尺蠖直线电机驱动控制器的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尺蠖直线电机是模仿生物界尺蠖运动原理而得名,以压电元件为动力转换元件,将压电体的微小振动位移按照尺蠖原理形成连续的步进的精密位移输出。它是纳米级定位精度的步进直线电机,在航空航天、光纤对接、生物工程、显微外科、超精密加工等方面具有十分广阔的应用前景。它的驱动控制器是影响其精度的重要因素之一,因此设计出一种性能优异的驱动控制器对于提高尺蠖直线电机的精度具有十分重要的意义。
     本文围绕驱动控制器的设计展开论述。首先,文章通过对尺蠖直线电机原理及其驱动控制器国内外发展现状的研究,提出了信号发生器与压电驱动电源相结合的系统方案。
     同时,文章对驱动控制器的软硬件设计原理与方案进行了详细描述。驱动控制器的硬件由直流稳压模块、放大模块和控制模块三部分组成,实现产生和放大驱动信号的功能。它的软件是在DSP控制器上编写,以实现产生驱动信号、监测输出信号、选择驱动模式、设置驱动参数以及提示用户操作的功能。
     最后对研制出的样机进行了测试,其输出电压范围为0~200V,单路最大输出电流为240mA,最大输出功率144W,在负载5 F时频响为40Hz左右,纹波不大于200mV,线性度大于99.9%,分辨率在50mV左右。
Inchworm linear motor is the imitation of inchworm motion, while the piezoelectric element is a driving force conversion component. Inchworm linear motor is a nano-precision piezoelectric-driven linear stepper motor. It has very broad application prospects in the aerospace, fiber optic docking, bio-engineering, micro-surgery, ultra-precision machining and so on. Its drive controller is an important factor affecting the accuracy of an inchworm linear motor, so designing a drive controller of high performance is of great significance for improving the accuracy of an inchworm linear motor.
     This paper discusses the drive controller design. First of all, by researching the principle of inchworm linear motor and the status of research development of drive controller at home and abroad, the article puts forward a combination of the signal generator and piezoelectric-driven power as the system solution.
     At the same time, the article describes hardware and software designing principles and programs in detail. Drive controller hardware has three components from the DC voltage regulator module, amplifier module and controller module, to generate and amplifies the drive signals. Its software is prepared in the DSP controller to generate drive signals, monitor the output signals, select the drive modes, set the drive parameters and prompts the user to operate.
     Finally, the prototype developed by the article is tested, the output voltage range of 0 ~ 200V, single maximum output current of 240mA, the maximum output power of 144W, when the load 5 F frequency response of 40Hz or so, the ripple of less than 200mV, linearity of greater than 99.9%, a resolution of about 50mV.
引文
1杜志博.基于PWM开关控制的能量回收式压电陶瓷驱动电源的研究.哈尔滨工程大学硕士学位论文.2008:1-11.
    2赵宏伟.尺蠖型压电驱动器基础理论与试验研究.吉林大学博十学位论文,2006:5-86.
    3杨宜民,李传芳,程良伦.仿生型步进式直线驱动器的研究.机器人,1994,16(1):7-39.
    4赵淳生,李朝东,日本超声电机的产业化、应用和发展.振动、测试与诊断,1999, 19(1):1-7.
    5 F. X. Zhang, L. K. Wang. Modern piezoelectricity. Beijing: Science Press. 2001:1-5.
    6 R. B. Mrad, A. Abhari, and J. Zu. Control Strategies For an Inchworm Piezomotor. Proceedings of CIMSA lntemational Symposium on Computational Intelligence for Measurement Systems and Applications, 2003:205-210.
    7 F. W. Mi, X. H. Dai, Y. B. Shen. Research on the 0.1gm Precise and Long-work Range Positioning System. Chinese Journal of Scientific Instrument, 2001, 21(1): 89-92.
    8赵淳生.微小型压电超声马达的发展及其在航天领域中的应用前景.微小卫星应用微型技术讨论会议论文集.北京: 1997:289-298.
    9 J. N. Kudva. Overview of the DAPRA smart wing project. Journal of Intelligent Material Systems and Structures, 2004, 15: 261-269.
    10杨滁光,徐德好.多通道高精度压电陶瓷电源的研制.中国仪器仪表, 2009,(06):15-20.
    11冯晓光,赵万生,栗岩,刘晋春,管淑娟.减小压电陶瓷驱动电源纹波的一种有效方法.哈尔滨工业大学学报, 1997,(05):13-17.
    12袁炳元,袁诗璞.低纹波整流电源.电镀与环保, 2004,(05):10-13.
    13 D. Jonathan, C. Bartley. Development of high-rate, adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model. Journal of Intelligent Material Systems and Structures, 2004, 15: 279-292.
    14邝安祥,周桃生,何昌鑫,柴荔英.大功率压电陶瓷变压器的研究.科学通报,1989, (11):24-25.
    15 C. H. Li, Z. S. Ye, Y. G. Meng. Linear Inchworm Mechanism based on Giant Magnetostrictive and Piezoelectric Materials. Journal of Tsinghua University (Science and Technology), 45(8), 2005:1055-1057.
    16李宏.一种超低纹波组合开关电源的研制.电工技术杂志, 2000,(12):45-47.
    17 T. Galante, J. Frank, J. Bernard. Design, modeling, and performance of a high force piezoelectric inchworm motor. Journal of Intelligent Material Systems And Structures 1999, 10(12): 962-972.
