纳米三坐标测量机测控系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来纳米三维测量技术引起了广泛关注。由新型加工技术如MEMS,LIGA制备的微型工件往往具有介观尺度的大小,而具有纳米级的精度要求。传统的三坐标测量机(CMM)不具备如此高精度的测量能力;一些新型的测头,如SPM,只具有单轴测量能力。在此背景下,纳米三坐标测量机(nano-CMM)的概念应运而生。
     本文基于一种低成本的纳米三坐标测量机,提出一系列与控制有关的关键技术,包括高精度位移传感器的研发使用、信号在线修正和细分技术、自适应运动控制技术、非接触和接触式测头的标定和控制技术、多轴同动控制技术研究以及系统软件开发构想。
     本研究开发并改进了一种新型的高精度位移传感器线性衍射光栅干涉仪(LDGI,Linear Diffraction Grating Interferometer),以多普勒相移为原理,利用全息光栅产生衍射,通过一系列分光、转折和偏振,使±1级衍射光发生干涉,通过解相位可以获得位移信息。通过对信号进行实时修正和细分,LDGI可获得小于1nm的分辨率。通过和激光干涉仪的比对实验,该系统在15毫米测量范围内,重复性在10nm以内。
     为了兼顾测量效率和驱动分辨率,同时考虑简化结构要求,本研究采用一种基于压电陶瓷元件的超声波马达HR4(Nanomotion Co.)作为驱动器,通过整合其不同速度的三种驱动模式,实现多级驱动。为确保系统的稳定性,本文提出一种基于BP神经网络的PID速度控制策略。该控制策略以LDGI作为反馈,不仅可以获得稳定的驱动速度,还可以长时间锁定位置,以补偿机械元件的变形和压电陶瓷元件的蠕变效应。实验发现,该控制策略可获得1纳米的定位稳定性。
     测头的标定和控制是本文涉及的另一项关键技术。使用HR4和LDGI,可对非接触测头进行标定,并可以对工件表面形貌进行扫描。对于接触式纳米测头,由于灵敏度极高,且响应范围很窄,本文提出了一种二次触发的控制,即高速逼近,中速一次触发和低速二次触发的整合。结合一个高灵敏度的开关电路,该控制策略可对测头的触发重复性、预行程等关键参数进行标定,也可以用于实际触发控制。实验证明,该策略可以获得10nm以内的定位重复性。
     基于以上关键技术,多轴同动的控制技术被开发。此外,纳米三坐标测量机系统软件构架也在本文中提出。
     综上所述,本文的主要工作及创新点包括:
     1、高容许度和稳定性的光栅干涉测量技术。
     2、基于超声波马达和光栅干涉技术的纳米定位控制技术。
     3、用于纳米测量的光栅信号实时处理技术。
     4、纳米三坐标测量机测头的标定控制和触发控制技术。
     5、纳米级精度的两轴同动控制技术。
In recent years, nano 3D measurement has received a great deal of attention. Many fine components recently fabricated by micro system processes, such as MEMS, LIGA or micro machining, are in overall dimensions within meso scale and required accuracy of nanometer scale. Conventional coordinate measuring machines (CMM) are no longer capable of 3D measurements of these fine parts. Some advanced probes, such as SPM, are capable for only 1D sensing to nanometre resolution. Under this background the concept of nano-CMM has been proposed.
     With a low-cost nano-CMM a series of key technologies are proposed, including high-resolution sensor development, real-time signal correction and subdivision, robust motion control scheme, non-contact and touch-trigger probe calibration and control, two-axis synchronous control and the idea of system software development.
     A high-resolution displacement sensor LDGI (Linear Diffraction Grating Interferometer) based on the grating Doppler effect, is developed and improved in this study. With a series of polarization and split effects, properly interfering these two light beams leads to modulation similar to Doppler frequency shift, which can be translated to displacement measurement via phase decoding. With real-time signal correction and subdivision, the resolution can reach 1nm. By calibration experiments with laser interferometer, in the travel length of 20mm, the repeatability LDGI is proved within 10nm.
