热磨法磨片纤维分离机理的模型分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维板生产中,纤维原料的制备主要采用热磨法。热磨法是对纤维原料进行短时高温蒸煮后,利用磨片对原料的研磨作用促使纤维细胞迅速发生解离、转变为单体纤维的生产方法。揭示热磨法磨片纤维分离机理可以深入地开展纤维板生产工艺理论研究,建立完善的纤维分离理论;在技术层面上优化磨片的齿形结构,提高磨片的性能及其纤维制备质量和效率,有助于纤维板生产中的节能降耗。因此,热磨法磨片纤维分离机理的模型分析与实验研究具有重要的理论意义和实际应用价值。
     本文根据植物纤维原料的种类和结构特性,纤维板生产工艺与设备构成,结合磨片的结构特征,分析说明了齿形结构参数对磨片纤维分离机理的影响;根据纤维原料的渐进式破碎和解离过程,分析了磨片破碎区、粗磨区和精磨区的作用机理,以及纤维原料在各区域的受力方式、强度及频率,推演了纤维原料逐步分离为纤维的进程,从宏观力学角度对磨片的纤维分离机理进行了分析研究。
     本文应用流体力学理论,对磨片的纤维分离机理进行了模型分析。根据流体运动学理论,将纤维视为粘性流体物质,参考纤维分离过程的工况参数,提出了纤维流体密度、粘性的计算方法。建立了关于磨片间隙、磨齿倾角和齿槽宽度等磨片齿形结构参数的纤维运动模型,获得了表达纤维剪切流动基本规律和流场形式的数学描述;分析了边界层和磨齿粗糙表面对纤维运动速度的影响,磨片间隙和磨齿倾角对纤维运动规律的影响,以及齿槽宽度对纤维流量的影响,初步揭示了上述参数在磨片纤维分离机理中的作用机制。
     本文根据纤维制备的生产工艺与设备状况,对影响纤维分离质量和能耗的外部因素进行了分析。根据流体动力学理论,建立了关于磨片齿形结构参数和纤维运动参数的热磨机功率消耗的数学模型,提出了纤维分离过程中热磨机能量消耗、以及纤维流动过程中能量损失的理论模型,分析了磨片齿形结构参数对纤维分离能耗的影响。基于磨片结构的设计参数与纤维制备的能耗控制参数,提出了衡量磨片纤维分离性能的评价参数,建立了磨片齿形结构参数、磨片性能以及纤维分离质量与能耗之间的联系。
     本文通过纤维板生产实际的实验研究,分析了排料阀开度OV、出料螺旋转速SR、料位高度CH等热磨机工作参数对纤维质量QF、比能耗SEC和纤维产量TF的影响,在大样本条件下多元回归了三个影响因子对三个目标函数的统计关系式。根据三种纤维样本的形态尺寸测量数据,与对应的三种实验磨片齿形结构特征的对比统计,实验验证了磨片齿形结构差异对纤维形态尺寸的影响,以及磨片性能参数与纤维形态质量之间的关联性。
     热磨法磨片纤维分离机理的模型分析与实验研究,深入剖析了磨片在纤维分离中的作用,利用模型分析方法明确了磨片齿形结构参数的作用机制,为磨片齿形结构的优化设计提供了理论基础和技术支持,提高了我国热磨法纤维分离理论的研究水平:为优化纤维制备工艺、创新设计纤维分离设备,为进一步提高纤维板制品质量,实现生产中的节能降耗提供了可靠保障。
In fiberboard production, the preparation of fibers is mainly by thermomechanical refining method. This method uses the refining plate to exert refining effect to the raw materials after a short time high-temperature steaming, which contributes to the disintegration of fiber cells of raw materials, then the raw materials change into monomer fibers. Reveal the fiber separation mechanism can deeply carry out the study on the theory of fiberboard production technology, establish a prefect fiber separation theory; optimize the plate tooth structure in technology level, improve the performance of the refining plate and the quality and efficiency of fiber separation and help the energy-saving during fiberboard production. Therefore, the model analysis and experimental study on fiber separation mechanism has an important theory significance and application value.
     According to the fiber type and the structure characteristic of raw materials, as well as the fiberboard production technology and equipments, and combining with the characters of plate tooth structure, this paper analyzed the refining plate tooth structure influence to the mechanism of fiber separated. According to the progressive broken and dissociation process of the raw materials during fiber separation, this paper analyzed the mechanism of crush zone, coarse zone and finishing zone, as well as the forced form, strength and frequency in different zones, developed the process that the raw materials from wood chips gradually separated into fibers, analytical studied the mechanism of refining plate separated fiber in macroscopic mechanics.
