飞行模拟器液压Stewart平台奇异位形分析及其解决方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压Stewart平台属于典型的并联机构,由于其能够实现空间的六自由度运动并且具有刚度大、承载能力强、结构比较简单、精度高、控制比较容易等优点,被成功应用于大型飞机飞行模拟器的运动系统,成为其重要组成部分。但是其主要缺点是,在特殊情况下存在奇异位形,并且与串联机构相比工作空间非常有限。本论文在分析Stewart平台奇异位形的基础上,针对Stewart平台存在奇异位形的问题,对于不同的任务工作空间要求,从Stewart平台的无奇异结构设计、有奇异结构的液压Stewart平台的安全保护以及利用冗余机构消除奇异位形等方面进行了详细的、系统的研究,从而最终达到在满足工作空间要求的同时解决Stewart平台的奇异位形的目的。
     液压Stewart平台是一种多变量和本质非线性的复杂系统,其运动学和动力学的研究是液压Stewart平台其他相关特性以及控制策略研究的基础。本文分析了液压Stewart平台的运动学和动力学,利用Kane方法建立了Stewart平台的多刚体动力学模型;推导了非对称伺服阀控制非对称液压缸的数学模型,在此基础上建立了完整的液压Stewart平台的动力学模型;利用所建立的完整动力学模型对液压Stewart平台自由度间的耦合特性进行了分析,并通过实验验证了分析结果的正确性。
     空间的六路分支结构使得Stewart平台奇异位形的判断非常复杂。为了分析在一个Stewart平台的任务工作空间和可达工作空间中是否存在奇异位形,本文在前人关于并联机构奇异位形研究的基础上,对Stewart平台处于Hunt奇异位形处的相关特性进行了分析和实验研究;之后利用机构的雅可比矩阵,通过编程求解,得到了Stewart平台的含有任意三个位姿变量的奇异轨迹方程的解析表达式,将Stewart平台的奇异轨迹表示在三维空间中;利用所提出的奇异轨迹分析方法分析了一个电动Stewart平台在任务工作空间和可达工作空间中的奇异位形,并通过实验对所得出的结论进行了验证。
     对于一定的任务工作空间需求来说,存在无奇异的Stewart平台来满足对工作空间的要求,因此需要研究一种Stewart平台的无奇异结构设计方法。本文构建了一种求解Stewart平台位置正解的同伦算法,在此基础上,通过对Stewart平台的结构参数进行分析,结合Stewart平台的极限位姿分析方法,综合考虑了Stewart平台的结构参数、支腿所受静态力、机构的最大条件数以及机构的构型分岔行为,设计了具有无奇异结构的Stewart平台。通过仿真和实验对所设计的Stewart平台进行分析和验证,表明所设计的Stewart平台在由支腿行程范围所确定的可达工作空间中不存在奇异位形。
     针对因任务工作空间需求而在可达工作空间中存在奇异位形的液压Stewart平台,本文提出了奇异区和无奇异区的概念;利用支腿长度,结合极限位姿分析方法,建立了一种判断Stewart平台是否进入奇异区域的判据;设计了液压Stewart平台的液压保护装置,利用所提出的判据以及硬件设备,实现了对液压Stewart平台在发生因系统失控而进入奇异区的情况的安全保护。
     针对冗余并联机构具有消除奇异位形的功能,在原来非冗余液压Stewart平台的基础上增加三条冗余支腿,设计了“6+3”结构形式的冗余液压Stewart平台,对其运动学、动力学进行分析,建立了冗余液压Stewart平台的多刚体动力学模型,并对冗余驱动力进行了优化;之后将非冗余液压Stewart平台和冗余液压Stewart平台的相关特性进行了对比,发现冗余Stewart平台能够进一步提高系统的性能;对冗余液压Stewart平台消除奇异位形的原理、作用进行了分析,并通过所建立的虚拟样机进行仿真,验证了其在解决Hunt奇异位形时的有效性;最终利用所设计的冗余液压Stewart平台消除了原来非冗余液压Stewart平台在可达工作空间中存在的奇异位形。
Hydraulic Stewart platform is the typical parallel manipulator, which has been successfully applied to the motion system of large aircraft flight simulator and has become its important components due to the capacity of realizing 6-DOF movement and the merits of high rigidity, large load capacity, relatively simple structure, high precision and relatively easy to control, etc. However, the major drawbacks of hydraulic Stewart platform are that there are singular configurations in special condition and the workspace is very limited in comparison with serial manipulator. Based on the singular configuration analysis of Stewart platform and aiming at the problem of existing singular configuration, for the different requirements of task workspace, the dissertation take specific and systematic study on the respects of nonsingular structure design, the safety protection of hydraulic Stewart platform with singular structure and eliminating singular configuration using redundant mechanism. Finally, it achieved the purpose of solving the problem of singular configuration and satisfying the requirement of workspace at the same time.
