高速切削用陶瓷刀具多尺度设计理论与切削可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现阶段陶瓷刀具材料研制多采取“试凑法”的研究方式,本文针对研制过程存在的盲目性和实验量大的弊端,提出了复合陶瓷刀具材料的多尺度设计理论,揭示了复合材料宏观性能和其微观组织之间的定量关系;研制成功了多尺度颗粒复合陶瓷刀具材料,并对刀具材料的烧结工艺、微观组织、增韧补强机理、室温和高温力学性能、动态疲劳性能、切削性能和切削可靠性进行了系统研究。
     提出了复合陶瓷刀具材料的多尺度设计理论。建立了刀具材料抗弯强度预测模型、残余应力力学模型、纳米颗粒最优含量数学模型和金属相完全填充颗粒间隙时的最优含量数学模型。
     根据复合陶瓷刀具材料抗弯强度预测模型、刀具材料残余应力力学模型、纳米颗粒最优含量数学模型和金属相完全填充颗粒间隙的最优含量数学模型,设计了两种Al203基多尺度颗粒复合陶瓷刀具材料,其一是Al2O3μ-TiCμ-TiCn-Co,微米TiC、纳米TiC和金属Co的体积含量分别为35%、6%和3%;其二是Al2O3μ-(W,Ti)Cμ-TiCn-Ni/Co,微米(W,Ti)C、纳米TiC和金属Ni或Co的体积含量分别为33%、6%和4%。
     研究了纳米颗粒含量、金属相含量对A1203基多尺度颗粒复合陶瓷刀具材料室温力学性能和微观组织的影响。结果表明,当纳米TiC颗粒的含量为6vo1.%时,裂纹沿晶与穿晶扩展的比例适当,材料的抗弯强度和断裂韧度较好,验证了纳米颗粒最优含量数学模型的正确性;金属Co含量过少或过多时,材料力学性能均降低,其存在一最佳含量,从而验证了金属相最优含量数学模型的正确性。
     优化了陶瓷刀具材料的烧结工艺。Al2O3μ-TiCμ-TiCn-Co陶瓷刀具材料在烧结温度为1650℃、保温时间为20min和烧结压力为32MPa时获得最优的室温力学性能,其抗弯强度、断裂韧度和维氏硬度分别为8.3MPa·m1/2和18GPa。Al2O3μ-(W,Ti)Cμ-TiCn-Co陶瓷刀具材料在烧结温度为1650℃、保温时间为30min和烧结压力为32MPa时获得最优的室温力学性能,其抗弯强度、断裂韧度和维氏硬度分别为882MPa、7.2MPa-m1/2和19GPa。*本研究得到了高档数控机床与基础制造装备科技重大专项课题(2012ZX04003-051)资助。
     研究了A1203基多尺度颗粒复合陶瓷刀具材料的增韧补强机理。结果表明,微米增强颗粒的主要增韧补强机理是晶粒桥接和裂纹偏转;纳米增强颗粒的主要增韧补强机理是晶界钉扎、晶粒细化、裂纹二次偏转和穿晶断裂;金属相的主要增韧补强机理是基体中的残余拉应力降低和界面结合强度提高。
     研究了陶瓷刀具材料的高温力学性能和动态疲劳性能,揭示了陶瓷刀具材料高温力学性能和动态疲劳性能随温度变化的规律,建立了陶瓷刀具材料在高温时裂纹缓慢扩展机理模型,提出了陶瓷刀具材料高温抗弯强度、高温断裂韧度和动态疲劳性能的弱化机理。结果表明,Al2O3-TiCμ-TiCn-Co陶瓷刀具材料的抗弯强度随着温度的升高而降低,断裂韧度随温度的升高先降低,当温度达到1200℃时材料发生一定的塑性变形,此时断裂韧度升高。不含金属相的刀具材料的室温抗弯强度和高温抗弯强度差别较小;含金属相的刀具材料抗弯强度随温度升高而剧烈降低,金属相含量越高,刀具材料的高温抗弯强度降低幅度越大。该陶瓷刀具材料在室温和高温时均存在亚临界裂纹扩展行为;与室温相比,材料在高温时的抗疲劳性能显著降低;适量的金属相能提高陶瓷刀具材料在室温和高温时的抗疲劳性能。Al2O3-TiCμTiCn-Co陶瓷刀具材料高温抗弯强度的主要弱化机理是材料被氧化侵蚀,微观组织被破坏;高温时富金属相晶界变软,界面结合强度降低,裂纹倾向于沿晶扩展,并产生沿晶断裂;高温时材料的弹性模量降低;材料发生塑性变形,晶界移动产生晶界缺陷。该陶瓷刀具材料在室温和900℃高温时的疲劳失效机理是应力腐蚀裂纹,在1200℃高温时的疲劳失效机理主要是蠕变。
     研究了陶瓷刀具加工难加工材料时的切削性能和切削可靠性。创建了陶瓷刀具材料动态疲劳性能和陶瓷刀具疲劳破损寿命之间的关系模型,建立了陶瓷刀具磨损寿命分布模型和切削可靠度模型。研究了A1203基多尺度颗粒复合陶瓷刀具连续切削奥氏体不锈钢1Cr18Ni9Ti的切削性能和切削可靠性。结果表明,当v=80m/min,f=0.15mm/r,αp=0.1mm时,金属去除量最大,刀具寿命为13min。。刀具磨损寿命服从伽马分布。刀具可靠度为0.5时刀具磨损的可靠寿命约为9min;刀具可靠度为0.8~0.9时,刀具磨损的可靠寿命为5.5-6.5min。具有不同倒棱宽度和不同刀尖圆弧半径的四种刀具抗磨损能力由强到弱依次为ATTC(b=0.1mm, r=0.1mm)> ATTC(b=0.3mm,r0.3mm)=LT55>AWTC。刀具的主要失效形式是疲劳破损造成的切削刃脆断和后刀面材料剥落,其主要失效机理是磨粒磨损和粘结磨损。研究了A1203基多尺度颗粒复合陶瓷刀具连续湿式切削冷作模具钢Cr12MoV的切削性能和切削可靠性。结果表明,当v=60m/min,f=0.1mm/r, ap=0.1mm时,工件加工表面的粗糙度最小,刀具磨损寿命为9min。ATTC(b=0.3mm, r=0.3mm)刀具磨损寿命服从对数正态分布。刀具可靠度为0.5时,刀具磨损的可靠寿命约为7.5min;刀具可靠度为0.8~0.9时,刀具磨损的可靠寿命为4.5~5.3min。具有不同刀尖圆弧半径的ATTC刀具在干式切削和湿式切削Cr12MoV时,表面粗糙度由小到大依次是(湿式切肖(?),b=0.3mm, r=0.3mm)<(干式切削,b=0.1mm, r=0.1mm)<(湿式切削,b=0.1mm, r=0.1mm)<(干式切削,b=0.3mm, r=0.3mm)。在湿式切削时,刀具的主要失效形式是沟槽磨损、边界磨损、后刀面材料剥落和主切削刃微崩,其主要磨损机理是磨粒磨损和粘结磨损。
In order to solve the problems of great blindness and large amount of experiments brought from the trial and error method for developing ceramic tool matarials, the multi-scale design theory of ceramic tool materials was established. The theory revealed the quantitative microstructure-property relationship of composite ceramic tool materials. Two kinds of ceramic tool materials were designed and fabricated under the guidance of the proposed design theory. Their sintering technology, microstructure, strengthening and toughening mechanisms, room and high temperature mechanical properties, dynamic fatigue behavior, cutting performance and cutting reliability were deeply investigated.
