酸预处理玉米秸秆与牛粪混合厌氧发酵试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用硫酸、乙酸和磷酸对青贮玉米秸秆进行预处理,与牛粪混合在高温条件下进行厌氧发酵产沼实验。通过对酸预处理秸秆的组成成分、酸预处理后混合原料厌氧发酵的产气特性与产物特性的研究,探讨了酸预处理对玉米秸秆和牛粪混合厌氧发酵的影响,以及提高玉米秸秆产沼效率和能力等问题。
     结果表明:(1)酸预处理增加了单位干重玉米秸秆中挥发性固体(VS)、脂肪、纤维素、半纤维素和木素所占比例,降低了玉米秸秆中蛋白质、淀粉和可溶性糖的比例,其中,乙酸预处理对蛋白质的影响最小,硫酸预处理对淀粉和半纤维素的影响最大,对脂肪和木素的影响最小,乙酸预处理对初始pH的影响小于硫酸和磷酸预处理;(2)三种酸预处理条件下,具有最佳产气效果的酸处理浓度分别为0%硫酸(即未经硫酸处理的对照组)、4%乙酸和6%磷酸,其累积产气量分别为50.72mL/g TS、71.70mL/g TS和75.26mL/g TS,0%硫酸、4%乙酸和4%磷酸试验组分别在反应第9、16和7天达到最高甲烷含量54.9%、63.6%和63.2%;(3)发酵过程中二氧化碳含量变化与甲烷趋势相似,但比甲烷含量提前降低,氢气含量的变化与之相反,硫酸和乙酸预处理延迟了产甲烷高峰的到来,而磷酸使之提前,并且乙酸和磷酸处理组中甲烷含量高于对照组;(4)发酵体系呈弱酸性,伴随发酵过程,总固体(TS)和VS含量降低,但降低程度因酸处理中酸的种类和浓度而异;(5)发酵过程中脂肪、纤维素、半纤维素和木素含量降低较大,但蛋白质、淀粉和可溶性糖含量降低较小,酸预处理增加了脂肪的降解量,乙酸和磷酸预处理对半纤维素降解作用明显,硫酸预处理有利于木素的降解,低浓度硫酸、高浓度的乙酸和磷酸预处理有利于淀粉和纤维素的降解。
     酸预处理玉米秸秆与牛粪混合厌氧发酵是提高生物能源产气效率的重要问题。本文在分子水平上对酸处理农作物秸秆制沼开展了实验研究,对酸处理的发酵过程影响进行了探索,研究结果对于农村生物质能源开发工程实践具有指导意义。
In this study, the straw of silage maize was pretreated by3kinds of acids, known as sulfuric acid, acetic acid and phosphoric acid. After pretreatments, the straw was mixed with the cow dung and proceeded to the anaerobic fermentation under high temperature conditions. This experiment investigated the responses of maize straw to acid pretreatment, studied the biogas yield and character of anaerobic fermentation and analyzed the degradation of the substrate to obtain the impact of acid pretreatment on the anaerobic fermentation with mixed maize straw and cow dung.
     The results showed that:(1) The percent of VS, lipid, cellulose, hemicellulose and ligin content in the straw were increased by acid pretreatment, while the percent of protein, starch and soluble sugar were decreased. Acetic acid had less influence on protein content comparing with sulfuric acid and phoshoric acid. Sulfuric acid decreased the content of starch and hemicellulose more than other two acids, but increased the content of lipid and ligin. The effect of acetic acid pretreatment on the initial pH was more gently than the other two acids.(2) The highest accumulative biogas yield was50.72mL/g TS,71.70mL/g TS and75.26mL/g TS for sulfuric acid, acetic acid and phosphoric acid, when the acid concentrations were0%,4%and6%, respectively. For sulfuric acid (0%), acetic acid (4%) and phosphoric acid (4%) pretreament, the highest methane content was obtianed of54.9%,63.6%and63.2%respectively when the anaerobic digestion was proceeded for9,16and7days.(3) During the fermentation, the content of carbon dioxides which was advance decreased before the methane, and changed in the same way with the content of methane, while the content of hydrogen content was contrary changed. The peak yields of methane were delayed by sulfuric acid and acetic acid pretreatments and were brought forward by phosphoric acid pretreatments. The content of methane under acetic acid and phosphoric acid pretreatments were higher than that in the control test.(4) The fermentation system was faintly acid. Along with the fermentation, the total solid (TS) and VS of the system were variously dicreased according to different acid varieties and concentrations.(5) Lipid, cellulose, hemicellulose and ligin were the main compositions that were digested during the fermentation, while the protein, starch and soluble sugar were not. Acid pretreatment increased the utilization of lipid. Acetic acid and phosphoric acid pretreatments were helpful for the degradation of hemicellulose, while sulfuric acid pretreatments were helpful for the degradation of ligin. Low concentrations of sulfuric acid and high concentrations of phosphoric acid were helpful for the utilization of strach and cellulose.
