三自由度并联机构分析与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国国防和军事工业的发展,迫切需要打破国外的技术垄断、提高自行武器火控系统测试水准,研制自己的自行武器火控系统实车道路模拟设备提到日程上来。本文以哈尔滨工业大学电液伺服仿真及试验系统研究所承接的科研项目“自行武器动态试验模拟设备”为背景,对三自由度并联机构的运动学、动力学、精度及控制策略进行理论分析和实验研究。
     三自由度并联机构是典型Stewart并联机构的变体,它用三条作动器和三条支撑杆代替Stewart并联机构中的六条作动器来实现三个自由度的旋转运动。先建立三条支撑杆的约束方程,推导出运动学反解的解析解,然后在参考Stewart机构正解算法的基础上给出三自由度并联机构的运动学正解算法。针对该并联机构的支撑杆约束方程和结构特点,提出该机构特有的一种收敛快、精度高的运动学正解算法。利用运动学反解和正解算法,对三自由度并联机构的工作空间和附加平动等进行研究,全面揭示该并联机构的运动学特性。
     在动力学研究中,先将三自由度并联机构简化成单刚体,采用牛顿-欧拉方程对系统进行动力学建模,利用所建的动力学模型对该机构在典型运动下支撑杆和作动器的受力进行分析。将并联机构的作动器和支撑杆等效成弹簧,推导系统的广义刚度矩阵,根据凯恩方程原理对支撑杆和作动器的惯性进行建模,进而推导出三自由度并联机构的的广义质量矩阵和固有频率方程,并对该机构的固有频率特性进行研究,为分析该三自由度并联机构的动态特性特供了依据。
     在精度研究中,将三自由度并联机构的制造、装配以及作动器的控制误差归纳成42个误差源,根据运动学反解方程建立系统的误差模型,并对系统的误差分布规律进行仿真分析。为提高三自由度并联机构的静态精度,提出了一种精度综合的方法。该方法先用灵敏度来描述各项误差对系统精度的影响,根据灵敏度的大小将误差源的允许公差分为两个等级,通过逐步提高各误差源的精度等级的方法使系统的精度满足要求。以上研究提高系统的精度提供了重要的参考依据。
     在控制策略研究中先给出作动器的数学模型,并据此对三自由度并联机构铰点空间PID控制、动压反馈及前馈等控制策略进行研究。为提高三自由度并联机构的姿态复现精度,提出了一种基于运动学正解的迭代补偿控制方法。该方法先辨识出三自由度并联机构的传递函数矩阵并求出传递函数矩阵的逆,试验中利用运动学正解计算出系统的姿态信号,然后根据系统的姿态偏差信号和传递函数矩阵的逆来修正系统的姿态驱动指令,通过多次迭代使系统的姿态复现精度满足要求。试验表明采用迭代补偿控制,三自由度并联机构的姿态复现精度提高到了5%,从而验证了该控制策略的有效性。
With the development of national defense and military industry,there is urgent need to develop real vehicle road simulator equipment on weapons fire controlling system in order to break the monopoly of foreign technology and enhance the testing standards. This thesis study the kinematics analysis, dynamics model, accuracy analysis and control strategy of a 3-dof parallel mechanism, and the background is the dynamical testing and simulation equipment on military vehicles which designed by HIT institute of electro-hydraulic servo simulation & testing system.
     3-dof parallel mechanism is a variant of the typical Stewart platform, which used three drivers and threes struts instead the six drives of the Stewart platform. In this paper, the length constraint equations of three struts is established and the analytical solution of the inverse kinematics is derived, and the forward kinematics solution of the rotational parallel mechanism is presented based the typical method of the Stewart platform. Also, a new forward kinematics solution is derived according to the structural characteristics of the machine. The workspace and translation movement are studied in order to obtain the property of the parallel robot.