     Hydraulic Stewart Platform is a multi-variable and non-linear complex system in nature. The kinematics and dynamics study of hydraulic Stewart platform is the research basis of other related characteristics and control strategies. The dissertation analyzed the kinematics and dynamics of hydraulic Stewart platform. It established multi-body dynamics model of Stewart platform using Kane method, derived mathematical model of asymmetric servo valve control of asymmetric hydraulic cylinder. On the base of that, it established entire dynamics model of the whole hydraulic Stewart platform. After that, it analyzed the coupling characteristic between DOF using the established entire dynamics model and verified the correctness of analytic results through experiments.
     Due to the spatial structure of six branches, it makes the singular configuration judgment of Stewart platform very complex. To analyze if there exist singular configuration in the task workspace and reachable workspace of a Stewart platform, based on the singularity study of parallel manipulator by predecessors, the dissertation analyzed the relevant characteristics of Stewart platform at the Hunt singular configuration and the relevant experiments was taken. Then, using Jacobian matrix of the mechanism and solved the matrix through programming, it achieved the analytical expression of singular locus equation of the Stewart platform which contains arbitrary three posture variables and represented the singular locus of Stewart platform in three-dimensional space. After that, it analyzed the singular configuration of an electric Stewart platform in task workspace and reachable workspace with the proposed singular locus analysis method and verified the conclusion through experiments.
     For a certain demand of the task workspace, there exists nonsingular Stewart platform to meet the requirements, so it needs to study a method to design Stewart platform with nonsingular structure. The dissertation established a homotopy algorithm to solve forward position kinematics of Stewart platform. On this base, After analyzing the structural parameters, combined with the extreme pose analysis method of Stewart platform, considering the structural parameters of the Stewart platform, the static force applied on legs, the maximum condition number and configuration bifurcation behavior of the mechanism, it designed Stewart platform with nonsingular structure. Then, it analyzed and verified the designed Stewart platform through simulations and experiments and found out that there does not exist singular configuration in the reachable workspace of the designed Stewart platform which is determined by the legs.
     For the hydraulic Stewart platform which has singular configuration in the reachable workspace due to the workspace requirement of task, the dissertation proposed concept of singular zone and nonsingular zone. Using the legs length and combined with the extreme poses analysis method, it established a criterion to judge if the Stewart platform entered into the singular zone. Then, it designed hydraulic protection device of hydraulic Stewart platform. Using the proposed criterion and hardware devices, it realized the protection of hydraulic Stewart platform when entered into the singular zone because of the system being out of control.