     Using the hydrodynamics theory, this paper made a model analysis on the mechanism of refining plate separated fiber. According to the fluid kinematics theory, fibers were treated as viscous fluid, referencing to the refining technological parameters, calculation methods of density and viscosity of fiber fluid were put forward; Established a movement model including the gap, the bar angle and the width of groove, etc, and the mathematical expression of the basic rule of fiber shear flow and flow forms were obtained. Analyzed the boundary layer and the rough surface of bar influence to the velocity of fiber, the gap and the bar angle influence to the rule of fiber flow as well as the width of groove influence to the fiber flow, revealed the mechanism of these parameters in the process of refining plate separating fiber preliminarily.
     Combining with the fiberboard production technology and equipments, the external factors is analyzed that have influence on the quality of the fiber separated and the energy consumption in this paper. According to the fluid dynamics theory, established a mathematical model of refiner power consumption about the structure parameter of plate tooth and the motion parameter of fiber, put forward a theory model about energy consumption of the refiner and power loss of the fiber flow in the process of fiber separated, analyzed the function of refining plate tooth structure influence to the energy consumption. Based on the design parameter of plate tooth structure and the control parameter in fiber preparation, this paper put forward the evaluation parameters measuring the performance of refining plate and concurrently established the contact among the parameter of plate tooth structure, the performance of refining plate and the fiber separation quality and energy consumption.
     Through the experimental study on the fiberboard production, this paper analyzed the influence the opening ratios of the discharge valve (OV), the feeding screw revolution speed (SR) and the accumulated chip height (CH) to the qualified fibers(QF) and the specific energy consumption (SEC) and the total amount of fibers (TF), used multiple regression analysis method, the statistic regression equations between the predictor variables and the response variables were obtained in large sample condition. According to the measurement data of fiber size in the three samples compared with the corresponding tooth structure characters of three experimental refining plate, this paper analyzed the difference in tooth structure of refining plate influence to the dimension of fiber and the relationship between the performance of refining plate and fiber quality.
     The model analysis and the experimental study on mechanism of fiber separation deeply analyzed the function of refining plate during fiber separation, making clear of the working mechanism of the tooth structure parameter of refining plate by model analysis method, it provide the theoretical basis and technical support for the optimization design the tooth structure of refining plate and improved the study level of domestic thermomechanical fiber separation theory, and it provided a reliable guarantee for the optimize of fiber preparation technology and the innovation design of fiber separation equipment, and for the further improve of fiberboard quality and the energy-saving in production.
引文
[1]王恺.木材工业实用大全:纤维板卷.北京:中国林业出版社,2002:1-68.
    [2]陆仁书.纤维板制造学.北京:中国林业出版社,1993:10-52.
    [3]庞庆海.人造板机械设备.哈尔滨:东北林业大学出版社,1998:102-108.
    [4]http://search.forestry.gov.cn/CommonAction.do?dispatch=index&colid=28
    [5]许方荣.我国中密度纤维板生产现状、发展趋势与应用前景.林产工业.2010,37(4):3-5.
    [6]钱小瑜.我国纤维板生产的原料状况分析.中国人造板,2009,(10):8-10.
    [7]肖小兵.中国纤维板生产能力进一步增长.林产工业.2010,37(2):3-4.
    [8]张荣其,罗丽萍.我国现有人造板连续压机的调查与分析.中国人造板,2010,(9):5-7.
    [9]俞敏.我国中密度纤维板设备制造行业的发展格局.中国人造板.2010,10:3-9.
    [10]马启升,任芳,牛丽丽.国产中密度纤维板生产线设备现状与发展.木材加工机械,2009,(5):5-8.
    [11]沈毅,沈锦桃.市场需求对国产热磨机发展的启迪.林木机械装备与循环经济论坛,200885-88.
    [12]张荣其.双钢带连续压机的基本组成、要求和工作原理.中国人造板,2011,(10):19-21.
    [13]沈毅,方普新.热磨机20年发展的回顾.中国人造板.2011,(3):130-133.
    [14]沈毅,沈锦桃.成长中的国产新型热磨机.木材加工机械,2009,6:35-37.
    [15]齐英杰,胡万义,康建营,胡万明.用科学发展观展望我国人造板机械制造行业的发展趋势.中国人造板,2006,(10):7-10.
    [16]马岩.人造板装备制造业最新进展及节能环保人造板设备研发方向.中国人造板,2010,(11):1-4.