     In the dynamic study, the 3-dof parallel mechanism is simplified into a single rigid body then the dynamical model is build by using Newton-Euler equations. The driving force of the drives and the struts in typical movement is analyzed with the help of the dynamical model. The general stiffness matrix is derived by acting the actuators and struts as spring. The multi-body dynamical model is presented through Kane equation and the influence of the legs’mass and inertia are considered. General mass matrix and natural frequency equation is proposed based on the multi-body dynamical model, then the frequency property of the robot is analyzed at the end.
     In the accuracy study, the manufacturing error, assembly error and actuators’control error of the 3-dof parallel mechanism is grouped into 42 error source. The error model of the parallel mechanism is brought forward accordance to the inverse kinematics of the robot, and the error distribution of the system is studied through simulation. Accuracy synthesis is used to enhance the precision of the system, in this method, error sensitivity is proposed to describe the error sources’impact on the system accuracy. All the allowed tolerance of the error sources are divided into two categories based on the value of the sensitivity, then decrease the allowed tolerance step by step until the accuracy of the robot meet the requirement. This research provides every important references for the tolerance design of the 3-dof robot.
     The PID controller in joint space and computed torque controller in workspace are introduced. Then the mathematical model and frequency domain characteristics of the hydraulic actuators is derived, and the control strategy in joint space is investigated. A iterative compensation control strategy based on forward kinematics is proposed in order to enhance the performance of the robot. In this method, the transfer function matrix of the robot is obtained through identification, then the command signals of the robot is adjusted based on the posture error and the inverse transfer function matrix of the 3-dof parallel mechanism. The tracking accuracy of the robot can be enhanced to meet the requirement through many iterations. Experiment shows the precision of replication is 5% , which verified the validity of the iterative control strategy.
引文
1 Gwinnett, J.E., "Amusement devices," US Patent No. 1,789,680, January 20, 1931
    2 Pollard, W.L.G., "Spray painting machine," US Patent No. 2,213,108, August 26, 1940
    3 Roselund, H.A. Means for moving spray guns or other devices through predetermined paths. US Patent No. 2,344,108, March 14, 1944
    4 Cappel, K.L. Motion simulator. US Patent No. 3,295,224, January 3, 1967
    5 Stewart D. A Platform with Six Degrees of Freedom. Proc.Instn.Mech.Engrs. (Part I), 1965, 180 (15): 371~386
    6 Dasgupta B. and Mruthyunjaya T. S. The Stewart Platform Manipulator: a Review. Mechanism and Machine Theory. 2000, 35(1): 15~40
    7黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社, 1997
    8 R.Ball. A treatise on the theory of screws, Cambridge: Cambridge University Press, 1900
    9 K.H.Hunt. Structural kinematic of in-parallel-actuated robot arms, Journal of mechanisms, Transmissions and automation in design,1983,(105):705~712
    10 Clavel R.Delta, A fast robot with parallel geometry. Proc. Int. Symposium on Industrial Robots, 1988:91~100
    11汪劲松,段广洪等.虚拟轴机床的研究进展-兼谈在清华大学研制成功的VAMT1Y型原型样机,科技导报, 1988,8:32~34
    12王知行,陈辉等.用七轴联动并联机床加工汽轮机叶片,世界制造技术与装备市场, 2002, 6:31~32
