numerical simulation of sheet metal forming. J Comput Appl Math, 2004, 168: 331– 339.
    [87] L. Noels, L. Stainier, J. P. Ponthot. Combined implicit/explicit algorithms for crashworthiness analysis. International Journal of Impact Engineering, 2004, 30:1161–1177.
    [88] L. Noels, L. Stainier, J. P. Ponthot. Simulation of crashworthiness problems with improved contact algorithms for implicit time integration. International Journal of Impact Engineering, 2006, 32:799–825.
    [89] Noor, A., and Carden, H. D., editors, Computational Methods for Crashworthiness, NASA Conference Publication 3223, October 1993.
    [90] Lyle, K. H., Jackson, K. E. and Fasanella, E. L., Simulation of Aircraft Landing Gears with a Nonlinear Transient Dynamic Finite Element Code, Journal of Aircraft, 2002, 39(1): 142– 147.
    [91] Lyle, K. H., Jackson, K.E. and Fasanella, E. L., Development of an ACAP Helicopter Impact Model, Journal of the American Helicopter Society, 2000, 45(2): 137– 142.
    [92] Fasanella, E. L., Boitnott, R. L., Lyle, K. H. and Jackson, K. E., Full-Scale Crash Test and Simulation of a Composite Helicopter, International Journal of Crashworthiness, 2001, 6(4): 485– 498.
    [93] Jackson, K. E. Fasanella, E. L., Boitnott, R. L., and Lyle, K. H., Full-Scale Crash Test and Finite Element Simulation of a Composite Prototype Helicopter, NASA/TP-2003-212641, ARL-TR-2824, August 2003.
    [94] Stockwell, A. E., Simulation of an Impact Test of the All-Composite Lear Fan Aircraft, NASA CR 2002-211458, June 2002.
    [95] M. Bossak , J. Kaczkowski. Global/local analysis of composite light aircraft crash landing. Computers and Structures, 2003, 81: 503–514.
    [96] A Adams, H M Lankarani. A modern aerospace modeling approach for evaluation of aircraft fuselage crashworthiness. International Journal of Crash, 2003, 8(4): 401–413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700