     For the driving resolution and efficiency, as well as the simplification requirement, a piezoelement-based ultrasonic motor HR4 (Nanomotion Co.) is employed in this study. By integrating three driving modes of HR4, a multi-scale system is built. For the system stability, a BPNN (Back-Propagation Neural Network)-based PID control scheme is developed to generate low-speed motion. With the LDGI feedback, the control system can not only get a stable motion but can also compensate the deformation of the mechanic system and creep effect of the piezoelements. This control scheme can thus lock the target position for long time. Experiments show that the stability of this positioning control is within 1nm.
     Probe control and calibration are also the key points in this study. With the system of HR4 and LDGI, the calibration of non-contact probes can be carried out. Besides, a surface scanning software is developed in this way. For touch-trigger probes, because of the high sensitivity and narrow responsible range, conventional trigger control method cannot work. A double-trigger method is developed, that is, high speed for approaching, medium speed for first trigger, and low speed for second trigger. With a high-sensitivity switching circuit, the key parameters such as pretravel length and trigger repeatability can be calibrated exactly. This method can also be used for practical trigger control. Experiments show that with this double-trigger method the repeatability is within 10nm.
     Based on the above key technologies multi-axis motion control is developed. Besides, the systematic software is studied.
     From the above, this thesis includes the innovative points as follow:
     1. Grating interferometry with high tolerance and stability.
     2. Nanopositioning control based on ultrasonic motor and grating interferometry.
     3. Grating signal process for nanomesurement.
     4. Calibration and trigger control for nano-CMM probe.
     5. Multi-axis nanopositioning control based on ultrasonic motor and grating intreferometry.
引文
[1] U. Persson. Measurement of surface roughness using infrared scattering [J]. Measurement, Vol. 18, No.2, pp.109-116,1996.
    [2] Katerina Moloni. Ensuring nanopositioner accuracy requires sensor monitoring and careful x-y stage design [J], Optical Engineering, USA. 2002, 6: 40-41.
    [3] Woody, S.C. and Smith S. T. Resonance-based vector touch sensors[J], Precision Engineering, Vol. 27, No. 3, 2003, pp. 221-233.
    [4] McKeown P. Nanotechnology-special article[R]. Proc.Nano-metrology in Precision Engineering, Hong Kong, 24–25 November ,1998: pp 5–55.
    [5] K. Takamasu, M. Fujiwara, H. Naoi. Friction drive system for nano-CMM [C]. Proc. Mechatronics 2000, 21-23 Sep. 2000, Warsaw, Poland.
    [6] K. Takamasu, Masahiko Hiraki, Kazuhiro Enami. Development of Nano-CMM and Parallel-CMM: CMM in the 21th Century [R]. International Dimensional Metrology Workshop, May 10-13, 1999 Tennessee, USA.
    [7] M. Fujiwara, A. Yamaguchi, K. Takamasu. Evaluation of stages of Nano-CMM, Initiatives of precision engineering at the beginning of millennium [M]. Kluwer Academic Publishers (Netherlands). 2001, pp. 634-638.
    [8] K. Takamasu, S. Ozawa, T. Asano. Basic Concepts of Nano-CMM [R]. The Japan-China Bilateral Symposium on Advanced Manufacturing Engineering, 1996.
    [9] John A Kramar. Nanometre resolution metrology with the Molecular Measuring Machine [J]. Meas. Sci. Technol. 16, 2005: 2121–2128.
    [10] Leach. R K, Murphy. J. The design of co-ordinate measuring probe for characterising truly three-dimensional micro-structures [C]. 4th euspen International Conference, Glasgow, UK, 31 May 2004 - 2 June 2004: 230-231.
    [11] G.N.Peggs, A.J.Lewis, S. Oldfield. Design for a compact High-Accuracy CMM [J], Annals of the CIRP, Vol.48, No.1, 1999: pp.417-420.