     As for the redundant parallel manipulator having function of eliminating singular configuration, the dissertation increased three redundant legs on the base of the original non-redundant hydraulic Stewart platform and designed redundant hydraulic Stewart platform with "6+3" style structure. Then, it analyzed kinematics, dynamics, and established multi-body dynamic model of redundant hydraulic Stewart platform and optimized redundant driving force. After that, it compared the relevant characteristics of non-redundant hydraulic Stewart platform with redundant hydraulic Stewart platform and found out that redundant hydraulic Stewart platform can further improve the performances of the system. It analyzed the principle and function of eliminating singular configuration of redundant hydraulic Stewart platform, and simulating with the established virtual prototype to verify the effect in solving Hunt singular configuration. Finally, with the designed redundant hydraulic Stewart platform, it eliminated the existed singular configuration in the reachable workspace of the original non-redundant one.
引文
1 J. E. Gwinnett. "Amusement Devices", US Patent No. 1,789,680, January 20, 1931
    2 W. L. G. Pollard. "Spray Painting Machine", US Patent No. 2,213,108, August 26, 1940
    3 H. A. Roselund. Means for Moving Spray Guns or Other Devices Through Predetermined Paths. US Patent No. 2,344,108, March 14, 1944
    4 V. E. Gough, S. G. Whitehall. Universal Tyre Test Machine. Proceedings of the FISITA Ninth International Technical Congress, 1962: 117~137
    5 K. L. Cappel. "Motion Simulator", US Patent No. 3,295,224, January 3, 1967
    6 D. Stewart. A Platform with Six Degrees of Freedom. Proc.Instn.Mech.Engrs. (Part I), 1965, 180(15): 371~386
    7 S. H. Koekebakker. Model Based Control of a Flight Simulator Motion System. Ph.D thesis, Delft University of Technology, 2001:31~73
    8 Kemeny, F. Panerai. Evaluating Perception in Driving Simulation Experiments. Trend in Cognitive Sciences, 2003, 7(1): 23~70
    9 K. H. Hunt. Kinematic Geometry of Mechanisms. Oxford: Clarendon Press. 1978: 3~9
    10 H. M. Callion, D. T Pham. The Analysis of a Six Degree of Freedom Work Station for Mechanized Assembly, Proc. 5th World Congress on Theory of Machines and Mechanisms, 1979: 611~616
    11 R. Clavel. Delta, A Fast Robot With Parallel Geometry. Proceeding of the Int. Symp. On Industrial Robot, Switzerland, 1988: 91~100
    12 F. Pierrot, A. Fournier, P. Dauchez, Towards a Fully-parallel 6 Dof Robot for High-speed Applications, Proc. IEEE Int. Conf. on Robotics &Automation, Sacramento, 1991: 1288~1293
    13 E. F. Fichter. A Stewart Platform-Based Manipulator: General Theory and Practical Construction. The International Journal of Robotics Research, 1986, 5(2): 157~182
    14 J. P. Merlet. Parallel Manipulators Part 2: Singular Configurations and Grassmann Geometry. Technical report, INRIA, Sophia Antipols, France, 1988: 66~70
    15陈学生,陈在礼,孔民秀.并联机器人研究的进展与现状.机器人. 2002: 14(5): 464~470
    16张尚盈.液压驱动并联机器人力控制研究.哈尔滨工业大学博士学位论文. 2005: 9~10
    17杜铁军.机器人误差补偿器研究.燕山大学硕士学位论文. 1994: 12~65
    18赵强.六自由度舰艇运动模拟器的优化设计及性能分析.哈尔滨工业大学博士学位论文. 2003: 9~12
    19韩俊伟,于丽明,赵慧,等.地震模拟振动台三状态控制的研究.哈尔滨工业大学学报. 1999, 31(3): 21~24
    20延皓,叶正茂,丛大成,等.空间对接半物理仿真原型试验系统.机械工程学报. 2007, 43(9): 51~56
    21常同立,丛大成,叶正茂,等.空间对接半物理仿真台系统仿真研究.航空学报, 2007, 28(4): 975~980
    22常同立,丛大成,叶正茂,等.空间对接动力学半物理仿真基本问题及解决方案研究.宇航学报. 2008, 29(1): 53~58
    23韩俊伟,姜洪洲.用于航海模拟的六自由度并联机器人的研究.高技术通讯, 2001, (3): 88~90
    24王栋梁.六自由度平台阀控缸驱动系统分析及控制策略研究.哈尔滨工业大学博士学位论文. 2004: 8~13
    25 Y. K. Yiu. Geometry, Dynamics and Control of Parallel Manipulators. Ph.D. Thesis. The Hong Kong University of Science and Technology. 2002: 2~5
    26 V. Murthy, K. J. Waldron. Position Kinematics of the Generalized Lobster Arm and Its Series-Parallel Dual. ASME Journal of Mechanical Design. 1992, (114): 406~413
    27 K. J. Waldron, K. H. Hunt. Series-parallel Dualities in Actively Coordinated Mechanisms. International Journal of Robotics Research. 1991, 10(5): 473~480
    28 B. Dasgupta, T. S. Mruthyunjaya. The Stewart Platform Manipulator: a Review. Mechanism and Machine Theory. 2000, 35(1): 15~40
    29黄真,孔令富,方跃法.并联机器人机构学理论及控制.机械工业出版社. 1997: 148~186
    30 Ingersoll VOH-1000. http://www.ingersoll.com/immco/us/immheavy.htm