     The multi-scale design theory of composite ceramic tool materials was proposed and established. Based on the studies on the physical and mechanical process of microstructure and the distribution of liquid phase in ceramics, the flexural strength prediction model of composite ceramic tool materials, the residual stresses mechanics model, the mathematical model of the optimal content of nano-scale particles and the mathematical model of the optimal content of the metallic phase were built.
     Two kinds of multi-scale particles reinforced alumina-based ceramic tool materials were designed according to the above proposed models. One was Al2Oμ-TiCμ-TiCn-Co composite ceramic tool material, and the volume content of micro-scale Al2O3, micro-scale TiC, nano-scale TiC and cobalt were56%,35%,6%and3%repectively, the other one was Al203μ-(W,Ti)Cμ-TiCn-Ni/Co composite ceramic tool materials, and the volume content of micro-scale Al2O3, micro-scale TiC, nano-scale TiC and Ni/Co were57%,33%,6%and4%respectively.
     The influences of nano-particle content and metallic phase content on the room temperature mechanical properties and microstructure were investigated. The results showed that when the content of nano-scale TiC particles was6vol.%, the ratio of intergranular fractured grains to transgranular fractures grains in the materials was suitable and resulted in the better flexural strength and fracture toughness. These results verified the validity of the mathematical model of the optimal content of nano-scale particles. When the content of cabalt was too low or too high, the mechanical properties of the ceramic tool materials would reduce and there was an optimal content of the cabalt. These results verified the validity of the mathematical model of the optimal content of the metallic phase.
     The sintering technologies of the composite ceramic tool materialswere optimized. It was found that Al2O3-TiCμ-TiCn-Co micro-nano-composite tool material which was sintered under a pressure of32MPaand a temperature of1650℃in vacuum for20min, had optimum mechanical properties. Its flexural strength, fracture toughness and Vicker's hardness were916MPa,8.3MPa·m1/2and18GPa, respectively. For the Al2O3μ-(W,Ti)Cμ-TiCn-Co composite ceramic tool material, the best flexural strength, fracture toughness and Vicker's hardness were882MPa,7.2MPa·m1/2and19GPa, which was sintered under a pressure of32MPa and a temperature of1650℃in vacuum for30min.
     The strengthening and toughening mechanisms of the composite ceramic tool materials were detailedly studied. It was found that the strengthening and toughening mechanisms of micro-scale particles was grain bridge and cracks deflection. The strengthening and toughening mechanisms of nano-scale particles was grain boundary pinning, grain refining, cracks re-deflection and transgranular fracture. The strengthening and toughening mechanisms of metallic phase was the reduction of the residual tensile stress distributed in matrix and the increase of the interfacial bonding strength.
     The high temperature mechanical properties and dynamic fatigue behavior of composite ceramic tool materials were deeply investigated. The change regulation of the high temperature mechanical properties and dynamic fatigue behavior with the temperature was revealed. The slow propagation mechanism model of crack at high temperature was built. The weakening mechanisms of the mechanical properties at high temperatures were analysed. The results showed that the flexural strength of Al2O3-TiCμ-TiCn-Co composite decreased with an increase in temperature, and the fracture toughness decreased as a function of the temperature up to1000℃but increased at1200℃due to small plastic defomation. The difference between the room temperature flexural strength s and the high temperature flexural strength was smaller for the composite ceramic tool materials without cabal. However, the excess cobalt led to the decreased the high temperature flexural strength, and the more the content of cobalt, the highly the high temperature flexural strength was dropped. The sub-caracks were propagated in ceramic materials at room and high temperature. The fatigue resistance of the materials at high temperature was greatly dropped. Appropriate metallic phase could improve the anti-fatigue property of ceramic tool materials. The weakening mechanisms of the high temperature flexural strength of Al2O3-TiCμ-TiCn-Co was oxidative attack and microstructure damage, grain boundary softening of metallic phase at high temperature, the reduction of interfacial bonding strength, crack intragranular propagation and fracture, the reduction of elastic modulus at high temperature, plastic deformation, and grain boundary defects caused by grain boundary migration. The fatigue failure mechanism of Al2O3-TiCμ-TiCn-Co composite tool material at room temperature and900℃was ascribed to stress-corrosion cracking, but at1200℃the failure mechanism was creep.
     The cutting performance and cutting reliability of the multi-scale particles reinforced Al2O3-based ceramic cutting tools were researched. The model of the relationship between the dynamic fatigue property of the ceramic tool materials and the tool life by fatigue wear was established. The distribution models of the tool life by wear and the cutting reliability medels were built. The cutting performance and cutting reliability of the composite ceramic tools when continuous cutting austenitic stainless steel (1Cr18Ni9Ti) were studied. The results showed that when wet cutting1Cr18Ni9Ti with the ATTC ceramic cutting tools (b=0.1mm, r=0.1mm) at a cutting speed of80m/min, a feed rate of0.15mm/r and a depth of cut of0.1mm, the metal removal volume was the greatest, and the tool life was13min. The tool life by wear obeyed the Gamma distribution. When the cutting tool reliability was0.5, the reliable tool life by wear was about9min. When the cutting tool reliability increased to0.8~0.9, the reliable tool life by wear was about5.5-6.5min. The best wear resistance of four kinds of cutting tools was ATTC(b=0.1mm, r=0.1mm), followed by ATTC(b=0.3mm, r=0.3mm), LT55and AWTC. The failure patterns of cutting tool were mainly cutting edge brittle fracture and tool material peeling off the tool clearance caused by fatigue breakage, and the main failure mechanisms were abrasive wear and adhesive wear. The cutting performance and cutting reliability of the composite ceramic tools when continuous cutting cold work die steel (Cr12MoV) were studied. When wet cutting Cr12MoV with the ATTC ceramic cutting tools at a cutting speed of60m/min, a feed rate of O.lmm/r and a depth of cut of0.1mm, the surface roughness was the best and the tool life by waer was9min. The tool life by wear obeyed the lognormal distribution. When the cutting tool reliability was0.5, the reliable tool life by wear was about1.5min. When the cutting tool reliability increased to0.8-0.9, the reliable tool life by wear was about4.5-5.3min. For the ATTC cutting tools with different corner radius and chamfer width, the best surface roughness was got when using the ATTC tool with a larger corner radius and chamfer width in wet cutting. When wet cutting Cr12MoV, the failure patterns of cutting tool were mainly groove wear, boundary wear, tool material peeling off the tool clearance and tool tipping, and the main failure mechanisms were abrasive wear and adhesive wear.
