基于模型的液压六自由度运动平台自适应控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着半实物仿真技术的迅速发展,运动模拟器被广泛应用于航空、航天、航海、车辆及娱乐等军用和民用领域的产品开发以及驾驶员训练过程中。液压六自由度运动平台因其具有刚度大、推重比高及模拟出各种空间运动姿态等优点而被应用于绝大部分运动模拟器的运动系统。由于液压六自由度运动平台的动态性能直接关系到运动模拟的逼真度,而先进的运动控制是实现良好动态性能的关键技术之一。因此,深入地研究液压六自由度运动平台的控制策略及其相关的参数辨识方法,以提高液压六自由度运动平台的动态响应性能具有十分重要的意义。
     在查阅大量国内外有关文献的基础上,概述了液压六自由度运动平台的结构与特点,阐述了国内外液压六自由度运动平台的应用与发展概况,全面综述了液压六自由度运动平台关键技术研究现状,提出了论文主要研究内容。
     机械系统动力学模型是研究液压六自由度运动平台控制策略的重要组成部分。首先,基于考虑液压缸惯性影响的完整动力学模型,分析了液压缸惯性以及动力学模型中各项在各种工况下对驱动分支出力的影响,以简化动力学模型结构;然后对液压六自由度运动平台的动力学模型结构进行了分析,将液压缸惯性对动力学方程的影响等效为上平台惯性参数的变化,建立了以平台惯性参数为变量的线性化动力学方程,为运动平台参数辨识与基于模型的控制策略研究奠定了基础。
     准确的模型参数是研究液压六自由度运动平台控制策略的基础。为了辨识整个系统的模型参数,将系统模型分为液压驱动模型部分和机械负载模型部分。为得到液压驱动模型参数,建立了液压六自由度运动平台液压驱动分支非线性模型的辨识模型和验证模型,采用遗传算法作为辨识方法,获得了液压驱动模型参数并经实验数据验证了所辨识参数的正确性;针对机械负载模型部分,提出了采用多步法结合动力学滤波技术进行惯性参数辨识,解决了常规辨识方法难于辨识的问题。通过两部分辨识得到了整个液压六自由度运动平台模型的全部参数,为后续基于非线性模型的控制器设计提供了模型参数依据。
     作为液压六自由度运动平台的关键技术,本文集中研究了基于关节空间和任务空间的控制策略以解决不同应用环境中的控制问题。首先针对液压六自由度运动平台工作过程中驱动分支参数摄动量大和负载大范围变化等问题,基于李雅普诺夫稳定性,提出了一种基于关节空间非线性模型的反步自适应控制策略,该控制策略对动力学干扰力进行了补偿,通过引入动态面避免了加速度反馈,仿真结果表明其有效地抑制了系统参数大范围摄动、关节间的动力学干扰力以及外界干扰的影响,提高了液压六自由度运动平台的控制跟踪性能。其次针对液压六自由度运动平台工作过程中动力学交联耦合和参数不确定性等问题,基于李雅普诺夫稳定性,提出了一种基于任务空间非线性模型的反步自适应控制策略,该控制策略基于系统的完整非线性动力学模型,适用于全工作空间,通过引入动态面避免了加速度反馈,仿真结果表明其有效地抑制了系统参数不确定性、动力学非线性与自由度间交联耦合的影响,改善了系统的动态性能,提高了系统的跟踪能力。
     最后,对所研究的内容在液压六自由度运动平台上进行实验研究,并对实验结果进行分析验证了理论分析、参数辨识以及控制策略的正确性。结果表明,相比常规的控制器,所提出的关节空间自适应控制和任务空间自适应控制策略能更有效地抑制动力学耦合力,提高了六自由度运动平台的动态性能。
Along with the rapid development of Hardware-in-loop simulation technology, motion simulators are widely used military and civil fields such as in aeronautics, astronautics, maritime, vehicle and amusement, etc for their production development and training. The six-dof (six-degree-of-freedom) hydraulic motion platform is used as a motion system for almost all motion simulators for its advantages such as high stiffness, high power density and capable of simulating all space movements, etc. The dynamic performance of the six-dof hydraulic motion platform has a direct relationship with the degree of versimilitude in motion simulation, and the advanced movement control strategy is one of the most key technology to realize the best dynamic performance.Therefore, a widely and in-dept research on the control theory and parameter identification for the six-dof hydraulic motion platform to improve the performance has a great significance.