    31 Toyoda Virtual-Axes Machine Tool. http://imel.snu.ac.kr/eclipse/background/ background.html
    32 M-850 HEXAPOD Six-Axis parallel kinematics robot. Physik Instrumente(PI). http://www.physikinstrumente.com
    33 J. P. Merlet. Designing a Parallel Manipulator for a Specific Workspace. The International Journal of Robotics Research. 1997, 16(4): 545~556
    34 C. C. Nguyen, S. S. Antrazi, Z. L. Zhou. Analysis and Implementation of a 6 DOF Stewart platform-based Force Sensor for Passive Compliant Robotic Assembly. IEEE Proceeding of the Southeast Conf'91, Williamsburg, 1991, 2: 880~884
    35 H. R. Wang, F. Gao, Z. Huang. Design of 6-Axis Force/Torque Sensor Based on Stewart Platform Related to Isotropy. Chinese Journal of Mechanical Engineering, 1998, 11(3): 217~222
    36 Z. Geng. Six Degree-of-freedom Active Vibration Isolation and Suppression Experiments. In 5th Int. Conf. on Adaptive Structures, Sendai, 1994: 285~294
    37 X. L. Wang, Q. J. Yang, and G. T. Zheng. Dynamic Analysis and Decoupling Control of Octo-pneumatic Actuator Vibration Isolation Platform. Chinese Journal of Mechanical Engineering. 2009, 22(1): 116~123
    38 N. Simaan. Analysis and Synthesis of Parallel Robots for Medical Applications. Research Thesis. The Technion-Israel Institute of Technology, 1999: 19~22
    39 Haptic Devices Based on Parallel Mechanisms. State of the Art. http://www.parallemic.org/Haptic Devices Based on Parallel Mechanisms_ State of the Art.htm
    40 http://www. astro. ruhr. uni. botrum. de
    41 P. Nanua, K. J. Waldron, V. Murthy. Direct Kinematic Solution of a Stewart Platform. IEEE Trans. Robot. Automn. 1990, 6(4): 438~444
    42 C. Innocenti. Direct Kinematics in Analytical Form of the 6-4 Fully-Parallel Mechanism. Trans. of ASME, Journal of Mechanical Design. 1995, 117: 89~95
    43 C.Innocenti, V. Parenti-Castelli. Forward Kinematics of the General 6-6 Fully Parallel Mechanism:an Exhaustive Numerical Approach Via a Mono-Dimensional-Search Algorithm. Trans. of ASME, Journal of Mechanical Design. 1993, 115: 932~937
    44付勇智,赵景山,张云清,等.空间4-UPU并联机器人的运动学研究.华中科技大学学报(自然科学版). 2006, 34(10): 93~96
    45 K. E. Zanganeh, J. Angeles. Real-time Direct Kinematics of General Six-degree-of-freedom Parallel Manipulators with Minimum-sensor Data. Journal of Robotic Systems. 1995, 12(12): 833~844
    46 A. Bonev, J. Ryu, S. G. Kim, et al. A Closed-form Solution to the Direct Kinematics of Nearly General Parallel Manipulators with Optimally Located Three Linear Extra Sensors. IEEE Transactions on Robotics and Automation. 2001, 17(2): 148~156
    47 P. J. Parikh, S. S. Y. Lam. A Hybrid Strategy to Solve the Forward Kinematics Problem in Parallel Manipulators. IEEE Transactions on Robotics. 2005, 21(1):18~25
    48张世辉,孔令富,原福永,等.基于自构形快速BP网络的并联机器人位置正解方法研究.机器人. 2004, 26(4): 314~319
    49 W. S. Chen, H. Chen, J. K. Liu. Direct Displacement of Parallel Mechanism with Wavelet Network. Chinese Journal of Mechanical Engineering. 2007, 20(2): 69~72
    50 W. Lin, M. Griffis, J. Duffy. Forward Displacement Analysis of the 4-4 Stewart Platforms. Trans. of ASME, Journal of Mechanical Design. 1992, 114: 444~450
    51 W. Lin, C. D. Crane, J. Duffy. Close-Form Forward Displacement Analysis of the 4-5 In-Parallel Platforms. Trans. of ASME, Journal of Mechanical Design. 1994, 116: 47~53
    52 M. Raghavan. The Stewart platform of general geometry has 40 configurations. In ASME Design and Automation Conf. 1991, 32( 2): 397~402
    53 D. M. Ku. Direct displacement analysis of a Stewart platform mechanism. Mechanism and Machine Theory. 1999, 34: 453~465
    54赵强,阎绍泽.双端虎克铰型六自由度并联机构的动力学模型.清华大学学报(自然科学版). 2005, 45(5): 610~613
    55杨建新,汪劲文,郁鼎文.空间并联机构运动学与动力学逆解的模块化计算方法.机械工程学报. 2005, 41(5): 104~107
    56 W. Khalil, S. Guegan. Inverse and Direct Dynamic Dodeling of Gough-Stewart Robots. IEEE Transactions on Robotics, 2004, 20 (4): 754~762