引文
[1]艾兴.切削刀具材料的未来[J].材料科学与工程学报.1989,(3):44-47.
    [2]Schulz H, Moriwaki T. High-speed Machining [J]. Annals of the CIRP.1992, (41): 637-643.
    [3]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003:1-18.
    [4]张宝忠.高速切削加工技术与刀具材料[J].机械制造.2004,(6):62-63.
    [5]熊建武,周进,陈湘舜.高速切削加工技术的特点及应用要求[J].科学技术与工程.2006,6(10):1404-1406.
    [6]黄日晶.干切削—正在兴起的绿色加工技术[J].电子机械工程.2005,21(2):36-38.
    [7]赵正书.干式切削—一种理想的金属切削方法[J].机械制造.2001,(5):26-28.
    [8]王宇PCBN刀具高速精密硬态切削机理与应用研究[D].哈尔滨:哈尔滨理工大学博士学位论文.2008:19-22.
    [9]李忠科,张宇,张春飞,等.高速硬切削技术及刀具的合理选择[J].工具技术.2007,41(1):89-92.
    [10]李良琦.取代磨削的硬切削[J].国防制造技术.2010,2(1):58-59.
    [11]徐润泽.粉末冶金结构材料学[M].长沙:中南工业大学出版社,1998:35-36.
    [12]刘勋,范景莲,凌国良.纳米Ni-Al2O3金属陶瓷粉末热压致密化过程[J].中南大学学报(自然科学版).2004,35(1):21-25.
    [13]张会军,刘开琪.高温型Mo-AI2O3金属陶瓷的研制[J].稀有金属材料与工程.2007,36(1):281-284.
    [14]Oh S T, Sando M, Niihara K. Mechanical and magnetic properties of Ni-Co dispersed Al2O3 nanocomposites [J]. Journal of Materials Science.2001,36(7): 1817-1821.
    [15]Fahrenholtz W G, Ellerby D T, Loehman R E. Al2O3-Ni composites with high strength and fracture toughness [J]. Journal of the American Ceramic Society.2000, 83(5):1279-1280.
    [16]Xiao G Q, Fan Q C, Gu M Z, et al. Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of TiC-Ni cermet [J]. Materials Science and Engineering:A.2004,382(1):132-140.
    [17]Choi K, Choi J W, Kim D Y, et al. Effect of coalescence on the grain coarsening during liquid-phase sintering of TaC-TiC-Ni cermets [J]. Acta Materialia.2000, 48(12):3125-3129.
    [18]王全兆,刘越,陈志亮,等.TiC/NiCrMoAlTi金属陶瓷的微观结构与力学性能[J].材料研究学报.2009,19(4):354-360.
    [19]Bellosi A, Medri V, Monteverde F. Processing and properties of Ti(C, N)-WC-based materials[J]. Journal of the American Ceramic Society.2001,84(11): 2669-2676.
    [20]Ettmayer P, Kolaska H, Lengauer W, et al. Ti(C, N) cermets-metallurgy and properties [J]. International Journal of Refractory Metals and Hard Materials.1995, 13(6):343-351.
    [21]Manoj Kumar B V, Basu B, Kalin M, et al. Load-dependent transition in sliding wear properties of Ti(C, N)-WC-Ni cermets [J]. Journal of the American Ceramic Society.2007,90(5):1534-1540.
    [22]Lepakova O K, Raskolenko L G, Maksimov Y M. Self-propagating high-temperature synthesis of composite material TiB2-Fe [J]. Journal of Materials Science.2004,39(11).3723-3732.
    [23]晏鲜梅,熊惟皓,郑立允.金属陶瓷刀具及其表面处理的现状与展望[J].材料导报.2005.19(Ⅳ):352-355.
    [24]Manoj Kumar B V, Kumar J R, Basu B. Crater wear mechanisms of Ti(C, N)-Ni-WC cermets during dry Machining [J]. International Journal of Refractory Metals and Hard Materials.2007,25(5):392-399.
    [25]Kwon W T, Park J S, Kim S W, et al. Effect of WC and group Ⅳ carbides on the cutting performance of Ti(C, N) cermet tools [J]. International Journal of Machine Tools and Manufacture.2004,44(4):341-346.
    [26]李鹏南,唐思文,张厚安,等.Ti (C, N)基金属陶瓷刀具的高速切削性能与磨损机理[J].中国有色金属学报.2008,18(7):1286-1291.
    [27]石增敏,郑勇,袁泉,等.金属陶瓷刀具切削不锈钢的磨损机理研究[J].材料导报.2007.21(8).244-246
    [28]徐立强,孙永敏,黄传真,等.淬硬钢的金属陶瓷刀具车削加工[J].烟台大学学报(自然科学与工程版).2011,24(3):231-235.
    [29]许育东,刘宁,李振红,等.金属陶瓷刀具切削难加工材料时的磨损性能研究[J].工具技术.2002,36(10):8-10.
    [30]马丽林,刘滨,于启勋,等.金属陶瓷刀具材料的发展和应用[J].航空制造技术.2008,(7):100-101.
    [31]Fallqvist M, Olsson M, Ruppi S. Abrasive Wear of texture-controlled CVD [J]. Surface and Coatings Technology.2007,202(4):837-843.
    [32]Fallqvist M, Olsson M, Ruppi S. Abrasive wear of multilayer [J]. Wear.2007, 263(1):74-80.
    [33]Wang Y, Jiang S, Wang M, et al. Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings [J]. Wear.2000,237(2):176-185.