    13邱志成,张红,赵明扬.新型五坐标并联机床的机构学及运动学,组合机床与自动化加工技术, 1999, 8:1~3
    14 K.J. Waldron, K.H. Hunt, International Journal of Robotics Research. 1991,10 (5): 473~480
    15延皓.基于液压六自由度平台的空间对接半物理仿真系统研究: [博士学位论文].哈尔滨:哈尔滨工业大学, 2007
    16 Neumann K E. Robot. United Stated States Patent 4,732,525, 1988
    17 ABB Flexpicker. http://www.robotmaxtrix.org/Parallelrobot.htm
    18 M-850 HEXAPOD Six-Axis parallel kinematics robot. Physik Instrumente(PI). http://www.physikinstrumente.com
    19 P1000 Hexapod. http://www.prsco.com/hex1k.html
    20 Dwarakanath T A, Dasgupta Bhaskar, Mruthyunjaya T S. Design and development of a stewart platform based force-torque sensor[J]. Mechatronics, 2001,11(7):793~809
    21王宣银,尹瑞多.基于Stewart机构的六维力/力矩传感器.机械工程学报. 2008, 44(12):118~122
    22 Liu Lei, Wang Benli. Multi objective robust active vibration control for flexure jointed struts of stewart platforms via H∞andμsynthesis. Chinese journal of aeronautics. 2008(21):125~133
    23 Merlet J. P. Direct Kinematics of Parallel Manipulators. IEEE Transactions on Robotics and Automation. 1993, 9(6): 842~846
    24 Innocenti G. and Parenti-Castelli V. Forward Kinematics of the General 6-6 Fully Parallel Mechanism: an Exhaustive Numerical Approach via a Mono Dimensional Search Algorithm. Journal of Mechanical Design. 1993, 12: 932~937
    25 Mruthyunjaya D. A Constructive Predictor-Corrector Algorithm for the Direct Position Kinematics Problem for a General 6-6 Stewart Platform. Mechanism and Machine Theory. 1996, 6: 799~811
    26 Lee T. Y. and Shim J. K. Algebraic Elimination-Based Real-Time Forward Kinematics of the 6-6 Stewart Platform with Planar Base and Platform. IEEE International Conference on Robotics and Automation. 2001: 1301~1306
    27 Merlet J. P. Solving the Forward Kinematics of a Gough-type Parallel Manipulator with Internal Analysis. International Journal of Robotics Research. 2004, 23(3): 221~236
    28 Wen F. A. and Liang C. G. Displacement Analysis for the General Stewart Platform-Type Mechanism. Mechanism and Machine Theory. 1994, 29(4): 547~557
    29 Husty M. L. An algorithm for solving the direct kinematic of Stewart-Gough-type platforms. Mechanism and Machine Theory, 1996, 31(4):365~380
    30 Wampler C.W. Forward displacement analysis of general six-in-parallel SPS (Stewart) platform manipulators using soma coordinates. Mechanism and MachineTheory, 1996, 31(3):331~337
    31 Yang J. and Geng Z. J. Closed Form Forward Kinematics Solution to a Class of Hexapod Robots. IEEE Transaction on Robotics and Automation. 1998, 6: 503~508
    32 Parenti-Castelli V. and Di Gregorio R. Determination of the Actual Configuration of the General Stewart Platform Using Only One Additional Displacement Sensor. ASME Journal of Mechanical Design. 1999, 121: 21~25
    33 Stoughton R. and Arai T. Optimal Sensor Placement for Forward Kinematics Evaluation of a 6-DOF Parallel Link Manipulator. Proceedings of IEEE/RSJ International Workshop on Intelligent Robots and Systems. Osaka, Japan. 1991: 785~790
    34 Bonev I. A. and Ryu J. A. New Method for Solving the Direct Kinematics of General 6-6 Stewart Platforms Using Three Linear Extra Sensors. Mechanism and Machine Theory. 2000, 35: 423~436
    35 H.Sadjadian, H.D.Taghirad. Comparision of different methods for computing the forward kinematics of a redundant parallel manipulator. Journal of intelligent and robotic systems. 2006.3: 225~246
    36于淼.虚拟轴混联机床研抛机床多柔体动力学研究.吉林大学博士论文. 2004:31~36
    37 Kumer V. Characterization of workspaces of parallel manipulators. Trans. Of ASME J. of Mech.Design. 114:1992.368~375