     Base on the large amount of relative references at home and abroad, this paper outlined the architecture and characteristics of the six-dof hydraulic motion platform, depicted its developing status and application. In the meantime this paper summarized the key technology for the six-dof hydraulic motion platform, and then put up the main study content of the whole paper.
     The mechanical dynamics model is an important research area of the control strategy for the six-dof hydraulic motion platform. First of all, after the setup of the mechanical dynamics model including the leg’s influence, the influence of the leg and each part of the dynamics equation to driving force was analyzed to simplify the architecture of the dynamics model. The expression of the dynamics model was also analyzed to draw such a conclusion that the leg’s inertia and moment can be seen as an equivalent increment of the upper platform, and then derived an linearized dynamics equation expressed by the vector of the upper platform’s inertia parameters, which paved the way to give an research on to the parameter identification and model-based controller design.
     Accurate value of the model parameter is a prerequisite for control strategy research. To identify all the model parameters for the whole system, the system model is divided into two parts: hydraulic model part and mechanical load part. The identification model and the validation model for hydraulic nonlinear drive model are setup. The genetic identification method was used to identify the hydraulic nonlinear model parameters. The experimental data validates the effectiveness of the identification method. As far as the mechanical dynamics parameters were concerned, a step by step identification method combined with dynamic filtering technique was proposed to identify the inertia parameters to overcome the disadvantages of the difficult design and reach of optimum trajectory for identification. All parameters of these two parts from the identification provided the basis for for model-based nonlinear controller’s design.
     As a key technology of the six-dof hydraulic motion platform, this paper mainly studied the joint-space contrller and task-space controller to cater for the application in different circumstances.Aim to solve the problem of the leg’s large parameter perturbation and load changes during the work of the hydraulic six dof motion platform, a backstepping adaptive controller based on joint-space nonlinear model was proposed according to Lyapunov stability.The proposed controller compenated the dynamic coupling force and avoided the acceleration feedback by introducing the dynamic surface. The simulation results indicated that it can effectively suppress the influence from large parameter variance, dynamics coupling force among legs and external disturbance. The dynamic performance of the six-dof hydraulic motion platform was improved. As to deal with the dynamic cross-coupling force and parameters uncertainties, a backstepping adaptive controller based on task-space nonlinear model was put forward according to Lyapunov stability. The proposed controller was capable for everywhere in workspace for it is constructed on the basis of the complete nonlinear dynamics model, and avoided the acceleration feedback by introducing the dynamic surface. The simulation results indicate that it can effectively restrain the influence from parameter uncertainties, dynamics nonlinearity and load cross coupling among degrees. The dynamic performance was improved to attain a better tracking ability.
     At last, the experimental research was carried out on the six-dof hydraulic motion platform. The experimental results were analyzed. It validated the correctness of the theory analysis and parameter identification. It is shown that compared with the ordinary control methods, the proposed two controllers,namely the joint-space and task-space adaptive controller can more effectively depress the dynamic coupling force and thus improve the dynamic performance of the hydraulic six dof motion platform.