    [34]Navas C, Colaco R, De Damborenea J, et al. Abrasive wear behaviour of laser Clad and flame sprayed-melted NiCrBSi coatings [J]. Surface and Coatings Technology. 2006,200(24):6854-6862.
    [35]Bayon R, Igartua A, Fernandez X, et al. Corrosion-wear behaviour of PVD Cr/CrN multilayer coatings for gear applications [J]. Tribology International.2009,42(4): 591-599.
    [36]Fox-Rabinovich G S, Kovalev A I, Aguirre M H, et al. Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials [J]. Surface and Coatings Technology.2009,204(4):489-496.
    [37]余东海,王成勇,张凤林.刀具涂层材料研究进展[J].工具技术.2007,41(6):25-32.
    [38]艾兴,刘战强,赵军,等.高速切削刀具材料的进展和未来[J].制造技术与机 床.2001,(8):21-25.
    [39]Dobrzanski L A, Staszuk M, Golombek K, et al. Structure and properties PVD and CVD coatings deposited onto edges of sintered cutting tools [J]. Archives of Metallurgy and Materials.2010,55(1):187-193.
    [40]邓建新,冯益华,艾兴.高速切削刀具材料的发展,应用及展望[J].机械制造.2002,40(1):11-15.
    [41]Su J F, Yu D, Nie X, et al. Inclined Impact-sliding Wear tests of Ti(C, N) coatings on cemented carbide substrates [J]. Surface and Coatings Technology.2011, 206(7):1998-2004.
    [42]邓建新,钮平章,王景海,等.“软”涂层刀具的发展与应用[J].工具技术.2005,39(3):10-12.
    [43]Julthongpiput D, Ahn H S, Sidorenko A, et al. Towards self-lubricated nanocoatings [J]. Tribology International.2002,35(12):829-836.
    [44]Polcar T, Evaristo M, Cavaleiro A. Comparative study of the tribo logical behavior of self-lubricating W-S-C and Mo-Se-C sputtered coatings [J]. Wear.2009,266(3): 388-392
    [45]寇自力.超硬刀具的发展与应用[J].工具技术.2000,34(8):6-8.
    [46]陈定一,孙楠.超精金刚石刀具的特点及应用[[J].新技术新工艺.2008,(9):43-46.
    [47]李长河,丁玉成,侯亚丽.高速切削刀具材料[J].汽车工艺与材料.2009,(3):47-53.
    [48]Sahin Y. Comparison of tool life between ceramic and cubic boron nitride (CBN) cutting tools when machining hardened steels [J]. Journal of Materials Processing Technology.2009,209(7):3478-3489.
    [49]Godoy De V A A, Diniz A E. Turning of interrupted and continuous hardened steel surfaces using ceramic and CBN cutting tools [J]. Journal of Materials Processing Technology.2011,211(6):1014-1025.
    [50]Fujisaki K, Yokota H, Furushiro N, et al. Development of ultra-fine-grain binderless CBN tool for precision cutting of ferrous materials [J]. Journal of Materials Processing Technology.2009,209(15):5646-5652.
    51] Ozel T, Thepsonthi T, Ulutan D, et al. Experiments and finite element simulations on micro-milling of Ti-6A1-4V alloy with uncoated and CBN coated micro-tools [J]. CIRP Annals-Manufacturing Technology.2011,60(1):85-88.
    52] Xu C H, Feng Y M, Zhang R B, et al. Wear behavior of Al2O3/Ti (C, N)/SiC new ceramic tool material when machining tool steel and cast iron [J]. Journal of Materials Processing Technology.2009,209(10):4633-4637.
    53] Grzesik W. Wear development on wiper Al2O3-TiC mixed ceramic tools in hard machining of high strength steel [J]. Wear.2009,266(9-10):1021-1028.
    54] Senthil K A, Raja D A, Sornakumar T. The effect of tool wear on tool life of alumina-based ceramic cutting tools while machining hardened martensitic stainless steel [J]. Journal of Materials Processing Technology.2006, 173(2):151-156.
    55] Senthil K A, Raja D A, Sornakumar T. Wear behaviour of alumina based ceramic cutting tools on machining steels [J]. Tribology International.2006,39(3): 191-197.
    [56]Senthil K A, Raja D A, Sornakumar T. Machinability of hardened steel using alumina based ceramic cutting tools [J]. International Journal of Refractory Metals and Hard Materials.2003,21(3-4):109-117.
    [57]Aruna M, Dhanalakshmi V, Mohan S. Wear analysis of ceramic cutting tools in finish turning of Inconel 718 [J]. International Journal of Engineering Science and Technology.2010,2(9):4253-4262.
    [58]Altin A, Nalbant M, Taskesen A. The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools [J]. Materials & Design.2007, 28(9):2518-2522.
    [59]Kitagawa T, Kubo A, Maekawa K. Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti6A16V2Sn [J]. Wear.1997,202(2): 142-148.
    [60]Zhao J, Deng J X, Zhang J H. Failure Mechanisms of a Whisker-reinforced ceramic tool when machining nickel-based alloys [J]. Wear.1997,208(1-2): 220-225.
    [61]Narutaki N, Yamane Y, Hayashi K, et al. High-speed machining of Inconel 718 with ceramic tools [J]. CIRP Annals-Manufacturing Technology.1993,42(1): 103-106.
    [62]Zheng G M, Zhao J, Gao Z J, et al. Cutting performance and wear mechanisms of sialon-Si3N4 graded nano-composite ceramic cutting tools [J]. The International Journal of Advanced Manufacturing Technology.2012,58(1-4):19-28.
    [63]王新永,于启勋,庞思勤.高温合金切削中刀具的合理选用[J].航空制造技术.2008,(23):52-55.
    [64]Vagnorius Z, Sorby K. Effect of high-pressure cooling on life of SiAlON tools in machining of Inconel 718 [J]. The International Journal of Advanced Manufacturing Technology.2011,54(1-4):83-92.
    [65]Nalbant M, Altm A, Gokkaya H. The Effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys [J]. Materials & Design.2007,28(4):1334-1338.
    [66]张国军,金宗哲.颗粒增韧陶瓷的增韧机理[J].硅酸盐学报.1994,22(3):259-269
    [67]赵宏,金宗哲.颗粒增强复相陶瓷残余应力和增韧机制分析[J].硅酸盐学报.1996,24(5):491-497.
    [68]Niihara K. New design cincept of structural ceramics-ceramic nanocomposites [J]. Journal of Ceramic Society of Japan.1991,99(10):974-982.
    [69]Niihara K, Nakahira A. Strengthening of oxide ceramics by SiC and Si3N4 dispersions [C]. Ceramic Materials and Components for Engines, Las Vegas, Wiley Online Library,1988:30-35.