    57陈丽. Stewart平台6-DOF并联机器人完整动力学模型的建立.燕山大学学报. 2004, 28(3): 228~232
    58 J. G. Wang, C. M. Gosselin. A New Approach for the Dynamic Analysis of Parallel Manipulators. Multibody System Dynamics. 1998, (2): 317~334
    59 L. W. Tsai. Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work. Journal of Mechanical Design. 2000, 122: 3~9
    60李鹭扬,吴洪涛,朱剑英. Gough-Stewart平台高效动力学建模研究.机械科学与技术. 2005, 24(8): 887~889
    61黄其涛,韩俊伟,何景峰.六自由度并联运动平台动力学建模及分析.机械科学与技术. 2006, 25(4): 382~385
    62 J. Gallardo, J. M. Rico, A. Frisoli, et al. Dynamics of Parallel Manipulators by Means of Screw Theory. Mechanism and Machine Theory. 2003, 38(11): 1113~1131
    63黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社, 2006:251~262
    64刘善增,余跃庆,杜兆才,等.并联机器人的研究进展与现状(连载).组合机床与自动化加工技术. 2007, 7: 4~10
    65刘善增,余跃庆,杜兆才,等.并联机器人的研究进展与现状(连载).组合机床与自动化加工技术. 2007, 8: 5~13
    66何景峰.液压驱动六自由度并联机器人特性及其控制策略研究.哈尔滨工业大学博士学位论文. 2007: 8~10 58~60
    67曹毅,黄真,丁华锋,等. 6/6型Stewart机构姿态奇异及非奇异姿态工作空间分析.机械工程学报, 2005, 41(8): 50~55
    68 H. D. Li, C. M. Gosselin, M. J. Richard, et al. Analytic Form of the Six-Dimensional Singularity Locus of the General Gough-Stewart Platform. Journal of Mechanical Design. 2006, 128: 279~287
    69 J. P. Merlet. Singular Configuration of Parallel Manipulators and Grassmann Geometry. International Journal of Robotics Research. 1989, 8(5):45~56
    70 R. Ben-Horin, M. Shoham. Singularity Analysis of a Class of Parallel Robots Based on Grassmann-Cayley Algebra. Proceedings of the International Workshop on Computational Kinematics. Cassino, Italy. 2005: 1~12
    71陈隆辉. Stewart并联机器人奇异分析的运动学法.燕山大学硕士学位论文. 2002: 11~19
    72 Z. Huang, Y. Cao. Property Identification of the Singularity Loci of a Class of the Gough-Stewart Manipulators. The International Journal of Robotics Research. 2005, 24(8): 675~685
    73 J. P. Merlet. A Formal Numerical Approach for Robust In-Workspace Singularity Detection. IEEE Transactions Robotics. 2007, 23(3): 393~402
    74 J. P. Merlet, D. Daney. A formal-numerical Approach to Determine the Presence of Singularity within the Workspace of a Parallel Robot. Proceedings of the International Workshop on Computational Kinematics, Seoul, Korea, 2001: 167~176
    75 J. S. Zhao, K. Zhou, Z. J. Feng, et al. The Singularity Study of Spatial Hybrid Mechanisms Based on Screw Theory. The International Journal of Advanced Manufacturing Technology. 2005, 25(9-10): 1053~1061
    76 I. A. Bonev, D. Zlatanov, C. M. Gosselin. Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory. Trans. of ASME, Journal of Mechanical Design. 2003, 125(3): 573~581
    77 K. H. Hunt. Structural Kinematics of In-parallel-actuated Robot-arms. Journal of Mechanisms, Transmissions and Automation in Design. 1983, 105: 705~712
    78 E F. Fichter. A Stewart Platform-Based Manipulator: General Theory and Practical Construction. International Journal of Robotics Research. 1986, 5(2): 157~182
    79 J. Wang, C. M. Gosselin. Kinematic Analysis and Singularity Loci of Spatial Four-Degree-of-Freedom Parallel Manipulators Using a Vector Formulation. Journal of Mechnical Dsign. 1998, 120: 555~558
    80 Y. W. Li, Z. Huang, L. H. Chen. Singular Loci Analysis of 3/6-Stewart Manipulator by Singularity-equivalent-mechanism. Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 2003: 1881~1886
    81 D. Gregorio. Singularity-Locus Expression of a Class of Parallel Mechanisms. Robotica. 2002, 20: 323~328
    82 H. D. Li, C. M. Gosselin, M. J. Richard. Determination of the Maximal Singularity-free Zones in the Six-dimensional Workspace of the General Gough–Stewart Platform. Mechanism and Machine Theory. 2007, 42: 497~511
    83 C. M. Gosselin, J. Angeles, Singularity Analysis of Closed-loop Kinematic Chains. IEEE Transactions on Robotics and Automation. 1990, 6(3): 281~290