    38 Gupta K.C. and Roth B. Design consideration for manipulator workspace. J.Mech.Design.104(4):1982.704~712
    39 Fichter E.F. A stewart platform-based manipulator: Genneral theory and practical construction. Inter. J.Robotics Research.5(2):1986.57~82
    40 Jo D.Y. and Haug E.J. Workspace analysis of closed loop mechanism with unilateral contrains. ASME Des.Eng.Div.Pub. Mechanical system Analysis, Design and Simulation, Advances in Design Automation.3(3):1989.53~60
    41郭瑞琴.并联机构奇异性分析及免奇异方法研究.同济大学工学博士论文. 2007:53~88
    42 D.Basu, A.Ghosal. Singularity analysis of platform-multi-loop spatial mechanisms. Mechanism and Machine Theory, 1997,Vol.32(3):375~389
    43 D.Zlatanov, R.G.Fenton, B.Benhabib. Singularity analysis of mechanisms and robotsvia a motion-space model of the instantaneous kinematics. IEEE Interational conference on robotics and automation, 1994,980~985
    44 D.H. Nenchev, M.Uchiyama. para-Arm: A bar parallel manipulator with singularity-perturbed design. Mechanism and Machine Theory, 1998, Vol.33(5):453~462
    45 John T.wen, John F. O’brien. Singularities in three-legged platform-type parallel mechanisms. IEEE Transactions on robotics and automation, 2003, Vol.19(4):720~726
    46 Jing-Shan Zhao, Zhi-Jing Feng, Kai Zhou, etal. Analysis of the singularity of spatial parallel manipulator with terminal constraints. Mechanism and Machine Theory, 2005,Vol.40:275~284
    47 Gursel Alici, Bijan Shirinzadeh. Topology optimization and singularity analysis of a 3-SPS parallel manipulator with a passive constraining spherical joint. Mechanism and Machine Theory, 2004, Vol.39:215~235
    48 Krzysztof Tcho’n, Robert Muszy’nski. Singular inverse kinematic problem for robotic manipulators: a normal form approach. IEEE Transactions on robotics and automation, 1998,Vol.14(1):93~104
    49 Huang Z., Qu Yi-yuan. The analysis of the special configuration of the spatial parallel manipulators. Journal of the Northeast Heavy Machinery Institute, 1989,Vol.13(2):1~6
    50 Nabil Simaan, Moshe Shoham. Sigularity analysis of a class of composite serial in-parallel robots. IEEE Transactions on robotics and automation, 2001, Vol.17(3):301~311
    51 F.L. Hao, J.M.McCarthy. Conditions for line-based singularities in spatial platform manipulators. Journal of robotic systems, 1998,Vol.15(1):43~55
    52 Z.Huang, L.H.Chen, Y.W.Li. The singularity principle and property of stewart parallel manipulator. Journal of robotic systems, 2003, Vol.20(4):163~176
    53 Z.Huang, Y.S.Zhao, J.Wang, J.J.Yu. Kinematic prinple and geometrical condition of general-linear-complex special configuration of parallel manipulators. Mechanism and machine theory, 1999, Vol.34:1171~1186
    54 Fichter E. F. A Stewart Platform-Based Manipulator: General Theory and Practical Construction. International Journal Robotics Research. 1986, 5(2): 157~182
    55 Merlet J. P. Parallel Manipulators Part I: Theory Design, Kinematics, Dynamics and Control. INRIA. Research Report No.646, 1987: 1~10
    56 Harib K. and Srinivasan K. Kinematic and Dynamic Analysis of Stewart Platform-Based Machine Tool Structures. Robotica. 2003, 21: 541~554
    57 B. Dasgupta, T.S.Mruthyunjaya. A Newton-Euler Formulation for the Inverse Dynamics of the Stewart Platform Manipulator. Mechanism and Machine Theory. 1998,33 (8):1135~1152
    58 Chen C. T. A Lagrangian Formulation in Terms of Quasi-Coordinates for the Inverse Dynamics of the General 6-6 Stewart Platform Manipulator. JSME International Journal Series C: Mechanical Systems Machine Elements and Manufacturing. 2003, 46(3): 1084~1090