    [70]李理,杨丰科.纳米颗粒复合陶瓷材料[J].材料导报.1996,(4):67-73.
    [71]Choi S M, Awaji H. Nanocomposites-a new material design concept [J]. Science and Technology of Advanced Materials.2005,6(1):2-10.
    [72]Sun X, Li J G, Guo S, et al. Intragranular particle residual stress strengthening of Al2O3-SiC nanocomposites [J]. Journal of the American Ceramic Society.2005, 88(6):1536-1543.
    [73]Ohji T, Jeong Y K, Choa Y H, et al. Strengthening and toughening mechanisms of ceramic nanocomposites [J]. Journal of the American Ceramic Society.1998,81(6): 1453-1460.
    [74]Gong J H, Miao H Z, Zhao Z, et al. Effect of TiC particle size on the toughness characteristics of Al2O3-TiC composites [J]. Materials Letters.2001,49(3-4): 235-238.
    [75]Xu C H. Effects of particle size and matrix grain size and volume fraction of particles on the toughening of ceramic composite by thermal residual stress [J]. Ceramics International.2005,31(4):537-542.
    [76]宋世学,艾兴,赵军Al2O3/TiC纳米复合刀具材料的制备及切削性能研究[J].中国机械工程.2003,14(17).1523-1526.
    [77]周咏辉.A1203基纳米复合陶瓷刀具材料的研制及切削性能研究[D].济南:山东大学博士学位论文.2009:130,20-21.
    [78]邓建新,张希华,李剑峰,等.TiB2增强Al203陶瓷刀具高速干切削摩擦磨损性能[J].摩擦学学报.2004,24(3):197-201.
    [79]杨统春.TiB2-(W,Ti)C复合陶瓷刀具材料的研制及切削性能研究[D].济南:山东大学硕士学位论文.2013:59.
    [80]Zou B, Huang C Z, Song J P, et al. Effects of sintering processes on mechanical properties and microstructure of TiB2-TiC+8wt% nano-Ni composite ceramic cutting tool material [J]. Materials Science and Engineering:A.2012,540: 235-244.
    [81]Gu M L, Huang C Z, Zou B, et al. Effect of (Ni, Mo) and TiN on the microstructure and mechanical properties of TiB2 ceramic tool materials [J]. Materials Science and Engineering:A.2006,433(1):39-44.
    [82]Wei G C, Becher P F. Improvements in mechanical properties in SiC by the addition of TiC particles [J]. Journal of the American Ceramic Society.1984,67(8): 571-574.
    [83]Shi R X, Jia L I, Wang D Z, et al. Mechanical properties and thermal shock resistance of Al2O3-TiC-Co composites [J]. Journal of materials engineering and performance.2009,18(4):414-419.
    [84]李广海,江安全.添加纳米Al2O3对Al2O3陶瓷增韧和增强的影响[J].金属学报.1996,32(12):1285-1288.
    [85]新原皓一.Nanostructure design and mechanical properties of ceramic composites[J].粉体および粉末冶金.1990,37(2):348-351.
    [86]薛强,艾兴,赵军,等.纳米TiC对Si3N4基复合陶瓷材料性能和微观结构的影响[J].山东大学学报(工学版).2008,38(3):69-72.
    [87]Luo Y, Li S, Pan W, et al. Fabrication and mechanical evaluation of SiC-TiC nanocomposites by SPS [J]. Materials Letters.2004,58(1):150-153.
    [88]Lin M T, Chen G R, Yang Y X, et al. Microstructure and room temperature mechanical properties of β-sialon/SiC nanocomposites [J]. Materials Science and Engineering:A.2006,433(1):329-333.
    [89]Zou B, Huang C Z, Liu H L, et al. Preparation and characterization of Si3N4/TiN nanocomposites ceramic tool materials [J]. Journal of Materials Processing Technology.2009,209(9):4595-4600.
    [90]Zhao J, Ai X, Lu Z. Preparation and characterization of Si3N4/TiC nanocomposite ceramics [J]. Materials Letters.2006,60(23):2810-2813.
    [91]Guo X Z, Yang H, Zhang L G, et al. Sintering behavior, microstructure and mechanical properties of silicon carbide ceramics containing different nano-TiN additive [J]. Ceramics International.2010,36(1):161-165.
    [92]Cao M, Wang S, Han W. Influence of nanosized SiC particle on the fracture toughness of ZrB2-based nanocomposite ceramic [J]. Materials Science and Engineering:A.2010,527(12):2925-2928.
    [93]Zhao J, Yuan X L, Zhou Y H. Processing and characterization of an Al2O3/WC/TiC micro-nano-composite ceramic tool material [J]. Materials Science and Engineering:A.2010,527(7-8):1844-1849.
    [94]Dong Y L, Xu F M, Shi X L, et al. Fabrication and mechanical properties of nano-/micro-sized Al2O3/SiC composites [J]. Materials Science and Engineering: A.2009,504(1-2):49-54.
    [95]刘含莲.多元多尺度纳米复合陶瓷刀具材料的研制及切削性能研究[D].济南:山东大学博士学位论文.2005:68-39.
    [96]肖守荣.多元多尺度硼化钛基陶瓷刀具研制及切削性能研究[D].济南:山东大学硕士学位论文.2008:68-70.
    [97]Teng X Y, Liu H L, Huang C Z. Effect of A12O3 particle size on the mechanical properties of alumina-based ceramics [J]. Materials Science and Engineering:A. 2007,452:545-551.
    [98]周咏辉,艾兴,赵军,等.A12O3/(W, Ti)C纳米复合陶瓷材料的力学性能与强韧化机理[J].山东大学学报(工学版).2008,38(1):1-4.
    [99]费玉环Al2O3-TiC-TiN陶瓷刀具的研制及其切削性能研究[D].济南:山东大学博士学位论文.2012:132-134.
    [100]吕志杰.高性能Si3N4/TiC纳米复合陶瓷刀具材料的研制与性能研究[D].山东大学博士学位论文.2005:107-110.
    [101]Liu N, Xu Y D, Li H, et al. Effect of nano-micro TiN addition on the microstructure and mechanical properties of TiC based cermets [J]. Journal of the European Ceramic Society.2002,22(13):2409-2414.
    [102]黄传真,艾兴.新型复相陶瓷刀具材料JX-2-Ⅰ协同增韧补强机理的研究[J].陶瓷学报.1997,18(4):200-204.
    [103]邓建新,艾兴.SiC晶须增韧Al203陶瓷组成优化及其断裂行为的研究[J].材料科学与工程.1995,1(13):33-40.