    [12] Uwe Brand, Thomas Kleine-Besten, Heinrich Schwenke. Development of a special CMM for dimensional metrology on microsystem components[R]. ASPE 15th Annual Meeting in Scottsdale (Arizona), 22th-27th, October 2000.
    [13] E. B. Hughes, Wilson, A., G. N. Peggs. Design of high accuracy CMM based on multilaterationtechniques [J]. Annals of the CIRP 49 (2000), pp.391-394.
    [14] Uwe Brand. Metrology for Microsystems, Physikalisch-Technische Bundesanstalt Braunschweig, [M], December 1, 1998, Potsdam, Germany.
    [15] Specification of the Nano Measuring and Positioning Machine, SIOS Corporation, 2001.
    [16] K.C. Fan, C.L. Liu, P. T. Wu, et al. The Structure Design of a Micro Precision CMM with AbbéPrinciple [C]. Proceedings of the 35th International MATADOR Conference, 2007: 297-300.
    [17] Chen Xiao-hui, Zhao Yang, Li Da-cheng. Review on Optical Nanometrology [J]. Optical Technique.1999,3:74-78
    [18] Fan, K.C and Chen, Y.J. A Study on Digital Subdivision of Linear Optical Encoder for Nanopositioning [C], 6th International Conference on Frontiers of Design and Manufacturing (ICFDM), Xi’an China, June 21-23, 2004.
    [19]周维来,光栅干涉仪在高精密测量中的技术和应用[J],工具技术,1994,28(1):37-42。
    [20]蒋向前,李柱,谢铁邦,全息光栅干涉法测量曲面形貌的理论研究[J].华中科技大学学报,1994,22(2):60-64。
    [21]肖刚,谢铁邦,王选择,一种小型相位光栅干涉式( PGI)微位移传感器[J],计量技术,2005(1):7-9。
    [22] K.C. Fan, C.D. Su, J.I. Mou. Error analysis for a diffraction grating interferometric stylus probing system[J]. Meas. Sci. Technol. 2001(12): 482–490.
    [23] Y. Jourlin, J. Jay and O. Parriaux. Compact diffractive interferometric displacement sensor in reflection [J], Prec. Eng, 2002(26): 1-6.
    [24]王生怀,杨旭东,谢铁邦.双衍射光栅位移传感器原理及应用[J],计量技术,2008(6),7-10。
    [25]张兴华,王克逸.光栅信号电阻链高倍细分法的误差校正的研究[J].电子测量技术,2008,31(7):35-19。
    [26]张善钟.计量光栅技术[M].北京,机械工业出版社,1985。
    [27] Fan, K.C, Chen, Y.J. A Study on Digital Subdivision of Linear Optical Encoder for Nanopositioning [C]. 6th International Conference on Frontiers of Design and Manufacturing (ICFDM), Xi’an China, 2004.
    [28] K.P.Brich. Optical Fringe Subdivision with Nanometric Accuracy [J]. Precision Engineering, 1990, 12 (4): 195-198.
    [29]刘文文,费业泰.高精度的光栅信号细分算法[J],应用科学学报,1999, 17(1): pp70-74.
    [30] H, Shakir. Multiscale Control for Nanoprecision Positioning Systems With Large Throughput [J], IEEE Trans. on control system technology, 2007, 15(5): 945-951.
    [31] P. I. Ro, P. I. Hubbel. Nonlinear micro-dynamic behavior of a ballscrew driven precision slide system[J], Prec. Eng., 1992, vol. 14, no. 4: 229–236.
    [32] C. R. Steinmetz. Sub-micron position measurement and control on precision machine tools with laser interferometer[J]. Prec. Eng., 1990, vol.12, no.1: 12–24.
    [33] Y. Okazaki, S. Asano, T. Goto. Dual-servo mechanical stage for continuous positioning[J]. Int. J. Jpn. Soc. Prec. Eng.1993, vol.27, no.2: 172–173.
    [34] S. Sakuta et al. Precision dual positioning system [J], in Proc. SPIE v1334 Current Developments in Optical Engineering IV, San Diego,CA, 1990: 10–17.