引文
1周自全,刘兴堂,余静.现代飞行模拟技术.国防工业出版社. 1997: 102~123
    2黄真,孔令富,方跃法.并联机器人机构学理论及控制.机械工业出版社. 1997:4,46~64,187~222,385~397
    3 V. E. Gough. Contribution to Discussion of Papers on Research in Automobile Stability. UK Proceedings of the Automobile Division of the Institution of Mechanical Engineers. 1957:392~394
    4 D. Stewart. A Platform with Six Degrees of Freedom. UK Proceedings of the Institution of Mechanical Engineers. 1965, 80(15):371~386
    5 E. F. Fichter, D. R. Kerr, J Rees-Jones. The Gough–Stewart platform parallel manipulator: a retrospective appreciation. UK Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2009, 223(1):243~281
    6 H. G. YU. Mechanism and Robot Design: Compliance Synthesis and Optimal Fault Tolerant Manipulator Design. PhD thesis, The Florida State University. 2007:16
    7 Halldale. Military Flight Simulator Census. MS&T Magazine. 3, 2007:46~60
    8 Halldale. Civil Full Flight Simulator Census. CAT Magazine. 4, 2008:55~90
    9 http://www.ic.gc.ca/eic/site/ad-ad.nsf/eng/ad03909.html
    10 W. R. Berkouwer, H.M. Heerspink, O. Stroosma, etc. Measuring the Performance of the SIMONA Research Simulator’s Motion System. AIAA Modeling and Simulation Technologies Conference and Exhibit, August, 2005, San Francisco, California
    11陈晓江.六自由度舰船模拟摇摆平台运动系统的分析与研究.南京理工大学硕士学位论文. 2006:1~3
    12韩俊伟,姜洪洲.用于航海模拟的六自由度并联机器人的研究.高技术通讯. 2001, 11(3):88~90
    13黄艳俊,苏建刚.用于机载火控性能测试的六自由度运动模拟器参数设计.液压与气动. 2005, (3):21~24
    14孙双蕾,王军政,汪首坤.车辆运动模拟器参数实时监控系统.火力与指挥控制. 2004, 29(6):77~80
    15陈安平.三自由度运动平台系统建模与分析.哈尔滨工业大学硕士学位论文.2005:6~7
    16 C. Lange, E. Martin. Towards Docking Emulation Using Hardware in the Loop Simulation with Parallel Platform. Proceedings of the Workshop on Fundamental Issues and Future Directions for Parallel Mechanisms and Manipulators. October, 2002:1~4
    17陈宝东,唐平.空间对接机构技术及其研制.上海航天, 2005, (5):6~8
    18常同立.空间对接动力学半物理仿真系统设计及实验研究.哈尔滨工业大学博士学位论文. 2007:5
    19王洪瑞.液压6-DOF并联机器人操作手运动和力控制的研究.河北大学出版社. 2001:1,485
    20 A. J. Wavering. Parallel Kinematic Machine Research at NIST:Past, Present, and Future. First European-American Forum on Parallel Kinematic Machines, Milan, Italy.1998:1~13
    21黄真,方跃法.六自由度并联机器人的随机位姿误差分析.燕山大学学报. 1989, (3):1~9
    22汪劲松,段广洪,杨向东. VAMT1Y虚拟轴机床制造.技术与机床. 1998, (2): 42~43
    23杨晓钧,钟诗胜,王知行. Calibration of Parallel Kinematics Machine Using Generalized Distance Error Model. Journal of Harbin Institute of Technology. 2007, 14(4):496~500
    24韩俊伟,李玉亭,胡宝生等.大型三向六自由度地震模拟振动台.地震学报. 1998, 20(3):327~331
    25杨灏泉.飞行模拟器六自由度运动系统及其液压伺服系统的研究.哈尔滨工业大学博士学位论文. 2002:14
    26张尚盈.液压驱动并联机器人力控制研究.哈尔滨工业大学博士学位论文. 2005:66
    27肖金陵,李壮云,刘长年.六自由度飞行模拟器的运动学分析与结构参数优化.上海航天. 1995, (1):15~19
    28刘荣,王宣银.并联式六自由度平台的运动仿真及其可视化设计研究.液压与气动. 2005, (1):5~7
    29 B. Dasgupta, T. S. Mruthyunjaya. The Stewart Platform Manipulator: a Review. Mechanism and Machine Theory. 2000, 35:15~40
    30汪劲松,关立文,王立平等.并联机器人机构构型创新设计研究.机械工程学报. 2004, 40(11):7~18
    31 T. Arai, K. Homma, K. Cleary, etc. Development of Parallel Link Manipulatorfor Underground Excavation Task. Proc. of Int. Symposium on Advanced Robot Technology. Pisa, Italy, Jun, 1991:541~548
    32 J. W. Kim, J. C. Hwang, J. S. Kim, etc. Eclipse II: A New Parallel Mechanism Enabling Continuous 360-Degree Spinning Plus Three-Axis Translational Motions. Proceedings of the IEEE International Conference on Robotics & Automation. Seoul, Korea , May, 2001:3274~3279