    [104]崇学文.碳热还原合成晶须增韧陶瓷刀具研究[D].济南:山东大学博士学位 论文.2011:114-115.
    [105]Zhao G L, Huang C Z, Liu H L, et al. Preparation of in-situ growth TaC whiskers toughening Al2O3 ceramic matrix composite [J]. International Journal of Refractory Metals and Hard Materials.2012,36:122-125.
    [106]曹玉军,刘杰.SiC晶须增韧WC陶瓷刀具材料的研究[J].硬质合金.2005,22(3):161-166.
    [107]罗学涛,陈小君,黄前军,等.定向SiC晶须增韧Si3N4陶瓷的制备及热震性能研究[J].无机材料学报.2004,19(3):553-558.
    [108]丁燕鸿.SiC晶须增韧Ti(C,N)基金属陶瓷复合材料研究[D].长沙:中南大学硕士学位论文.2006:47-48.
    [109]黄传真,孙静,孙高祚,等.ZrO2/Al2O3陶瓷刀具材料的增韧补强机理分析[J].机械工程师.2003,(8):3-6.
    [110]Zhao Z M, Zhang L, Zheng J,et al. Microstructures and mechanical properties of Al2O3/ZrO2 composite produced by combustion synthesis [J]. Scripta Materialia. 2005,53(8):995-1000.
    [111]兰俊思,丁培道,黄楠.SiC晶须和Ti(C, N)颗粒协同增韧A1203陶瓷刀具的研究[J].材料科学与工程学报.2004,22(1):59-64.
    [112]Zou B, Huang C Z, Chen M, et al. Study of the mechanical properties, toughening and strengthening mechanisms of Si3N4/Si3N4w/TiN nanocomposite ceramic tool materials [J]. Acta Materialia.2007,55(12):4193-4202.
    [113]黄传真,艾兴.新型复相陶瓷刀具材料JX-2-I协同增韧补强机理的研究[J].中国陶瓷.1997,18(4):200-204.
    [114]Deng J X, Liu L L, Liu J H, et al. Failure mechanisms of TiB2 particle and SiC whisker reinforced Al2O3 ceramic cutting tools when machining nickel-based alloys [J]. International Journal of Machine Tools & Manufacture.2005, 45(12-13):1393-1401.
    [115]Ostrovoy D, Orlovskaya N, Kovylyaev V, et al. Mechanical properties of toughened Al2O3-ZrO2-TiN ceramics [J]. Journal of the European Ceramic Society.1998,18(4):381-388.
    [116]林广涌,吴柏源,雷廷权,等.ZrO2增韧Al2O3/SiCw陶瓷复合材料研究[J].华南理工大学学报(自然科学版).1996,24(7):83-87.
    [117]蒋阳,许煜汾.SiC晶须补强ZTA(Y)陶瓷基复合材料的研究[J].合肥工业大学学报(自然科学版).1994,17(1):125-128.
    [118]黄传真.新型复相陶瓷刀具材料研制及切削可靠性研究[D].济南:山东工业大学博士学位论文.1994:123-124.
    [119]邹斌.新型自增韧氮化硅基纳米复合陶瓷刀具及性能研究[D].济南:山东大学博士学位论文.2006:142-145.
    [120]李振红.纳米TiN改性TiC基金属陶瓷材料性能及刀具切削性能的研究[D].合肥:合肥工业大学.2002:82-84.
    [121]郑光明Sialon-Si3N4梯度纳米复合陶瓷刀具的研制及高速切削性能研究[D].济南:山东大学博士学位论文.2012:107-109.
    [122]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社.1993:96-98.
    [123]郭景坤,诸培南.复相陶瓷材料的设计原则[J].硅酸盐学报.1996,24(1):7-17.
    [124]张国军,岳雪梅.颗粒增韧陶瓷裂纹扩展微观过程[J].硅酸盐学报.1995,23(4):365-372.
    [125]Faber K T, Evans A G. Crack deflection processes-Ⅰ.theory [J]. Acta Metallurgica. 1983,31(4):565-576.
    [126]Faber K T, Iwagoshi T, Ghosh A. Toughening by stress-induced microcracking in two-phase ceramics [J]. Journal of the American Ceramic Society.1988,71(9): 399-401.
    [127]Maglev D J, Winholtz R A, Fabe K T. Residual stresses in a Wo-phase microcracking ceramic [J]. Journal of the American Ceramic Society.1990,73(6): 1641-1644.
    [128]卜景龙,刘继富.陶瓷基复合材料微观结构设计[J].河北陶瓷.1996,24(1): 3-5.
    [129]邓建新.添加TiB2的新型陶瓷刀具材料的开发及其磨损行为和应用研究[D].济南:山东工业大学博士学位论文.1995:67-68.
    [130]许崇海.复相陶瓷刀具材料设计、仿真及其应用研究[D].济南:山东工业大学.1998:72-79.
    [131]刘浩斌.颗粒尺寸分布与堆积理论[J].硅酸盐学报.1991,19(2):164-172
    [132]张金栋,施剑林.氧化铝粉料的颗粒级配对成型行为和烧结行为的影响[J].无机材料学报.1997,12(2):175-180.
    [133]Yerazunis S, Cornell S W, Wintner B. Dense random packing of binary mixtures of spheres [J]. Nature.1965, (207):835-837.
    [134]欧阳鸿武,刘咏,王海兵,等.球形粉末堆积密度的计算方法[J].粉末冶金材料科学与工程.2002,(2):87-92.
    [135]金宗哲,张国军.复相陶瓷增强颗粒尺寸效应[J].硅酸盐学报.1995,23(6):610-617.
    [136]杨庆生,陈浩然.复合材料的宏观性能与参数设计[J].力学与实践.1996,18(3):1-7.
    [137]刘更,刘天祥,张征,等.宏观-微观多尺度数值计算方法研究进展[J].中国机械工程.2005,16(16):1493-1499.
    [138]杜善义,王彪.复合材料细观力学[M].北京:科学出版社.1998:1-4.
    [139]Mura T. Micro-mechanics of defects in solids [M]. Spain:Springer.1987: 102-105.
    [140]吴林志,石志飞.含夹杂复合材料宏观性能研究[J].力学进展.1995,25(3):410-423.
    [141]Eshelby J D. The elastic field outside an ellipsoidal inclusion [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1959,252(1271):561-569.
    [142]Eshelby J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.1957,241(1226):376-396.
    [143]姚战军,郑坚,倪新华,等.颗粒增强复合材料有效弹性模量的预报[J].机械强度.2007,29(1):72-76.