    59 Lebret G., Liu K. and Lewis F. L. Dynamic Analysis and Control of a Stewart Platform Manipulator. Journal of Robotic Systems. 1993, 10(5): 629~655
    60 Codourey A. and Burdet E. A Body-oriented Method for Finding a Linear Form of the Dynamic Equation of Fully Parallel Robots. Proceedings of the 1997 IEEE International Conference on Robotics and Automation. Albuquerque, New Mexico, 1997: 1612~1618
    61 Geng Z., Haynes L. S., Lee J. D. and Carroll R. L. On the Dynamic Model and Kinematic Analysis of a Class of Stewart Platforms. Robotics and Autonomous Systems. 1992, 9: 237~254
    62叶敏,肖龙翔.分析力学.天津大学出版社. 2001:253~268
    63邱秉权.分析力学.中国铁道出版社. 1998:163~178
    64 Koekebakker S. H. Model Based Control of a Flight Simulator Motion System. Ph.D. Thesis. Netherlands: Delft University of Technology, 2001:53~60,66~73
    65 Liu M. J., Li C. X., Li C. N. Dynamics Analysis of the Gough-Stewart Platform Manipulator. IEEE Transactions on Robotics and Automation. 2000, 16(1): 94~98
    66 Tsai L. W. Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work. Journal of Mechanical Design. 2000, 122: 3~9
    67 Wang L-C. T. and Chen C. C. On the Dynamic Analysis of General Parallel Robotic Manipulators. International Journal of Robotics and Automation. 1994, 9(2): 81~87
    68 Wang J. G. and Gosselin C. M. A New Approach for the Dynamic Analysis of Parallel Manipulators. Multibody System Dynamics. 1998, 2: 317~334
    69 J.D. Lee, Z. Geng, A dynamic model of a flexible stewart platform. Computers & Structures. 1993,48(3), 367~374
    70 J.D. Lee, Zheng Geng, Modelling and control of flexible stewart platform. Control Engineering Practice, 1994,2(5): 441~444
    71 Yuan Cheng , Gexue Ren and ShiLiang Dai, The multi-body system modelling of the Gough–Stewart platform for vibration control. Journal of Sound and Vibration. 2004, 271(3):599~614
    72 B. S. El-Khasawneh, P. M. Ferreira. Computation of Stiffness and Stiffness Bounds for Parallel Link Manipulators. International Journal of Machine Tools & Manufacture. 1999, 39:321~342
    73 M. J. Griffis, J. Duffy. Global Stiffness Modeling of a Class of Simple Compliant Couplings. Mechanism and Machine Theory. 1993, 28(2): 207~224
    74 N. Ciblak, H. Lipkin. Asymmetric Cartesian Stiffness for the Modeling of Compliant Robotic Systems. ASME Design Technical Conference. Minneapolis,USA,DE-72:197~204
    75 J. M. Selig, X. Ding. Theory of Vibration in Stewart Platforms. IEEE International Conference on Intelligent Robots and Systems, Maul, Havaii, USA,2001:2190~2195
    76 Y. Li, J. Wang, L. Wang. Stiffness Analysis of a Stewart Platform–Based Parallel Kinematics Machine. Proceedings of the 2002 IEEE International Conference on Robotics & Automation. Washington,D.C.,2002:3672~3677
    77刘文涛,唐德威,王知行. Stewart平台机构标定的鸡尾酒法.机械工程学报, 2004, Vol.40(12):48~52
    78高猛,李铁民,唐晓强.少自由度并联机床标定试验研究.机械工程学报, 2003,Vol.39(9):118~122
    79 Han S.Kim, Yong J.Choi. The Kinematic Error Bound Analysis of the Stewart Platform. Journal of Robotic Systems, 2000,17(1):63~73
    80 Jeha Ryu, Jongeun Cha. Volumetric error analysis and architecture optimization for accuracy of HexaSlide type parallel manipulators. Mechanism and Machine Theory,2003(38):227~240
    81 Oren Masory, Jian Wang and Hanqi Zhuang. On the accuracy of a stewart platform– part II kinematic calibration and compensation. Procedings,1993 InternationalConference on Robotics and Automation, Vol.1, pp. 725~731