    [17]刘长恩.造纸工业中盘磨机与磨浆过程自动控制.黑龙江科技出版社.1994:12-15.
    [18]徐咏兰.中密度纤维板制造.北京:中国林业出版社,1995:5-8.
    [19]刘长恩.磨浆理论与设备.哈尔滨:黑龙江科技出版社,1994:1-66.
    [20]科尔曼等(德).木材学与木材工艺学原理——人造板.中国林业出版社.1984:87-90.
    [21]王忠奎.热磨机磨片对中密度纤维板纤维分离质量影响机理的研究.东北林业大学硕士学位论文,2003:8-10.
    [22]http://www.andritz.com/ANONIDZ30D33FDC4A53DF7D/ppp-panelboard
    [23]Methods to Measure Fiber Quality. METSO PANELBOARD—MDF INDUSTRY UPDATE,2001
    [24]Dinesh Fernando, Geoffrey Daniel. Exploring Scots pine fiber development mechanisms during TMP process.Holzforschung.2008,62:597-607.
    [25]James A. Olson, Janis Drozdiak, etc. Characterizing fiber shortening in low-consistency refining using a comminution model. Powder Technology 2003,129:122-129.
    [26]J.C. Roux, T.L. Mayade. Modeling of the particle breakage kinetics in the wet mills for the paper industry. Powder Technology 1999,105:237-242.
    [27]T.A. Runklera, E. Gerstorfer, etc. Modelling and optimisation of a refining process for fibre board production. Control Engineering Practice 2003,11:1229-1241.
    [28]Stefan Holmberg, Kent Persson, Hans Petersson. Nonlinear mechanical behavior and analysis of wood and fibre materials. Computers and Structures 1999,72:459-480.
    [29]Berg, J.E., M.E. Gulliksson and P.A. Gradin. On the energy consumption for crack development in fiber wall in plate refining-a micromechanical approach. Holzforschung. 2009,63:204-210.
    [30]B. G Lee, S. Lee, B. K. Via, and S. Q. Shi. Influence of surface morphology of the pulp fibers on the growth of the transcrystalline layer of polypropylene. Journal of Applied Polymer Science. (In Press) 2008:187-195.
    [31]S. Q. Shi, S. Lee, and M. Horstemeyer. Natural fiber retting and inorganic nanoparticle impregnation treatment for natural fiber/polymer composites. Proceeding of the American Society for Composites. September 17-19,2007. University of Washington, Seattle, WA.
    [32]S. Q. Shi, S. Lee, and J. Shi. Lamination process for chemical retted fiber/thermoplastic polymer composites. Proceeding of 23rd Annual American Society for Composites Technical Conference, Memphis, TN.2008:237-245.
    [33]K.B.Miles. A simplified method for calculating the residence time and refining intensity in a chip refiner. Paper and Timber.1991,73:149-157.
    [34]B. C. Strand, A. Mokvist. The application of comminution theory to describe refiner performance. Journal of Pulp and Paper Science.1989,15:39-48.
    [35]W. D. May. A theory of chip refining-The origin of fibre length. Pulp and Paper Research Institute of Canada.1973,74:245-253.
    [36]M. Karlberg, J.O. Aidanpaa. Rotordynamical modeling of fiber refiner during production. Journal of Sound and Vibration.2007,303:440-454.
    [37]M. Karlberg, J. O. Aidanpaa. Rotordynamical simulations of a fibre refiner during production. Journal of Sound and Vibration.2011,330:4460-4473.
    [38]欧阳琳.热磨法分离纤维.人造板通讯.2001.(8):4-10.
    [39]王艳萍,朱芳.动、静磨片盘的间隙在热磨机上的重要性.林产工业,2006,33(4):41-42.
    [40]曾燕义,吴景晨.渐开线磨片齿形探讨.吉林林业科技,1996,12(12):27-30.
    [41]李世扬.磨片齿高对打浆质量和能耗的影响.中国造纸,1995,5:15-18.
    [42]初嘉鹏,J.C. ROX,欧建志.盘磨机磨片间纸浆纤维剪切机理的研究.中国造纸学报,2001,16:134-138.
    [43]初嘉鹏,J.C. ROX,欧建志.盘磨机磨片间纸浆纤维剪切系数的确定.大连轻工业学院学报,2001,20(2):116-118.
    [44]沈立新.盘磨机磨片的齿形设计(上).纸和造纸,1999,(4):22-23.
    [45]沈立新.盘磨机磨片的齿形设计(下).纸和造纸,1999,(5):23-24.
    [46]沈立新.浅谈盘磨磨片齿型的设计与选择.纸和造纸.1998,(6):16-21.