    [35] K. Sato, Y. Murayama, S. Imada, and A. Shimokobe. An active lead screw mechanism—A lead screw with backlash control for ultra precision positioning [C], in Proc. ASPE 1992 Annual Meeting, Grenelefe, Florida, 1992: 112–115.
    [36] G. C. Joyce, G. C. Wilson. Micro-step motor [J], J. Phys. E, Sci. Instrum., 1969.vol. 2, no. 9: 661–663.
    [37] A.E.Gee, A“micro-incher”machine carriage drive with automatic feedback control of step-pitch, step-phase and inter-step positioning [J]. Prec. Eng., 1982,vol. 4: 85–91.
    [38] A. Hara, H. Takao, Y. Kunio, T. Sadayuki, and N. Keiji. Electromechanical translation device comprising an electrostrictive drive of a stacked ceramic capacitor type [P]. U. S. Patent 4 570 096, 1986.
    [39]张兆成,胡泓.MEMS微齿型尺蠖驱动器的研究进展[J].微特电机,2008(10):55-60。
    [40]于永坤,戴惠良,楚万秀.精密尺蠖压电进给装置步幅扩大机构的研究[J].机械设计与制造,2008(2):19-21。
    [41] T. Murata. Drive apparatus and motor unit using the same[P]. U.S. Patent 4 947 077, 1990.
    [42]袁易全.近代超声原理与应用[M] .南京:南京大学出版社,1996.
    [43]程存弟,马玉英,周光平,等.超声技术功率超声及其应用[M],西安:陕西师范大学出版社,1993.
    [44]陶永华,新型PID控制及其应用[M].北京,机械工业出版社,1998。
    [45]K.J.Arstrom. Self-tuning Controller Based Pole-zero Placement [C], Proc IEEE, 1980, 127(3): 126-129.
    [46]McCulloch.W.S, Pitts.W. A logical calculus of the idea immanent in Nervous Activity [J]. Bull Math. Biophysics. Vol.5. pp.115-133. 1943
    [47]Hophield J.J, Feinstein D.I, Parlmer R.G. Unlearning has a stabilizing effect in collective memories [J]. Nature, Vol.304. pp.158-159. 1988
    [48]Rumelhart D, McClell J. Parallel Distributed processing, Explorations in the Microstructure ofcognition [M]. Cambridge: Bradford Books, MIT Press. pp. Vol1-Vol2. 1986
    [49] J. Wang, L.Y Kang, B.G. Cao, Neural Network PID Control of a Distributed Power Generation System Based on Renewable Energy [J], Journal of Applied Science, 2005, 5(10): 1772-1776.
    [50] Geum-Bae Cho, Pyoung-Ho Kim. A precise control of AC servo motor using neural network PID controller [J],Current Science, 2005, vol. 89, No. 1: 23-29.
    [51] Fan. K.C, Cheng F, and Chen. Y.J, Nanopositioning Control on a Commercial Linear Stage by Software Error Correction [J]. Nanotechnology and Precision Engineering, 2006,Vol.4 No.1: 1-9.
    [52] Cheng. F, Fan, K.C and Fei. Y.T, A robust control scheme of nanopositioning driven by ultrasonic motor [C], Proceedings of the SPIE, 2008, Vol.7130: 71301O-71301O-6.
    [53]王伟丽.纳米三坐标测量机机械结构及接触式测头技术研究[D].合肥工业大学博士论文,2008。
    [54]石照耀,韦志会.精密测头技术的演变与发展趋势[J].工具技术,2007,41(2):3-8。
    [55] New Advances in Touch-trigger probe technology [R], Renishaw Corporation, 9 August 2005.
    [56] Vidic M, Harb S. M. Observations of Contact Measurements Using a Resonance-based touch sensor [J], Precison Engineering, 1998, Vol. 22, No. 1: 19-36.