    [144]钟国辉,倪新华,刘协权,等.含脱粘界面陶瓷颗粒增强金属基复合材料的弹性常数预报[J].兵器材料科学与工程.2010,33(4):7-10.
    [145]路晓波,刘协权,倪新华,等.局部脱粘界面陶瓷复合材料的有效刚度[J].硅酸盐通报.2009,28(B08):45-49.
    [146]赵颖华.界面损伤对颗粒增强复合材料弹性性能的影响[J].复合材料学报.1999,16(1):117-124.
    [147]Zhao Y H, Weng G J. Transversely isotropic moduli of two partially debonded composites [J]. International Journal of Solids and Structures.1997,34(4): 493-507.
    [148]Zhao Y H, Weng G J. Plasticity of a two-phase composite with partially debonded inclusions [J]. International Journal of Plasticity.1996,12(6):781-804.
    [149]李宝峰,刘协权,倪新华,等.纳米-相变陶瓷复合材料的有效刚度[J].稀有金属材料与工程.2007,36(A01):738-741.
    [150]刘协权,倪新华,刘晶芝,等.纳米陶瓷材料弹性模量的尺度效应[J].稀有金属材料与工程.2007,36(A02):131-133.
    [151]姚战军,郑坚,倪新华,等.椭球形陶瓷颗粒增强镍基合金复合涂层热膨胀系数预报[J].兵器材料科学与工程.2006,29(4):34-36.
    [152]Hutchinson J W, Suo Z G. Mixed mode cracking in layered materials [J]. Advances in Applied Mechanics.1992,29(63):191-195.
    [153]Budiansky B, Hutchinson J W, Evans A G. Matrix fracture in fiber-reinforced ceramics [J]. Journal of the Mechanics and Physics of Solids.1986,34(2): 167-189.
    [154]Seshadri S G, Srinivasan M, Keeler K M. Numerical computation of the toughening increments due to crack deflection in particulate composites [C]. Smother W.11th Annual Conference on Composites and Advanced Ceramic Materials:Ceramic Engineering and Science Proceedings, Malden MA,1987. Wiley Online Library.2008:671-684
    [155]伍章健,余寿文.含界面相效应的纤维增强复合材料桥联增韧力学分析[J].固体力学学报.1994,15(1):1-11.
    [156]Becher P F. Microstructural design of toughened ceramics [J]. Journal of the American Ceramic Society.1991,74(2):255-269.
    [157]倪新华,郑坚,康敬欣,等.含随机分布弧形微裂纹陶瓷复合材料的强度预报[J].稀有金属材料与工程.2007,36(A01):721-723.
    [158]何林,黄传真,黄勤,等.人工神经网络和优化方法相结合在复合材料研究中的应用[J].硅酸盐通报.2004,(1):85-87.
    [159]张蕾,黄传真,何林,等.人工神经网络在Al2O3-TiC复合陶瓷设计中的应用[J].机械工程材料.2002,26(11):7-9.
    [160]徐利华,黄勇,李建保,等.多层次微观复合陶瓷的力学性能和优化分析研究[J].复合材料学报.1998,15(2):42-47.
    [161]徐利华,丁子上.碳化硅与碳化硼粒子混合增强氧化铝基陶瓷的分阶段组分优化方法[J].硅酸盐学报.1998,26(1):14-19.
    [162]熊家炯.材料设计[M].天津:天津大学出版社.2000.1-32.
    [163]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社.2001.139,156,180-187.
    [164]Ni X H, Wang J Y, Wang T. Theoretical prediction and test for the elastic modulus of Ni base alloy ceramic grain composite coating[C]. Proceedings of 5th International Symposium an Test and Measurement, Shanghai,2003:2801-2802.
    [165]杨桂通.弹性力学[M].北京:高等教育出版社.1998:50.
    [166]杨光松.损伤力学与复合材料损伤[M].北京:国防工业出版社.1995:39-44.
    [167]宋世学,艾兴.陶瓷材料最大载荷尺寸效应的损伤力学分析[J].材料科学与工程.2002,20(3):390-392.
    [168]刘宁.TiC基金属陶瓷的组织,性能及发展[J].硬质合金.1992,9(3):166-172.
    [169]郑茂盛,金志浩.颗粒增强复合材料热应力分析的双层嵌套模型[J].中国科学(A辑).1994,24(12):1333-1340.
    [170]徐秉业,黄炎,刘信声,等.弹塑性力学及其应用[M].北京:机械工业出版社.1984:131-152.
    [171]Lin J S, Miyamoto Y, Tanihata K, Tanaka R. Toughening effects of WC/Co particles and compressive surface stress on (Al2O3-WC/Co)/TiC/Ni graded materials [J]. Journal of Materials Science.1998,33(4):869-876.
    [172]Kim B N, Wakayama S, Kawahara M. Characterization of 2-dimensional crack propagation behavior by simulation and analysis [J]. International Journal of Fracture.1995,75(3):247-259.
    [173]Shi J L, Lu Z L, Guo J K. Model Analysis of boundary residual stress and its effect on toughness in thin boundary layered yttria-stabilized tetragonal zirconia polycrystalline ceramics [J]. Journal of Materials Research.2000,15(3):727-732.
    [174]Taya M, Hayashi S, Kobayashi A S, et al. Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress [J]. Journal of the American Ceramic Society.2005,73(5):1382-1391.
    [175]郭庚辰.液相烧结粉末冶金材料[M].北京:化学工业出版社.2003:6-10.
    [176]施剑林.固相烧结-Ⅰ气孔显微结构模型及其热力学稳定性,致密化方程[J].硅酸盐学报.1997,25(5):499-513.
    [177]李荣久.陶瓷-金属复合材料[M].北京:冶金出版社.1995:98.
    [178]黄培云.粉末冶金原理.第二版[M].北京:冶金工业出版社.1982:310.
    [179]Zhang F C, Luo H H, Wang T S, et al. Stress state and fracture behavior of alumina-mullite intragranular particulate composites [J]. Composites Science and Technology.2008,68(15-16):3245-3250.
    [180]崔洪梅,刘宏,王继扬,等.纳米粉体的团聚与分散[J].机械工程材料.2004,28(8):38-41.
    [181]Teng X Y, Liu H L, Huang C Z. Effect of Al2O3 particle size on the mechanical properties of alumina-based ceramics [J]. Materials Science and Engineering:A. 2007,452-453:545-551.
    [182]Lv Z J, Ai X, Zhao J. Preparation of agglomerate-free starting powders for TiC-reinforced β-SiAlON nanocomposites [J]. Materials Science Forum.2004, 471-472:282-286.