    33 Z. J. Geng, L. S. Haynes. Six Degree-of-Freedom Active Vibration Control Using the Stewart Platforms. IEEE Transactions on Control Systems Technology. 1994, 2(1):45~53
    34 A. Preumont, M. Horodinca, I. Romanescu. A Six-axis Single-stage Active Vibration Isolator Based on Stewart Platform. Journal of Sound and Vibration. 2007, 300(3):644~661
    35 K. Y. Tsai , T. k. Lee, Z. W. Wang. A New Class of Isotropic Generators for Developing 6-dof Isotropic Manipulators. Robotica. 2008, 26(5):619~625
    36 K. Y. Tsai, Z. W. Wang. The Design of Redundant Isotropic Manipulators with Special Link Parameters. Robotica. 2005, 23(2):231~237
    37 M. Raghavan. The Stewart Platform of General Geometry Has 40 Configurations. Proc. of ASME Design Technical Conference-17th Design Automation Conference. Miami, USA, 1991:3977~402
    38 S. Koekebakker. Coordinate Reconstruction in Model-Based Control of A Stewart Platform. IFAC International Workshop on Motion Control. Grenoble. France, September, 1998:117~122
    39刘安心,杨廷力.求一般6-SPS并联机器人机构的全部位置正解.机械科学与技术. 1996, 15(4):543~546
    40陈永,严静.同伦迭代法及应用于一般6-SPS并联机器人机构正位置问题.机械科学与技术. 1997, 16(2):189~194
    41 F. A. Wen, C. G. Liang. Displacement Analysis of the 6-6 Stewart Platform Mechanisms. Mechanism and Machine Theory, 1994, 29(4):547~557
    42梁崇高,荣辉.一种Stewart平台行机械手位移正解.机械工程学报. 1991, 27(2):26~30
    43王奇志,徐心和.并联机器人运动学正确的正解分析.东北大学学报(自然科学版). 1999, 20(4):359~361
    44董彦良,吴盛林.一种实用的6-6 Stewart平台的实时位置正解法.哈尔滨工业大学学报. 2002, 34(1):116~119
    45 E. F. Fichter. A Stewart Platform-Based Manipulator:General Theory and Practical Construction. The International Journal of Robotics Research. 1986, 5(2):157~182
    46 C. M. Gosselin. Determination of the Workspace of 6-Dof Parallel Manipulator. ASME Journal of Mechanical Design. 1990, 112(3):331~336
    47 O. Masory, J. Wang Workspace Evaluation of Stewart Platforms. Advanced Robotics.1995, 9(4):443~461
    48 D. I. Kim, W. K. Chung, Y. Youm. Geometrical Approach for the Workspace of 6-DOF Parallel manipulators. Proc. IEEE Int. Conf. on Robotics and Automation. 1997(4):2986~2991
    49 C. Gosselin, J. Angeles. Singularity Analysis of Closed-loop Kinematic Chains. IEEE Trans. Robotics & Automation. 1990, 6(3):281~290
    50 O. Ma, J. Angeles. Architecture Singularity of Platform Manipulator. Proc. IEEE Int. Conf. on Robotics and Automation. Sacramento, CA, April,1991:1542~1547
    51 J. P. Melet. Singular Configurations of a Parallel Manipulator and Grassmann Geometry. International Journal of Robot Research. 1989, 8(5):45~56
    52 S. K. Advani. The Kinematic Design of Flight Simulator Motion Bases. Delft University Press. 1998:1~10
    53 K. H. Pittens, R. P. Podhorodeski. A Family of Stewart Platform with Optimal Dexterity. Journal of Robotic Systems. 1993, 10(4):463~479
    54 M. H. Korayem, M. Shokri. Maximum Dynamic Load Carrying Capacity of 6 UPS Stewart Platform Flexible Joint Manipulator. IEEE International Conference on Robotics and Biomimetics. Kunming, China, 2006:727~732
    55姚裕,吴洪涛,张召明等.基于Stewart平台的6-SS并联天平结构优化设计.南京航空航天大学学报. 2004, 36(4):466~470
    56 O. Khatib, A. Bowling. Optimization of the Inertial and Acceleration Characteristics of Manipulators. Proceedings IEEE International Conference on Robotics and Automation. Minnesota,USA. August,1996, (4):2883~2889.