    [57] F. Meili, M. Fracheboud, S. Bottinelli, etc. High precison , Low force 3D touch probe for measurements on small objects [R], European Int. Topical Conf., Achend, Germany, Extended abstract, 2003.
    [58] M.S. Kim, I.M. Choi, Y.K. Park, D.I. Kang. Atomic force microscope probe calibration by use of a commercial precision balance [J], Measurement, 2007, Vol.40, No.7/8: 741-745.
    [59]李源.MEMS压阻式三维微触觉测头及其在纳米测量机上的应用研究[D].天津大学博士论文,2007。
    [60]赵大博.MEMS压阻式微接触测头测试校准系统的研究[D].天津大学硕士论文,2007。
    [61] Fahlbusch. St, Mazerolle. S, Breguet. J.M, Steinecker. A, Agnus. J, P′erez. R and Michler. J. Nanomanipulation in a scanning electron microscope [J]. Mater. Process. Technol, 2005, 167: 371–82.
    [62] L. Chassagne, M. Wakim, S. Xu1, S. Topc?u, P. Ruaux, P. Juncar and Y. Alayli. A 2D nano-positioning system with sub-nanometric repeatability over the millimeter displacement range [J]. Meas. Sci. Technol, 2007(18): 3267–3272.
    [63] Takumi Miyashita, Aya Toyoshima, Shinnosuke Hirata, and Hisayuki Aoyama. Design and Development of Precision Micro Positioning Mechanism using Thin Wire Connected Piezoelectric Actuators [R], Asian Symposium for Precision Engineering and Nanotechnology 2009, Kokura, Kitakyushu, Japan.
    [64] K C Fan, Y T Fei, X F Yu, et al. Development of a low-cost micro-CMM for 3Dmicro/nano measurements [J]. Meas. Sci. Technol, 2006,17: 524–532
    [65] Fan Kuangchao, Wang Weili, Cheng Fang. Innovative design of a new CMM bridge[J]. Chinese Journal of Mechanical Engineering, Vol.17. No.2. 2004: 170-173。
    [66]王伟丽,范光照,程方.新型纳米级二维工作台的参数测试[J].机械制造, 2006, 44(2): 64-67.
    [67]王伟丽,范光照,刘玉圣.基于共平面二维工作平台的精密测量系统[J].中国计量学院学报. 2005, 16(4): 264-267.
    [68] Chen Y.J, Fan. K.C, Liu Y.S, Cheng F. A High precision focus probe for the quality assessment of grating pitch [J], Key Engineering Materials, Vol.339, 2007: 200-205
    [69]陈叶金.创新型微纳米测量探头机理的研究[D].合肥工业大学博士论文,2007。
    [70] F. L. Petrotti, L.S. Petrotti. Introduction to Optics [M], 2nd Ed., Prentice-Hall, Englewood Cliffs, 1996.
    [71]赵达尊,张怀玉.波动光学[M].宇航出版社,北京,1988。
    [72]孙长库,叶声华.激光测量技术[M].天津大学出版社,2001。
    [73]沈欣懋,高对位公差之微小化雷射绕射式光学尺的研制[D].台湾大学机械工程学系研究所硕士论文,2005。
    [74]李百堃.简易型高对位公差之雷射绕射式光学尺之研制[D].台湾大学机械工程学系研究所硕士论文,2007。
    [75]刘玉圣.高精度线性衍射光栅干涉仪的研制[D].合肥工业大学硕士论文,2006。
    [76] R. Guenther. Modern Optics [M]. John Wiley & Sons, 1990.
    [77] ORA, LightTools Users Guide, ORA Manual, 2000.
    [78]郁道银,谈恒英.工程光学(第二版)[M],机械工业出版社,北京:2006。
    [79] K. K. Tan, Neural Network-based Correction and Interpolation of Encoder Signals for Precision Motion Control [R]. AMC 2004 - Kawasaki, Japan, 2004.
    [80]张国雄.测控电路[M],机械工业出版社,北京:2008。
    [81]薜莲.数值计算方法[M],电子工业出版社,2007。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700