    84 D. Zlatanov, R. G. Fenton, B. Benhabib. Singularity Analysis of Mechanisms and Robots via a Velocity-Equation Model of the Instantaneous Kinematics. IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 1994: 986~991
    85 F. C. Park, J. M. Kim. Singularity Analysis of Closed Kinematics Chains. ASME Journal of Mechanical Design. 1999, 121: 32~38
    86沈辉,吴学忠,刘冠峰,等.并联机构中奇异位形的分类与判定.机械工程学报. 2004, 40(4): 26~31
    87吴宇列,吴学中,李圣怡.并联机构的奇异与冗余.机械科学与技术. 2002, 21(4): 593~595
    88沈辉吴学忠李泽湘并联机构奇异点的运动分岔研究国防科技大学学报2004, 26(6): 54~57
    89 Y. X. Wang, Y. M. Wang. Configuration Bifurcations Analysis of Six Degree-of-Freedom Symmetrical Stewart Parallel Mechanisms. Transaction of the ASME. 2005, 127: 70~77
    90 S. Bhattacharya, H. Hatwal, A. Ghosh. Comparison of an Exact and an Approximate Methodology of Singularity Avoidance in Platform Type Parallel Manipulators. Mechanism and Machine Theory. 1998, 33(7): 965~974
    91 A. K. Dash, I. M. Chen, S. H. Yeo, G. Yang. Workspace Generation and Planning Singularity-free Path for Parallel Manipulators. Mechanism andMachine Theory. 2005, 40(7): 776~805
    92王玉新,李雨桐,潘双夏.一种规避并联机构转向点奇异问题的新方法.中国科学E辑:技术科学. 2008, 38(1):125~136
    93王玉新,李雨桐,郭瑞琴.并联机构以保持构型通过奇异位置的方法.机械工程学报. 2008, 44(6): 125~130
    94 A. Dash. Workspace generation and planning singularity-free path for parallel manipulators. Mechanism and Machine Theory. 2005, 40(7): 778~805
    95 C. Jui, Q. Sun. Path Tracking of Parallel Manipulators in the Presence of Force Singularity. ASME J. Dyn. Syst. Meas. Control, 2005, 127(4): 550~563
    96 H. Chen, W. S. Chen, J. K. Liu. Optimal Design of Stewart Platform Safety Mechanism. Chinese Journal of Aeronautics. 2007, 20(4): 370~377
    97 J. P. Merlet. Still a Long Way to Go on the Road for Parallel Mechanisms. Proceedings of ASME 2002 DETC Conference, Montréal, Canada, 2002
    98 J. Pusey, A. Fattah. S. Agrawal, et al. Design and Workspace Analysis of a 6-6 Cable-suspended Parallel Robot. Mechanism and Machine Theory, 2004, 39(7): 761~788
    99徐刚,杨世模. Gough-Stewart平台机构的普适工作空间及其几何求解.光学精密工程. 2008, 16(2): 257~264
    100 J. P. Merlet. An Improved Design Algorithm Based on Interval Analysis for Parallel Manipulator with Specified Workspace. Proceedings of the IEEE International Conference on Robotics and Automation. Seoul, Korea, 2001: 1289~1294
    101曹永刚,张玉茹,马运忠. 6-RSS型并联机构的工作空间分析与参数优化.机械工程学报. 2008, 44(1): 19~24
    102 T. Huang, J. S. Wang, C. M. Gosselin, et al. Kinematic Synthesis of Hexapods with Specified Orientation Capability and Well-conditioned Dexterity. ASME Journal of Manufacturing Systems. 1999, 119(1): 27~32
    103袁立鹏,赵克定,许宏光. Stewart平台铰点工作空间的研究.航空学报. 2006, 27(5): 979~984
    104 O. Masofy, J. Wang. Workspace Evaluation of Stewart Platforms. Journal of Advanced Robotics. 1995, 9(4): 443~461
    105 J. P. Merlet. Determination of the Orientation Workspace of Parallel Manipulators. Journal of Intelligent and Robotic System. 1995, 28(13): 143~160
    106 G. Barrette, C. M. Gosselin. Determination of the Dynamic Workspace of Cable-Driven Planar Parallel Mechanisms. Trans. of ASME, Journal ofMechanical Design. 2005, 127(2): 242~248
    107 J. S. Zhao, M. Chen, K. Zhou, et al. Workspace of Parallel Manipulators with Symmetric Identical Kinematic Chains. Mechanism and Machine Theory. 2006, 41(6): 632~645
    108 D. S. Wu, H. B. Gu. Adaptive Sliding Control of Six-DOF Flight Simulator Motion Platform. Chinese Journal of Aeronautics. 2007, 20: 425~433
    109 Y. X. Su, B. Y. Duan, C. H. Zheng. Nonlinear PID Control of a Six-DOF Parallel Manipulator. IEE Proceedings on Control Theory and Applications 2004; 151(1): 95~102
    110唐建林,董彦良,赵克定.基于动力学干扰力前馈的液压Stewart平台μ综合控制.吉林大学学报(工学版). 2009, 39(3): 662~667
    111吴乐彬,王宣银,李强.对接模拟并联六自由度平台的模糊免疫PID控制.浙江大学学报(工学版). 2008, 42(3): 387~391