     The anaerobic fermentation with mixed acid pretreated maize straw and cow dung is an important question in improving the efficency of bioenergy production. This study is conducted at molecular level to investigate the biogas production with acid pretreated straw, and explored the fermentation process influenced by acid pretreatments. The results are instructive for the engineering practice of bioenergy exploition in the village.
引文
[1]尼姝丽.餐厨垃圾制沼及膜法沼气提纯一体化系统设计及理论研[D].哈尔滨:东北林业大学,2011
    [2]Zhou X, Wang F, Hu H, et al.. Assessment of sustainable biomass resource for energy use in China[J]. Biomass and Bioenergy,2011,35(1):1-11
    [3]Liu J, Zhou Q, Sun T, et al.. Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics[J]. Journal of hazardous materials,2008,151(1):261-267
    [4]Zhuang D, Jiang D, Liu L, et al.. Assessment of bioenergy potential on marginal land in China[J]. Renewable and Sustainable Energy Reviews,2011,15(2):1050-1056
    [5]张全国.沼气技术及其应用[M].北京:化学工业出版社,2005
    [6]叶小梅,常志州.有机固体废物干法厌氧发酵技术研究综述[J].生态与农村环境学报,2008,24(2):76-79
    [7]Patervis Corp. Biogas production process:Four steps of fermentation[Z]. http://www.patervis. com/process.html
    [8]Lianhua L, Dong L, Yongming S, et al.. Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China[J]. International Journal of Hydrogen Energy,2010,35(13):7261-7266
    [9]宋文芳.沼气发酵低温功能微生物的分离和促进沼气低温发酵的研究[D].北京:中国农业科学院,2011
    [10]Wu X, Yao W, Zhu J, et al.. Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source[J]. Bioresource Technology,2010, 101(11):4042-4047
    [11]Panichnumsin P, Nopharatana A, Ahring B, et al.. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure[J]. Biomass and Bioenergy, 2010,34(8):1117-1124
    [12]Ashekuzzaman S M, Poulsen T G. Optimizing feed composition for improved methane yield during anaerobic digestion of cow manure based waste mixtures[J]. Bioresource Technology,2011,102(3):2213-2218
    [13]戚桂娜.沼气发酵复合菌系及其在牛粪厌氧发酵中的应用[D].大庆:黑龙江八一农垦大学,2010
    [14]Kaparaju P, Serrano M, Angelidaki I. Optimization of biogas production from wheat straw stillage in UASB reactor[J]. Applied Energy,2010,87(12):3779-3783
    [15]张翔,刘金盾.接种物特性对牛粪高温厌氧发酵的影响[J].农机化研究,2007(6):86-89
    [16]Raposo F, Banks C J, Siegert I, et al.. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests[J]. Process Biochemistry,2006, 41(6):1444-1450
    [17]Nagamani B, Ramasamy K. Biogas production technology:An Indian perspective[J]. Current Science,1999,77(1):44-55
    [18]Rico C, Garc I A H, Rico J L. Physical--anaerobic--chemical process for treatment of dairy cattle manure[J]. Bioresource Technology,2011,102(3):2143-2150
    [19]Cavinato C, Fatone F, Bolzonella D, et al.. Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops:Comparison of pilot and full scale experiences[J]. Bioresource Technology,2010,101(2):545-550
    [20]Zhang R, Zhang Z. Biogasification of rice straw with an anaerobic-phased solids digester system[J]. Bioresource Technology,1999,68(3):235-245
    [21]Bruni E, Jensen A P, Pedersen E S, et al.. Anaerobic digestion of maize focusing on variety, harvest time and pretreatment[J]. Applied Energy,2010,87(7):2212-2217
    [22]宋籽霖.不同温度下总固体浓度对厌氧发酵产气特性的影响[D].杨凌:西北农林科技大学,2010