    82 H. Zhuang. Self-calibration of Parallel Mechanisms with a Case Study on Stewart Platforms. IEEE Transactions on Robotics and Automation. 1997, 13(3):387~397
    83 W. Khalil, S. Besnard. Self calibration of a Stewart-Gough parallel robot without extra sensors. IEEE Transactions on Robotics and Automatio. 1999, 15(6):1116~1121
    84 A.Rauf. J.Ryu. Fully Autonomous Calibration of Parallel Manipulators by Imposing Position Constraint. Proceedings of the 2001 IEEE Int. Conf. on Robotics & Automation. 2001,5:2389~2394
    85 S. Besnard, W. Khalil. Calibration of Parallel Robot Using Two Inclinometers. IEEE International Conference on Robotics and Automation, Detroit, Michigan, 1999, 5: 1758~1763
    86 S. Besnard, W. Khalil. Identifiable Parameters for Parallel Robots Kinematic Calibration. IEEE International Conference on Robotics and Automation, Seoul, Korea. 2001, 5: 2859~2866
    87黄田.并联构型装备几何参数可辨识性研究.机械工程学报. 2002, 38(supp): 1~6
    88 H. Zhuang, J. Wu, W. Huang. Optimal Planning of Robot Calibration Experiments by Genetic Algorithms. IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, 1996, 4: 981~986
    89 H.Zhuang, K. Wang, Z.S.Roth. Optimal Selection of Measurement Configurations for Robot Calibration Using Simulated Annealing. Proc. IEEE Int. Conf. Robotics & Automation. 1994, 5: 393~398
    90卢强,张友良.用蒙特卡洛法进行6腿并联机床精度综合.中国机械工程.2002,13(6):464~467
    91吴振勇,王玉茹,黄田. Tricept机器人的尺度综合方法研究.机械工程学报. 2003, 39(6):22~25
    92 Dai Xiaolin, Huang Qitao etal. Accuracy synthesis of Stewart platform used in testing system for spacecraft docking mechanism. ICMTMA 2009
    93 M. W. Spong, M. Vidyasagar. Dynamics and Control of Robot Manipulators. John Wiley, 1989
    94 F. Ghorbel, O. Chetelat, R. Longchamp. A reduced model for constrained rigidbodies with application to parallel robots. In Proc. of the IFAC Symposium on Robot Control (SYROCO’94), Capri, Italy, 1994: 57~62
    95 F. Ghorbel. Modeling and pd control of closed-chain mechanical systems. In Proceedings of the 34th IEEE Conference on Decision and Control, December, 1995: 540~542
    96徐勇.六自由度转台控制策略及三维动画仿真研究.哈尔滨工业大学工学硕士论文. 2001: 8~18
    97 Ken Ichiryu, Hiro Goto and Yasuharo Nakanisi. Development of Personal Parallel Link Motion Base. 1999,12:6-8
    98王栋梁.六自由度平台阀控缸驱动系统分析及控制策略研究: [博士学位论文].哈尔滨:哈尔滨工业大学, 2004
    99 Paul, R.P. Modeling, Trajectory Calculation and Servoing of a Computer Controlled Arm. Technical Report AIM-177, Stanford Artificail Intelligence Laboratory, 1972
    100 Markiewicz, B.R. Analysis of the Computed Torque Drive Method and Comparison with Conventional Position Servo for a Computer-Controlled Manipulator. JPL Technical Memorandum 33-601, March, 1973
    101 Kim D. H., Kang J. Y and Lee K. I. Robust Tracking Control Design for a 6 DOF Parallel Manipulator. Journal of Robotic Systems. 2000, 17(10): 527~547
    102 Lee S. H., Song J. B., Choi W. C. and Hong D. Position Control of a Stewart Platform Using Inverse Dynamics Control with Approximate Dynamics. Mechatronics. 2003, 13(6): 605~619
    103 C. Nguyen, S. Antrazi, Z. Zhou, and C. Campbell, Adaptive control of a Stewart platform-based manipulator, J Robotic Syst 1993,10:657~687
    104 R. Colbaugh, K. Glass, and H. Seraji, Direct adaptive control of robotics systems, American Control Conf. 1993: 1138~1143
    105 C.M. Gosselin, S.Lemieux, J.P. Merlet. A new architecture of planar three degrees of freedom parallel manipulator [J]. In: proceedings of the IEEE International Conference on Robotics and Automation, Minneapolies, MN, April 22-28, 1996, p3738~3743.