    112 H. S. Kim, Y. M. Cho, K. I. Lee. Robust Nonlinear Task Space Control for 6 DOF Parallel Manipulator. Automatica. 2005, 41(9): 1591~1600
    113何景峰,谢文建,韩俊伟.六自由度并联机器人输出解耦控制.哈尔滨工业大学学报. 2006, 38(3): 395~398
    114傅绍文,姚郁.带有逆向力补偿的Stewart平台自适应鲁棒控制.电机与控制学报. 2007, 11(1): 88~92
    115 J. F. He, H. Z. Jiang, D. C. Cong, et al. A Survey on Control of Parallel Manipulator. Key Engineering Materials. 2007, 339: 307~313
    116 R. P. Paul. Modeling, Trajectory Calculation and Servoing of a Computer Controlled Arm. Technical Report AIM-177, Stanford Artificial Intelligence Laboratory, Stanford University, 1972
    117 B. R. Markiewicz. Analysis of the Computed Torque Drive Method and Comparison with Conventional Position Servo for a Computer-Controlled Manipulator. Technical Memorandum 33-601, Jet Propulsion Laboratory March, 1973
    118宋佐时.基于计算力矩结构的不确定性机器人控制策略研究.燕山大学硕士学位论文. 2002: 22~27
    119 Ghobakhloo, A. Eghtesad, M. M. Azadi. Position Control of a Stewart-Gough Platform Using Inverse Dynamics Method with Full Dynamics. Proceedings of IEEE Conference on Advanced Motion Control. Istanbul, Turkey, 2006: 50~55
    120吴军,李铁民,关力文.飞行模拟器运动平台的计算力矩控制.清华大学学报(自然科学版), 2006, 46(8): 1405~1418 1413
    121蔡胜利,白师贤.带冗余度并联机器人的特性分析.北京工业大学学报.1997, 23(3): 62~66
    122 Y. Zhang. Quality Index and Kinematic Analysis of Spatial Redundant In-Parallel Manipulators. Ph. D thesis. University of Florida. 2000: 4~10
    123 E. S. Conkur, R. Buckinghanm. Clarifying the Definition of Redundancy as Used in Robotics. Robotica. 1997, 15(5): 583~586
    124吴宇列,吴学忠,李圣怡.冗余并联机构的分类研究.机械科学与技术. 2002, 21(1): 1~2
    125 V. Hayward, R. Kurtz. Modeling of a Parallel Wrist Mechanism with Actuator Redundancy. Int. J. Laboratory Robotics and Automation. 1992, 4(2): 69~76
    126 P. Nair. On the forward kinematics of parallel manipulators. International Journal of Robotics Research. 1994, 13(2):171~188
    127 F. Marquet, O. Company, S, Krut, etc. Control of a 3-DOF Over-actuated Parallel Mechanism. Proceedings of ASME:DETC’02, Montreal, 2002: 1~7
    128 H. Cheng. Dynamics and Control of Parallel Manipulators with Actuation Redundancy. Master Degree Dissertation. The Hong Kong University of Science and Technology. 2001: 35~40
    129 G. F. Liu, Y. L. Wu, X. Z. Wu, et al. Analysis and Control of Redundant Parallel Manipulators. Proceedings of the 2001 IEEE International Conference on Robotics & Automation Seoul, Korea May, 2001: 3748~3754
    130 G. F. Liu,X. Z. Wu,Z. X. Li. Inertia Equivalence Principle and Adaptive Control of Redundant Parallel Manipulators. Proceedings of the 2002 IEEE International Conference on Robotics & Automation. Washington, DC. 2002: 835~840
    131 J. Kim, F. C. Park, S. Ryu. et al. Design and Analysis of a Redundant Parallel Mechanism for Rapid Machinin. IEEE Transaction on Robots and Systems. 2001, 1: 183~188
    132白志富,陈五一.球铰刚度计算模型及靠冗余支链实现并联机床刚度的改善.机械工程学报. 2006, 42(10): 142~145
    133韩先国,陈五一,郭卫东.采用冗余驱动提高并联机床精度的研究.航空学报2002, 23(5): 487~490
    134白志富,韩先国,陈五一.基于冗余驱动的大姿态角并联机构优化设计.北京航空航天大学学报. 2006, 32(7): 856~859
    135关广丰.液压驱动六自由度振动试验系统控制策略研究.哈尔滨工业大学博士学位论文. 2007: 46~49
    136张彦斐,宫金良,李为民,等.一种6自由度冗余驱动并联机器人运动学分析及仿真.机械工程学报. 2005, 41(8): 144~148
    137张彦斐,宫金良,高峰.一种冗余输入地震模拟器的静刚度分析.机械设计. 2006, 23(3): 18~21
    138白志富,梁辉,陈五一.并联机构的内力及应用.机械设计与研究. 2006, 22(4): 13~16
    139白志富,韩先国,陈五一.冗余驱动消除并联机构奇异的研究.航空学报. 2006, 27(4): 733~736
    140张彦斐,宫金良,高峰.冗余驱动消除并联机构位形奇异原理.中国机械工程. 2006, 17(5): 445~448
    141吴宇列,吴学忠,李圣怡.冗余并联机构的PD控制.国防科技大学学报. 2001, 23(3): 111~114
    142 Y. Nakamura, M. Ghodoussi. Dynamics Computtation of Close-Link Robot Mechanisms with Nonredundant and Redundant Actuators. IEEE Transaction. On Rob. and Autom. 1989, 5(3): 294~302
    143 F. C. Park, J. Chos, S. R. Ploen. Symbolic Formulation of Closed Chain Dynamics in Independent Coordinates. Mechanism and Machine Theory, 1999, 34(5): 731~751