    [23]王忠江,李文哲,石铁等.温度和料液浓度对牛粪高浓度厌氧水解酸化的影响[J].农业工程学报,2009,24(11):212-216
    [24]Vindis P, Mursec B, Janzekovic M, et al.. Anaerobic digestion of maize hybrids for methane production[J]. Journal of Achievements in Materials and Manufacturing Engineering,2010,40(1):87-94
    [25]刘晓玲.城市污泥厌氧发酵产酸条件优化及其机理研究[D].无锡:江南大学,2008
    [26]Kayhanian M. Ammonia inhibition in high-solids biogasification:an overview and practical solutions[J]. Environmental Technology,1999,20(4):355-365
    [27]张婷.超声波与稀碱法联合预处理对秸秆厌氧发酵产沼气的影响[D].武昌:湖北工业大学,2009
    [28]梁军锋,张洪生,张克强等.木质素降解菌的筛选及对秸秆的降解研究[J].华北农学报,2009,24(005):206-209
    [29]Amon T, Amon B, Kryvoruchko V, et al.. Biogas production from maize and dairy cattle manure--Influence of biomass composition on the methane yield[J]. Agriculture, Ecosystems & Environment,2007,118(1-4):173-182
    [30]余汝华,莫放,赵丽华等.刈割时间对青贮玉米秸秆饲料营养成分的影响[J].中国农学通报,2006,22(6):10-13
    [31]申加祥,宁堂原,李增嘉等.不同熟期玉米套作夏玉米可溶性糖含量与产量形成[J].玉米科学,2004,12(2):65-68
    [32]Pobeheim H, Munk B, Johansson J, et al.. Influence of trace elements on methane formation from a synthetic model substrate for maize silage[J]. Bioresource Technology. 2010,101(2):836-839
    [33]方文杰,刘广青,康佳丽等.堆沤处理对稻草厌氧消化产气的影响[J].生态与农村环境学报,2007,23(4):63-66
    [34]Lehtomaki A, Huttunen S, Rintala J A. Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production:Effect of crop to manure ratio[J]. Resources, Conservation and Recycling,2007,51(3):591-609.
    [35]Hills D J, Roberts D W. Anaerobic digestion of dairy manure and field crop residues[J]. Agricultural Wastes,1981,3(3):179-189
    [36]Alvarez R, Lid E N G. Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production[J]. Biomass and Bioenergy,2009, 33(3):527-533
    [37]李国顺.稻草预处理技术与产气特性的实验研究[D].上海:东华大学,2011
    [38]武少菁,刘圣勇,王晓东等.秸秆干发酵产沼气技术的概述和展望[J].中国沼气,2008,26(4):20-23
    [39]韩学凤,张鹏,易欣欣.农作物秸秆的综合利用[J].北京农学院学报,2003,18(003):226-230
    [40]Hendriks A, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology,2009,100(1):10-18
    [41]Ramos L P. The chemistry involved in the steam treatment of lignocellulosic materials[J]. Qumica Nova,2003,26(6):863-871
    [42]Liu C, Wyman C E. The effect of flow rate of compressed hot water on xylan, lignin, and total mass removal from corn stover[J]. Industrial & Engineering Chemistry Research, 2003,42(21):5409-5416
    [43]王娜娜,谢小莉,杨翔华等.低温稀酸预处理玉米秸秆的研究[J].科学技术与工程,2011,11(11):2607-2609
    [44]覃国栋,刘荣厚,孙辰.酸预处理对水稻秸秆沼气发酵的影响[J].上海交通大学学报:农业科学版,201 1,29(1):58-61
    [45]刘庆玉,孟凡磊,张敏.稀酸预处理玉米秸秆条件优化的试验研究[J].可再生能源,2009,27(003):40-42
    [46]陈尚妍,勇强,徐勇等.稀酸预处理对玉米秸秆纤维组分及结构的影响[J].中国粮油学报,2011,26(6):13-19
    [47]何品晶,方文娟,吕凡等.乙酸常温预处理对木质纤维素厌氧消化的影响[J].中国环境科学,2008,28(012):1116-1121
    [48]Nilsson U, Barron N, Mchale L, et al.. The effects of phosphoric acid pretreatment on conversion of cellulose to ethanol at 45℃ using the thermotolerant yeast Kluyveromyces marxianus IMB3[J]. Biotechnology Letters,1995,17(9):985-988
    [49]Lei Z, Chen J, Zhang Z, et al.. Methane production from rice straw with acclimated anaerobic sludge:Effect of phosphate supplementation[J]. Bioresource Technology, 2010,101(12):4343-4348
    [50]劳家柽.土壤农化分析手册[M].北京:农业出版社,1988
    [51]孔祥生,易现峰.植物生理学实验技术[M].北京:中国农业出版社,2008
    [52]刘书钗.制浆造纸分析与检测[M].北京:化学工业出版社,2004