    [47]赵明锋.浅谈高浓磨片的斜度对生产的影响.湖南造纸.2004,(3):3-5.
    [48]曹忠荣,黄洛华,曲岩春.三种速生建筑材树种制造中纤板的制浆工艺和磨片选型.木材工业,1999,19(3):3-13.
    [49]李艳丽,高秀华,陈淑清.扇块分区热磨机磨片的热应力分析与优化设计.林业机械与木工设备,2008,36(1):29-31.
    [50]史玉梅,高秀华,张小江.圆环分区直齿热磨机磨片的温度场和热变形分析.林业机械与木工设备,2008,36(7):23-24.
    [51]马岩.热磨机单位功率的设计缺陷与节能措施分析.第七届全国人造板工业发展研讨会论文集,2008
    [52]Joseph Antku JR, Carol J. Ludwig, Optimizing refiner plate bar height will reduce energy consumption. Pulp & Paper Canada,1986.3:221-227.
    [53]齐英杰等.蒙特卡罗模拟在微米木纤维热磨中的应用.木材加工机械.2006,(1):23-26.
    [54]Rainer Marutzky. New and further developed wood-based panel products. Woodworking Technology.1999,1:24-28.
    [55]李杰等.浅析原料对中/高密度纤维板性能的影响.中国人造板.2005,(12):12-15.
    [56]靳群贤等.几种杨树木材纤维形态分析.林业科技.1997,(4):23-26
    [57]Henry Spelter. Wood-based Panels Supply, Trade and Consumption. UNECE/FAO Forest Products Annual Market Review,20012002,119-138.
    [58]Law K N. The role of Fibrillar Elements in Thermomechanical Pulp [J]. Pulp and Paper Canada,2000,101(1):57-60.
    [59]王志成.浅析TMP制浆过程中的磨片优化[J].中国造纸,2008,27(4):66-67.
    [60]曹斝,王颖.双盘磨磨片齿型与成浆质量的关系.纸和造纸,2007,26(3):15-17
    [61]H. J. Deppe. Is MDF a suitable material for timber construction?. Woodworking Technology.2000,2
    [62]李坚.木材科学.哈尔滨:东北林业大学出版社,1994:93-98.
    [63]许秀雯.纤维板生产工艺与技术.哈尔滨:东北林业大学出版社,1988:30-87.
    [64]花军,胡万义.人造板机械.哈尔滨:东北林业大学出版社,2007:122-142.
    [65]A.G. Robertson, J.A. Olson, P.A.Allen, B. Chan, R.S. Seth, Measurement of fiber length, coarseness and shape with the fiber quality analyzer, TAPPI.1999,82(10):30-41.
    [66]欧阳琳.热磨机磨片.人造板通讯.2001,(10):15-20.
    [67]李卫平.盘磨磨片的使用与失效探讨.纸和造纸.2001,(3):37-39.
    [68]DAVID R.DALZELL J R. A Comparison of Paper Mill Refining Equipment. Tappi Journal,1961,44:241-244.
    [69]宋乃建,沈文浩,杨治国.针叶木浆磨浆过程中浆料的流动、纤维受力及形变[J].中国造纸,2008,27(2):57-64.
    [70]陈懋章.粘性流体动力学基础.北京:高等教育出版社.2002:8-192.
    [71]林建忠,阮晓东,等.流体力学.北京:清华大学出版社.2005:2-314.
    [72]Leighton D, Acrivos A. Measurement of shear- induced self diffusion in concentrated suspensions of spheres. J Fluid Mech.1997,177:109-131.
    [73]刘晓蕙等.热磨机转速转矩方程和动态功率的研究.北华大学学报,2002/2
    [74]Gilani M S, Navi P. Experimental Observations and Micromechanical Modeling of Successive Damaging Phenomenon in Wood Cells'Tensile Behavior. Wood Science Technology,2007,41 (1):69-85.
    [75]Leighton D, Acrivos A. The shear-induced migration of particles in concentrated suspensions of spheres. J Fluid Mech.1997,181:415-439.
    [76]中国机械设计大典编委会.中国机械设计大典(第二卷).南昌:江西科学技术出版社,2002:21.
    [77]Han C,Yao Y H,et al.Effect of shear flow on multi-component polymer mixtures. Polymer, 2006,47:3271-3286.
    [78]Tabuteau H, Ramos R,et al. Nonlinear theology of surfactant wormlike micelles bridged by telechelic polymers. Langmuir.2009,25:2467-2472.