    57 M. Arsenault, R. Boudreau. Synthesis of Planar Parallel Mechanisms While Considering Workspace, Dexterity, Stiffness and Singularity Avoidance. ASME Journal of Mechanical Design. 2006, 128(1):69~78
    58 C. M. Gosselin, J. A. Angeles. A Global Performance Index for the Kinematics Optimization of Robotic Manipulators. Journal of mechanical design.1990, 11(3): 220~226
    59刘小初.六自由度运动模拟器结构参数分析设计.哈尔滨工业大学硕士学位论文. 2006:28~46
    60 M. A. Nahon, L. D.Reid. Simulator Motion-Drive Algorithms:A Designer’s Perspective. Journal of Guidance,Control & Dynamics. 1990, 13(2):356~36
    61 P. R. Grant, L. D. Reid. Motion Washout Filter Tuning Rules and Requirements.Journal of Aircraft. 1997, 34(2):30~35
    62 R. Sivan, I. S. Jehuda, J. K. Huang. An Optimal Control Application to the Design of Moving Flight Simulators. IEEE Transactions on Systems, Man and Cybernetics. November/December, 1982, 12(6):818~827
    63陈志雄.列车驾驶模拟器体感模拟的仿真研究.西南交通大学硕士学位论文. 2006:43~51
    64黄真,赵永生,赵铁石.高等空间机构学.高等教育出版社. 2006:277
    65 E. F. Fichter. A Stewart Platform-Based Manipulator: General Theory and Practical Construction. The International Journal of Robotics Research. 1986, 5(2):157~182
    66 J. P. Merlet. Parallel Manipulator, Part 1: Theory, Design, Kinematics and Control. INRIA Research Report. 1987:646
    67 H. Abdellatif, B. Heimann. Computational Efficient Inverse Dynamics of
    6-DOF Fully Parallel Manipulators by Using the Lagrangian Formalism. Mechanism and Machine Theory. 2009, 44(1):192~207
    68 P. Mukherjee, B. Dasgupta, AK. Mallik. Dynamic Stability Index and Vibration Analysis of a Flexible Stewart Platform. Journal of Sound and Vibration. 2007, 307(3):495~512
    69 Y. Yun, Y. M. Li. A General Model of a Kind of Parallel Manipulator for Active Control Based on Kane’s Dynamics. IEEE Asia Pacific Conference on Circuits and Systems. Nov, 2008:1830~1833.
    70 C. D. Zhang, S. M. Song. An Efficient Method for Inverse Dynamics of Manipulators based on the Virtual Work Principle. Journal of Robotic Systems. 2007, 10(5):605~627
    71陈丽. Stewart平台6-DOF并联机器人完整动力学模型的建立. 2004, 28(3):228~232
    72 H. B. Guo, H. R. Li. Dynamic Analysis and Simulation of a Six Degree of Freedom Stewart Platform Manipulator. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2006, 220(1):61~72
    73 A. Vivas, P. Poignet, F. Marquet, etc. Experimental Dynamic Identification of a Fully Parallel Robot. Proceedings of ICRA’03 IEEE International Conference on Robotics and Automation. Taipei, China. 2003:3278~3283
    74 M. Gautier, W. Khalil, P. P. Restrepo. Identification of the Dynamic Parameters of a Closed Loop Robot. Proceedings IEEE International Conference on Robotics and Automation. May 1995, (3):3045~3050
    75 M. Gautier. A Comparison of Filtered Models for Dynamic Identification ofRobots. Proceedings of the 35th Conference on Decision and Control Kobe, Japan. December, 1996:875~880
    76 M. Grotjahn, B. Heimann, H. Abdellatif. Identification of Friction and Rigid-Body Dynamics of Parallel Kinematic Structures for Model-Based Control. Multibody System Dynamics. 2004, (11):273~294
    77 Y. Ting, Y. S. Chen, H. C. Jar. Modeling and Control for a Gough-Stewart Platform CNC Machine. Proceeding of the 2004 IEEE International Conference on Robotics & Automation. New Orleans, 2004:535~540
    78 I. Davliakos, E. Papadopoulos. Model-Based Position Tracking Control for a 6-dof Electrohydraulic Stewart Platform. Proceedings of the 15th Mediterranean Conference on Control & Automation. Athen, Greece, July, 2007.