    [53]张望.稻草干法厌氧发酵生产生物气的试验研究[D].北京:北京化工大学,2008
    [54]Li X, Kim T H. Low-liquid pretreatment of corn stover with aqueous ammonia[J]. Bioresource Technology,2011,102(7):4779-4786
    [55]王艳芳,崔震海,张立军等.玉米籽粒灌浆期可溶性糖含量变化与可溶性蛋白积累关系的研究[J].辽宁化工,2006,35(1):9-10
    [56]岳建芝,张杰,徐桂转等.玉米秸秆主要成分及热值的测定与分析[J].河南农业科学,2006(009):30-32
    [57]Moller H B, Sommer S G, Ahring B K. Methane productivity of manure, straw and solid fractions of manure[J]. Biomass and Bioenergy,2004,26(5):485-495
    [58]Amon T, Amon B, Kryvoruchko V, et al.. Optimising methane yield from anaerobic digestion of manure:Effects of dairy systems and of glycerine supplementation[C]. International Congress Series,2006,1293:217-220
    [59]辛杭书,赵遵阳,任丽萍等.不同品种及不同成熟期的青贮玉米秸秆营养成分及体外发酵评定[J].中国畜牧杂志,2008,43(23):29-33
    [60]Vervaeren H, Hostyn K, Ghekiere G, et al.. Biological ensilage additives as pretreatment for maize to increase the biogas production[J]. Renewable Energy,2010,35(9): 2089-2093
    [61]Golueke C G, Oswald W J, Gotaas H B. Anaerobic digestion of algae[J]. Applied and Environmental Microbiology,1957,5(1):47
    [62]Golueke C G, Oswald W J. Biological Conversion of light energy to the chemical energy of methane[J]. Applied and Environmental Microbiology.1959,7(4):219
    [63]Ras M, Lardon L, Bruno S, et al.. Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris[J]. Bioresource technology.2011,102(1): 200-206
    [64]Abbasi T, Abbasi S A. Production of clean energy by anaerobic digestion of phytomass-New prospects for a global warming amelioration technology[J]. Renewable and Sustainable Energy Reviews.2010,14(6):1653-1659
    [65]朱亚兰.城市生活垃圾与污水厂剩余厌氧污泥混合厌氧消化研究[D].成都:西南交通大学,2008
    [66]秦文娟.餐厨垃圾厌氧消化的实验研究[D].成都:西南交通大学,2010
    [67]杜风光.金属盐对酒糟基质沼气发酵的影响及沼气发酵污泥(沼肥)的应用研究[D].无锡:江南大学,2004
    [68]Abbasi S A, Nipaney P C. Worlds' Worst Weed (salvinia):Its Impact and Utilization[M]. International Book Distributors,1993
    [69]Vervaeren H, Hostyn K, Ghekiere G, et al.. Biological ensilage additives as pretreatment for maize to increase the biogas production[J]. Renewable Energy,2010,35(9): 2089-2093
    [70]El-Mashad H M, Zhang R. Biogas production from co-digestion of dairy manure and food waste[J]. Bioresource Technology,2010,101(11):4021-4028
    [71]李宇萌,杨中平.基于近红外光谱的玉米秸秆捆包青贮饲料的品质测定研究[J].安徽农业科学,2010,(007):3503-3505
    [72]李红艳,张增强,李荣华等.微波辅助酸预处理玉米秸秆水解条件研究[J].环境科学学报,2009,(012):2557-2566
    [73]仝明,姚春才.微波辅助预处理对玉米秸秆酶解的影响[J].南京林业大学学报:自然科学版,2009,33(4):91-95
    [74]Wang L, Zhang Y, Gao P, et al.. Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis[J]. Biotechnology and Bioengineering.2006,93(3):443-456
    [75]刘德江.玉米秸秆与牛粪混合原料的沼气发酵试验[J].中国沼气,2009,27(004):13-15
    [76]王永泽,邵明胜,杨立等.不同吸附剂对棉花秸秆沼气发酵效率的影响研究[J].现代农业科技,2008,(023):178-179
    [77]Rinc O N B, Banks C J, Heaven S. Biochemical methane potential of winter wheat (Triticum aestivum L.):Influence of growth stage and storage practice[J]. Bioresource Technology,2010,101(21):8179-8184
    [78]汪婷.沼气发酵过程中产甲烷菌分子多样性研究及产甲烷菌的分离[D].南京:南京农业大学,2002
    [79]乔玮,曾光明,袁兴中等.易腐有机废物与剩余污泥混和厌氧消化处理[J].农业环境科学学报,2004,23(3):607-610
    [80]刘瑞光,马海乐,王振斌等.初始pH值对醋糟厌氧发酵产氢的影响[J].中国酿造,2009,(002):71-73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700