    [79]余浩然,等.高分子共混物剪切流动的研究.广州化学.2010,35(2):66-85.
    [80]Senger J J, Ouellet D. Factors affecting the Shear Forces in High Consistency Refining. Journal of Pulp and Paper Science,2002,28(11):364-369.
    [81]Jamal M S. Fluid flow hand book. London:Mc Graw-Hill Education,2002:4-45.
    [82]WANG Jinjun, LAN Shilong,CHEN Guang. Experimental study on the turbulent boundary layer flow over riblets surface. Fluid Dynamics Research,2000,27:217-229.
    [83]Choi C H, Kim C J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Physical Review Letters,2006,96:066001
    [84]Schmatlco T, Hervet H, Leger L. Friction and slip at simple fluid-solid interfaces:the role of the molecular shape and the solid-liquid interaction. physical Review Letters,2005, 94(24):1-4.
    [85]Pit R, Hervet H, Leger L. Direct experimental evidence of slip in hexadecane:solid interfaces. physical Review Letters,2000,85:980-983.
    [86]Vinogradova O I. Drainage of a thin film confined between hydrophobic surfaces. Gangmuir,1995,11:2213-2220
    [87]Choi C H, Westin K J A, Breuer K S. To slip or not to slip water flows in hydrophilic and hydrophobic microchannels. AS ME, Electronic and Photonic Packaging, EPP,2002,2: 557-564.
    [88]Henry C L, Neto C, Evans D R, et al. The effect of surfactant adsorption on liquid boundary slippage. Physical A,2004,339:60-65.
    [89]Zhu Y X, Granick S. Apparent slip of Newtonian fluids past adsorbed polymer layers. Macromolecules,2002,35:4658-4663.
    [90]Atic C, Immamoglu S, Valchev I. Determination of Specific Beating Energy-Applied on Certain Pulps in a Valley Beater. The University of Chemical Technology and Metallurgy, 2005,40(3):199-204..
    [91]Gerstorfer, E., Runkler, T. A., Schlang, et al.Intelligent Control of the Refiner Process for Improved Fiber Quality, European Control Conference, Porto, Portugal,2001.
    [92]Kang T, Samboon P, Paulapuro H. Fibrillation of Mechanical Pulp Fibers. Paper and pulp, 2006,88(7):409-411.
    [93]刘长恩.盘磨机的每秒切断长和齿刃比负荷.北方造纸。1994,(3):27-29.
    [94]Stefan Holmberga, Kent Perssona, Hans Peterssonb. Nonlinear Mechanical Behaviour and Analysis of Wood and Fibre Materials.Computers and Structures,1999 (72):459-480.
    [95]Gui-Bing Hong, Chih-Ming Ma, Hua-Wei Chen, et al. Energy Flow Analysis in Pulp and Paper Industry. Energy,2011,36(5):3063-3068.
    [96]Myers G A. Relationship of Fiber Preparation and Characteristics to Performance of Medium-density Hardboards.Forest Products Journal.1983,36(10):43-51.
    [97]M. I. Stationwala, D. A Tack, A Karnis. Distribution and Motion of Pulp Fibers on Refiner Bar Surface. JPPS,1992,18(4):131-139
    [98]刘靖等.热磨机主机功率消耗计算.木材加工机械,2001,(3):34-36
    [99]Stationwala M I, Atack D, Karnis A. Distribution and Motion of Pulp Fibers on Refiner Bar Surface. Journal of Pulp and Paper Science,1992,18(4):131.
    [100]苏昭友,王平.盘磨机磨片的设计理论与方法.纸和造纸,2011,30(8):10-16.
    [101]LEIDER P J, NISSAN A H. Understanding the disk refiner, the mechanical treatment of the fibers. Tappi Journal.1977,60:85-89.
    [102]黄方等.盘磨机新型磨片.纸和造纸.1999,(2):13-15
    [103]K. B. Mile, W. D. May, A. Karnis. Refining Intensity, Energy Consumption and Pulp Quality in Two-Stages Chip Refining. TA PPI.1991:74(3):221-228
    [104]农林水产局林业试验场编.木材工业手册.北京:中国林业出版社,1991:194-195.
    [105]J.Y. Zhua, GS.Wang, X.J.Pan,et al. Specific surface to Evaluate the Efficiencies of Milling and Pretreatment of Wood for Enzymatic Saccharification. Chemical Engineering Science,2009 (64):474-485.
    [106]A.G. Robertson, J.A. Olson, P.A. Allen,et al. Measurement of fiber length, coarseness and shape with the fiber quality analyzer,1999,82 (10):30-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700