    144 F. Ghorbel. Modeling and PD Control of Close-Chain Mechanism systems. proc. Of 34th IEEE Conference on Decision and Control. New Orleans, Louisiana, 1995: 540~542
    145邓启文,韦庆,李泽湘.冗余并联机构的力控制.控制工程. 2006, 13(2): 149~152
    146沈辉,吴学忠,刘冠峰,等.冗余驱动并联机械手的混合位置/力自适应控制(英文).自动化学报. 2003, 29(4): 567~572
    147王行仁,贾荣珍,彭晓源,等.飞行实时仿真系统及技术.北京航空航天大学出版社, 1998: 1~2
    148王辉.飞行模拟器操纵负荷系统关键技术及原理样机研究.天津大学博士学位论文. 2006: 1~12
    149陈华. Stewart平台位置正解构型分岔及尺度综合问题的研究.哈尔滨工业大学博士学位论文. 2007: 19~22 40~43
    150蔡自兴.机器人学.清华大学出版社. 2000: 29~42 154~170
    151李洪人.液压控制系统.国防工业出版社, 1990: 60~67 144~145 186~188
    152何景峰,叶正茂,姜洪洲,等.基于关节空间模型的并联机器人耦合性分析.机械工程学报. 2006, 42(6): 161~165
    153曹毅.六自由度并联机器人奇异位形的研究.燕山大学博士学位论文. 2005: 16~18
    154 Z. Huang, Y. S. Zhao, J. Wang, et al. Kinematic Principle and Geometrical Condition of General-Linear-Complex Special Configuration of Parallel Manipulators. Mechanism and Machine Theory. 1999, 34(8): 1171~1186
    155 Z. Huang, X. Du. General-Linear-Complex Special Configuration Analysis of 3/6-SPS Stewart Parallel Manipulator. China Mechanical Engineering. 1999, 10(9): 997~1000
    156 Z. Huang, L. H. Chen. Singularity Principle and Distribution of 6-3 Stewart Parallel Manipulator. ASME Design Engineering Technical Conferences, Montreal, Canada, 2002, MECH-34237
    157 K. H. Hunt. Special Configurations of Multi-Finger Multi-Freedom Grippers: a Kinematic Study. The International Journal of Robotics Research. 1991, 10(2): 123~134
    158 M. G. Mohamed, J. Duffy. A Direct Determination of the Instantaneous Kinematics of Fully Parallel Robot Manipulators. Journal of Mechanisms, Transmissions and Automation in Design. 1985, (107): 226~229
    159 V. Kumar. Instantaneous Kinematics of Parallel-Chain Robotic Mechanisms. ASME Journal of Mechanical Design. 1992, 114(3): 349~358
    160赵景山.空间并联机构自由度的终端约束分析理论与数学描述方法.清华大学博士学位论文. 2004: 81~82
    161 C. L. Collins. Singularity Analysis and Design of Parallel Manipulators. Ph. D dissertation. University of California. 1997
    162 K. H. Hunt. Structural Kinematic of in-Parallel-Actuated Robot Arms. Journal of Mechanisms, Transmissions and Automation in Design. 1983, 105: 705~712
    163 L. W. Tsai. Robot Analysis. John Wiley&Sons. 1999: 223~259
    164于晖. 6-HTRT并联机器人机构及运动学研究.哈尔滨工业大学博士论文. 2002: 56~72
    165王玉新,王仪明,陈予恕,等. Stewart并联机构运动失控性研究.机械工程学报. 2005, 41(7): 40~49
    166 C. Innocenti, V. P. Csdyrlli. Singularity-free Evolution form One Configuration to Another in Serial and Fully-parallel Manipulators. Transation of ASME, Journal of Mechanical Design, 1998, 120(3): 73~79
    167 W. S. Chen, H. Chen, J. K. Liu. Extreme configuration bifurcation analysis and link safety length of Stewart platform. Mechanism and Machine Theory. 2007, 43: 617~626
    168杨廷力.机械系统基本理论—结构学.运动学.动力学.机械工业出版社, 1996: 115~126
    169方浩,周冰,任路,等. 3-6Stewart平台安全机构设计.机械科学与技术. 2001, 20(6): 875~877
    170王则柯,高堂安.同伦方法引论.重庆出版社, 1990: 21~25
    171 L. W. Tasi, A. P. Morgan. Solving the Kinematics of the Most General Six-And Five-Degree-of-Freedom Manipulators by Continuation Methods. ASME Journal of Mechanisms, Transmission and Automation in Design. 1985, 107: 189~200
    172 S. V. Sreenivasan, P. Nanua. Solution of the Direct Position Kinematic Problem of the General Stewart Platform Using Advanced Polynomial Continuation. The 22nd Biennial Mechanisms Conference. Scottsdale, ASME, 1992: 96~106
    173陆启韶.分岔与奇异性.上海科技教育出版社, 1995: 65~67
    174王玉新,王仪明.一种判别Stewart并联机器人机构连杆干涉的新方法.机械工程学报. 2002, 38(3): 19~23
    175 S. K. Advani. The Kinematic Design of Flight Simulator Motion-Bases. Ph. D thesis, Delft University of Technology, 1998: 88~97
    176 H. Sadjadian, H. D. Taghirad, A. Fatehi. Neural Networks Approaches for Computing the Forward Kinematics of a Redundant Parallel Manipulator. International Journal of Computational Intelligence. 2005, 2(1): 40~47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700