    106 F.Pierrot, O.Company. H4:a new family of 4-dof parallel robots[J]. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, GA, 1999.9, p508~1513.
    107王国强.虚拟样机技术及其在ADAM S上的实践.西安:西北工业大学出版社. 2002
    108 Bloor M S, McKay A. Product and Shape Representation for Virtual Prototyping. Book of Virtual Prototyping: Virtual environments and the product design process. Chapman and Hall Press, 1995
    109 T.WV, S.L.D. The Roles of Modeling and Simulation at Boeing. Transactions. 1998(1)
    110 C.K.Chua, S.H.Tehl, R.K.L.Gay. Rapid Prototyping Versus Virtual Prototyping in Product Design and Manufacturing. Advanced Manufacturing Technology, 1999(15):597~603
    111 S.C. Fok, W. Xiang, F.F.Yap. Feature-Based Component Models for Virtual Prototyping of Hydraulic Systems. Advanced Manufacturing Technology, 2001(18):665~672
    112 Q.M.Li, F.C.Lee, T.G. Wilson. Design verification and testing of power supply system by using virtual prototype, Power Electronics ,IEEE Transactions. 2003,18(3):733~739
    113 Y.J.Lin, R.Farahati1. CAD-Based Virtual Assembly Prototyping-A Case Study. Advanced Manufacturing Technology, 2003(21):263~274
    114 Q.Li. Developing modeling and simulation methodology for virtual prototype power supply system. Virginia Polytechnic Institute and State University.1999
    115李薇,虚拟样机技术的研究和实现: [硕士学位论文].南京:南京理工大学, 2002
    116李伯虎,柴旭东.复杂产品虚拟样机工程.计算机集成制造系统. 2002,8(9 ): 678~683
    117冯晨华,徐捷. CSCW系统中共享对象的协作支持模型计算机研究与发展. 1999,36(3):304~308
    118 S.R.S, C.E.J. Role-Based Access Control Models. IEEE Computer.1996, 29(2):38~47
    119邸彦强,李伯虎等.多学科虚拟样机协同建模与仿真平台及关键技术研究.计算机集成制造系统-CIMS,2005,(11)7:901~908
    120孔建寿,张友良.协同开发环境中项目管理与工作流管理的集成.中国机械工程,2003,14(13):1122~1125
    121王成,王效岳.虚拟样机技术及ADAMS.机械工程与自动化. 2004, 127(6): 67~75
    122冯果忱.非线性方程组迭代解法.上海科学技术出版社.1989.4:124~130
    123 J.P. Merlet. Parallel Robots(Second Edition). Springer.2006:140~141
    124韩建友.高等机构学.机械工业出版社. 2004:37~39
    125 I.Davliakos, E.Papadopoulos. Model-based control of a 6-dof electrohydraulic Stewart-Gough platform. Mechanism and Machine Theory(2008)
    126李洪人,关广丰等.考虑阀口误差的阀控非对称液压缸系统建模、仿真与试验.机械工程学报. 2007,43(9): 33~39
    127杜永昌.车辆道路模拟试验迭代算法研究.农业机械学报. 2002,33(2 ): 5~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700