    [183]艾兴,萧虹.陶瓷刀具切削加工[M].北京:机械工业出版社.1988:46.
    [184]Evans A G, Charles E A, Fracture toughness determinations by indentation [J]. Journal of AmericanCeramic Society.1976,59(7-8):371-372.
    [185]Gong J H, Miao H Z, Zhao Z. Influence of TiC-particle-size on the fracture toughness of Al2O3-30wt.% TiC composites [J]. Journal of the European Ceramics Society.2001,21(13):2377-2381.
    [186]Li J, Yin Y S, Shi R X,et al. Microstructure and mechanical properties of Al2O3-TiC-4vol.% Co composites prepared from cobalt coated powders [J]. Surface and Coatings Technology.2006,200(12-13):3705-3712.
    [187]Li J, Sun J L, Huang L P. Effects of ductile cobalt on fracture behavior of Al2O3-TiC ceramic [J]. Materials Science and Engineering A.2002,323(1-2): 17-20.
    [188]Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions [J]. Acta Metallurgica.1973,21(5):571-574.
    [189]Davide R W. Mechanical behaviour of ceramics [M]. London:Cambridge University Press.1979:76-89.
    [190]Sun X D, Yeomans J A. Ductile phase toughened brittle materials [J]. Journal of Materials Science & Technology.1996,12(2):124-134.
    [191]黄传真,艾兴.加工镍基合金时切削力和切削温度的特点[J].工具技术.1995,29(5):35-37.
    [192]Kim Y W, Chun Y S, Nishimura T, et al. High-temperature strength of silicon carbide ceramics sintered with rare-earth oxide and aluminum nitride [J]. Acta Materialia.2007,55(2):727-736.
    [193]Boniecki M, Librant Z, Wajler A, et al. Fracture toughness, strength and creep of transparent ceramics at high temperature [J]. Ceramics International.2012,38(6): 4517-4524.
    [194]Zou J, Zhang G J, Hu C F, et al. High-temperature bending strength, internal friction and stiffness of ZrB2-20vol% SiC ceramics [J]. Journal of the European Ceramic Society.2012,32(10):2519-2527.
    [195]Kondo N, Suzuki Y, Miyajima T, et al. High-temperature mechanical properties of sinter-forged silicon nitride with ytterbia additive [J]. Journal of the European Ceramic Society.2003,23(5):809-815.
    [196]Shi R. X, Wang J R, Li J, et al. Oxidation behavior of micro-sized Al2O3-TiC-Co composites prepared from cobalt-coated powders [J]. International Journal of Refractory Metals and Hard Materials.2011,29(6):692-697.
    [197]张全生,武田保雄.锰酸镧电极渗透钴改性的机制研究[J].中国稀土学报.2007.25(2):183-188.
    [198]李建军,李小云,刘润静,等.废钴钼低变催化剂中回收钴的一种新工艺[J].矿产综合利用.2001,(1):41-43.
    [199]张清纯.陶瓷材料的力学性能[M].北京:科学出版社.1987:85-86.
    [200]Ohji T, Yamauchi Y. Diffusional crack growth and creep rupture of silicon carbide doped with alumina [J]. Journal of the American Ceramic Society.1994, 77(3):678-682.
    [201]金宗哲,包亦望,岳雪梅.结构陶瓷的高温疲劳强度衰减理论[J].高技术通讯.1994,(12):31-36.
    [202]SINES G. Rationalized crack growth and time-to-fracture of brittle materials [J]. Journal of the American Ceramic Society.1976,59(7-8):370-371.
    [203]Teixeira E C, Piascik J R, Stoner B R, et al. Dynamic fatigue and strength characterization of three ceramic materials [J]. Journal of Materials Science: Materials in Medicine.2007,18(6):1219-1224.
    [204]Quinn G. Advanced structural ceramics:a round robin [J]. Journal of the American Ceramic Society.1990,73(8):2374-2384.
    [205]王建,金志浩.陶瓷材料的疲劳特性与寿命预测[J].航空材料学报.1991,11(1):55-66.
    [206]Barinov S M, Ivanov N V, Orlov S V, et al. Dynamic fatigue of ceramics based on aluminum oxide [J]. Refractories and Industrial Ceramics.1996,37(11): 375-377.
    [207]Wereszczak A A, Kirkland T P, Breder K, et al. High temperature dynamic fatigue performance of a hot isostatically pressed silicon nitride [J]. Materials Science and Engineering:A.1995,191(1):257-266.
    [208]马昌前.硅酸盐熔体的粘度,密度及其计算方法[J].地质科技情报.1987,6(2):142-150.
    [209]Kristin Breder, Tennery Victor J. Dynamic fatigue behavior of two SiC and a SiC reinforced Al2O3 at elevated temperatures [J]. Journal of the European Ceramic Society.1997, (17):1579-1586.
    [210]Clayton J D. A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science.2009,465(2101):307-334.
    [211]张清纯.结构陶瓷的高温蠕变[J].硅酸盐通报.1988,(4):36-48.
    [212]刘含莲,黄传真,朱洪涛,等.A1203基纳米复合陶瓷刀具切削不锈钢的实验研究[J].制造技术与机床.2011,(1):30-32.
    [213]李凯玲,宋强.机械制造技术基础[M].济南:山东科学技术出版社.2005:36.
    [214]于静.高速切削淬硬模具钢切削机理的研究[D].大连:大连理工大学.2012:20,25-26,20.
    [215]宋金鹏.硼化钛基复相陶瓷刀具及其失效机理研究[D].济南:山东大学博士学位论文.2012:93.
    [216]刘琳.TiB2-Ti(C,N)复合陶瓷刀具材料研制及切削性能研究[D].济南:山东大学硕士学位论文.2012:47.
    [217]李兆前,田志仁.刀具磨损的随机模型及其在刀具可靠性试验中的应用[J]. 机械工程学报.1994,30(4):7-11.
    [218]El Wardany T I, Elbestawi M A. Prediction of tool failure rate in turning hardened steels [J]. The International Journal of Advanced Manufacturing Technology. 1997,13(1):1-16.
    [219]李兆前,邓建新.基于刀具可靠性的切削用量优化[J].机械工程学报.1995,31(6):6-10.
    [220]许崇海,艾兴.氧化铝基陶瓷刀切削可靠性研究:基于磨损的刀具可靠性[J].工具技术.1998,32(1):4-7.
    [221]刘战强,李兆前.硬质合金刀具寿命分布规律的研究[J].硬质合金.1995,12(1):7-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700