    18杜正春,李春梅,颜景平.非线性迟滞现象的广义模型及其在压电微作动器中的应用.仪器仪表学报,1999,20(4):32-34.
    19贾宏光,吴一辉等.压电元件非线性特性研究的进展.压电与声光,2001,23(2):116-119.
    20张治国,高红.磁滞回线的小数指数幂曲线近似法.东北电力技术,1996,(3): 27-31.
    21 H. J. Pahk, D. S. Lee. Ultra precision positioning system for servo motor piezo-actuator using the dual loop and digital filter implementation. International Journal of Machine Tool and Manufacture, 41 (2001): 51- 63.
    22 Y. H. Yu, N. Naganathan, R. Dukkipati. Preisach modeling of hysteresis for piezoceramic actuator system. Mechanism and Machine Theory 37(2002):49- 59.
    23 K. H. Kim, K. F. Eman, S. M. Wu. Development of a forecasting compensatory control system for cylindrical grinding, Journal of Engineering for Industry, 1987, 109: 385-391.
    24诸葛晶昌,李淑清.大范围纳米驱动定位压电马达的研究.自动化与仪表, 2005,(01):21-22.
    25胡长德,温丽梅,幸祺.用于大范围纳米级压电微动台的驱动控制系统.电子测量技术, 2008,(08):30-31.
    26权哲浩,林玉池,仝凌志,金日光,赵美蓉.扫描隧道显微镜微动台的有限元分析与实验研究.传感器与微系统, 2008,(04):14-17.
    27曲东升,陈立国,李满天,乔遂龙.微定位仿生机器人的设计与实验研究.压电与声光, 2005,(05):35-38.
    28胡长德,赵美蓉,李咏强,高娟,朱砂.大行程纳米级压电微动工作台的设计与试验研究.传感技术学报, 2009,(06):18-19.
    29王皓,凌宁,曾志革.一种高分辨力、大行程微驱动压电马达.光电工程, 2003,(04).
    30 R. Venkataraman, P. S. Krishnaprasad. A novel algorithm for the invention of the preisach operator. SPIE, 2000, 3984: 404-414.
    31 P. Ge, M. Jouaneh. Tracking control of a piezoceramic actuator. IEEE Transactions on Control System Technology, 1996, 4(3): 209-216.
    32 G. Powers, Q. Xu, and J. Smith.“The next generation of Inchworm actuators evolves with nanometer resolution, multi-millimeter range and power-off hold”, Proc. SPIE 5388, 155 (2004):332-335.
    33 G .Powers, Q. Xu, and J. Smith.“Nanometer Resolution Actuator with Multi-Millimeter Range and Power-Off Hold”, Proc. SPIE 5054, 108 (2003):258-259.
    34 Q. Xu, G .Powers, and Y. Fisher.“Stability effects on optical component assembly and measurement using an automation system”, Proc. SPIE 4833, 284 (2002):81-83.
    35 Sebastian, Abu. Design methodologies for robust nano-positioning. IEEE Transactions on Control Systems Technology, v 13, n 6, November, 2005: 868- 876.
    36容格.集成运算放大器应用手册.北京:世界图书出版社,1990:15-50.
    37过柏龄.美国国家半导体公司线性集成电路特性与应用手册.上海:上海半导体器件研究所,1982:45-48.
    38 L. N. Sun, T. Zhang, H. G. Cai. Study of micro/nano positioning system. Proceeding of the 2nd Asia-Europe Congress on Mechatronics. Kitakyushu, Fukuoka, Japan, 1998: 486-490.
    39 W. S. Galinaitis, R. C. Rogers. Compensation for hysteresis using bivariate preisach models. SPIE, 1997, 3039: 538-547.
    40 T. Leigh, D. Zimmerman. An implicit method for the nolinear modeling and simulation of piezoceramic actuators displaying hysteresis. Smart Structures and Material, 1991, AMD-123: 57-63.
    41宋小中,刘正勋.微机控制电致伸缩微步距伺服系统的实验研究.压电与声光,1994,16(2): 48-52.
    42 L. R. Le, F. Claeyssen, F. Barillot, P. Bouchilloux. New linear piezomotors for high force/precise positioning applications. In: International Symposium on Smart Structures and Materials (SPIE), San Diego CA, USA, March, 1998:3329.
    43 L. Petit, R. Briot, P. Gonnard. A multi-mode piezomotor using a flextensional coupler. Smart Mater Struct 1999: 167–174.
    44 J. E. Miesner, J. P. Teter. Piezoelectric/Magnetostrictive resonant inchworm motor. In: International Symposium on Smart Structures and Materials (SPIE), Orlando, Florida, USA, February, 1994, vol.2190:520–527.
    45王勇,崔大付,许立宁,张璐璐.压电陶瓷微喷头数字驱动控制电源的设计.微纳电子技术, 2007,(Z1):32-34.
    46 B. Clephas, H. Janocha. New linear motor with hybrid actuator. In: International Symposium on Smart Structures and Materials (SPIE), San Diego CA, USA, February, 1997, vol. 3041:316–325.
    47 L. J. Bowen, T. Shrout, W. A. Schulze, J. W. Biggers. Piezoelectric properties of internally electroded PZT multilayers. Ferroelectrics, 1980, 27:59–62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700