    79吴博,吴盛林,赵克定.并联机器人控制策略的现状和发展趋势.机床与液压. 2005, (10):5~8
    80 D. Li, S. E. Salcudean. Modeling, Simulation, and Control of a Hydraulic Stewart Platform Proceedings of the 1997 JEEE International Conference on Robotics and Automation. Albuquerque, New Mexico. April 1997:3360~3366
    81焦晓红,耿秋实,方一鸣等.液压伺服并联机器人的自适应鲁棒跟踪控制.系统仿真学报. 2003, (03):401~403
    82金迪,邵诚.自抗扰控制器在6自由度液压并联机器人仿真分析中应用.大连理工大学学报. 2003, 43(5):691~696
    83万亚民,王孙安,杜海峰.液压并联机器人的动态神经网络控制研究.西安交通大学学报. 2004, 38(9):955~958
    84孔令富,黄真,蔡鹤皋.一种带干扰力补偿的液压并联机器人MRACS.机器人. 1995, 17(4):218~222
    85袁立鹏.并联运动模拟平台及其液压伺服系统的研究.哈尔滨工业大学博士学位论文. 2005:55~59
    86李强,王宣银,程佳.基于逆动力学模型的Stewart平台干扰力补偿.机械工程学报. 2009, 45(1):14~19
    87 S. H. Lee, J. B. Song, W. C. Choi, etc. Position Control of a Stewart Platform Using Inverse Dynamics Control with Approximate Dynamics. Mechatronics. 2003, 13(6):605~619
    88 S. Koekebakker. Model Based Control of a Flight Simulator Motion System. PhD thesis, Delft University of Technology. 2001:31~73
    89王宣银,李强,程佳.液压Stewart平台基于工作空间综合偏差的同步控制.航空学报. 2009, 30(4):719~725
    90 M. R. Sirouspour, S. E. Salcudean. Nonlinear Control of Hydraulic Robots. IEEE Transactions on Robotics and Automation. 2001, 17(2):15~21
    91徐东光,董彦良,吴盛林等.液压驱动Stewart平台非线性自适应控制器设计.机械工程学报. 2007, 43(3):223~227
    92吴博.基于定量反馈的飞行模拟器运动平台控制系统研究.哈尔滨工业大学博士学位论文. 2007:95~112
    93刘敏杰.并联机器人动力学与自适应控制技术研究.上海交通大学博士学位论文. 2000:89
    94杨灏泉,赵克定,吴盛林.液压六自由度并联机器人控制策略的研究.机器人, 2004, 26(3):263~271
    95 C. N. Charles, S. A Sami, Z. Zhen-lei, etal. Adaptive Control of a Stewart platform-based Manipulator. Journal of Robotic Systems. 1993, 10(5):657~687
    96 Li D, S. E Salculean. Modeling, Simulation and Control of a Hydraulic Stewart Platform. Proceedings of the International Conference on Robotics and Automation. New Mexico. 1997:3360~3366
    97 C. I. Fang, C. H. Hsiang, L. C. Teng. Fuzzy Control of a Six-degree Motion Platform with Stability Analysis. Systems, Man and Cybernetics. IEEE SMC’99 Conference Proceedings. 1999(1):325~330
    98 M. R. Sirouspour, S.E. Salcudean. A New Approach to the Control of a Hydraulic Stewart platform. Experimental Robotics VII, Daniela Rus and Sanjiv Singh (J). Springer-Verlag. 2001:447~460
    99 C. I. Huang and L. C. Fu. Smooth Sliding Mode Tracking Control of the Stewart Platform. Proceeding of the 2005 IEEE Conference on Control Applications. Toronto, Canada, 2005:43~48
    100 B. Yao, F. Bu, J. Reedy etc. Adaptive Robust Motion Control of Single-Rod Hydraulic Actuators: Theory and Experiments. IEEE/ASME Transactions on Mechatronics. 2000, 5(1):1493~1498
    101潘春萍,欧鸿,王永亮.六轴并联机器人系统辨识.长春理工大学学报. 2004, 27(04):116~119
    102 H. E. Merritt. Hydraulic Control Systems. New York: Wiley. 1967:224~265
    103丁志中.双线性变换法原理的解释.电气电子教学学报. 2004, 26(2):53~54
    104徐丽娜,李琳琳.遗传算法在非线性系统辨识中的应用研究.哈尔滨工业大学学报. 1999, 31(2):39~42
    105李久彤,孔祥东,杨铁林.电液伺服系统部分参数的一种简易测量方法.燕山大学学报. 1995, 19(1):10~13
    106张明,聂宏.非对称非线性系统非平稳随机响应的中心差分法.振动工程学报. 2009, 22(2):128~133
    107 N. Niksefat. Design and Experimental Evaluation of Robust Controllers for Electro-hydraulic Actuator. A Dissertation for the Doctoral Degree of the University of Manitoba. Canada. 2002:22
    108 G.. V. Schothorst. Modelling of Long-stroke Hydraulic Servo-systems for Flight Simulator Motion Control and System Design. PhD thesis, Delft University of Technogy. 1997:311
    109方勇纯,卢桂章.非线性系统理论.清华大学出版社. 2009:2
    110 R. Marino等著,姚郁,贺风华译.非线性系统设计:微分几何.自适应及鲁棒控制.电子工业出版社. 2006:28~74
    111刘金琨.滑模变结构控制MATLAB仿真.清华大学出版社. 2005:65~108
    112 I. Kanellakopoulos, P.V Kokotovic, A.S Morse. Systematic Design of Adaptive Controllers for Feedback Linearizable Systems. IEEE Transactions on Automatic Control. 1991, 36(11):1241~1253
    113 M. Krstic, I. Kanellakopoulos, P. V. Kokotovic, Nonlinear and Adaptive Control Design. Wiley, 1995
    114朱永红,姜长生,费树岷. Robust Adaptive Dynamic Surface Control for Nonlinear Uncertain Systems.东南大学学报(英文版) . 2003, 19(02):126~131
    115 D. Swaroop, J. C Gerdes, P.P Yip, etc. Dynamic Surface Control of Nonlinear Systems. Proceeding of American Control Conference. Albuquerque , New Mexico , USA, 1997:3028~3034
    116 D. B Maciuca, J. K Hedrick. Nonsmooth Dynamic Surface Control of non-Lipschitz Nonlinear Systems with Application to Brake Control. IEEE Int. Conf. Control Applications. 1997:711~716
    117 J. C Gerdes, J. K Hedrick. Loop-at-a-time Design of Dynamic Surface Control for Nonlinear Systems. Proceedings of American Control Conferenc. 1999: 3574~3578
    118 P. P Yip, J. K Hedrick. Adaptive Dynamic Surface Control. International Journal Control. 1998, 71(5):959~979
    119 J. K Hedrick, P. P Yip. Multiple Sliding Surface Control: Theory and Application. Journal of Dynamic Systems, Measurement, and Control. 2000, 122(4):586~593
    120 S. Duraiswamy, G. T. -C Chiu. Nonlinear Adaptive Nonsmooth Dynamic Surface Control of Electro-hydraulic Systems. Proceedings of the American Control Conference. 2003: 3287~3291
    121 Hairong Zeng, Nariman Sepehri. Dynamic Surface Control of Cooperating Hydraulic Manipulators Proceedings of the 2007 American Control Conference. New York City, USA, July, 2007:94~99
    122刘金琨.机器人控制系统的设计与MATLAB仿真.清华大学出版社.2008: 2~30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700