静电纺聚砜纤维膜的改性处理及对染料的过滤性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜分离作为一种清洁生产技术,以其优良的分离效果、操作条件温和、设备简单等优点,广泛应用于工业废水回收利用和特种水处理工业。采用膜分离技术处理染料废水可以实现染料的资源回收和清洁生产。分离膜的制备方法很多,而近年来通过静电纺丝获得的纤维膜,以其高比表面积和表面吸附能,及贯通的孔隙结构和高孔隙率,受到研究者的普遍关注。
     聚砜(Polysulfone,PSF)因具有优良的化学稳定性和热稳定性而广泛应用于污水处理膜材料。通过静电纺丝技术可以获得纤维直径在几百至几微米的PSF纤维膜,其孔径为数微米。PA6/66具有较好的化学稳定性,经静电纺丝获得的纤维直径可达几十纳米,纤维膜孔径可达到纳米级。这两类静电纺纤维膜在污水处理及染料废水处理方面具有潜在的应用前景。但是目前有关静电纺PSF纤维膜和PA6/66纤维膜对染料废水过滤效果的系统研究仍处于空白。
     本文探索与优化了PSF的静电纺丝工艺,并针对静电纺PSF纤维膜强力较低的问题,采用热处理的方法使其力学性能得到显著改善。结果表明,以DMF为溶剂,在纺丝液质量分数为20%,纺丝电压为12kV,纺丝距离为15cm,纺丝液流量为1.5ml/h的条件下制备的静电纺PSF纤维具有良好的微观形貌,并且纺丝状态稳定。采用接近PSF熔点温度对其静电纺纤维膜进行张力下干热处理,并得到最佳热处理工艺条件为:处理温度为190℃,处理时间为2h,此时膜的平均孔径为4.5μm,表面接触角为130.2°。
     针对染料废水高酸碱度特性及采用化学试剂清洗膜时,对材料的化学稳定性和湿热稳定性的需求,研究了常温下静电纺PSF和PA6/66纤维膜在不同pH值的盐酸和氢氧化钠溶液、去离子水、常用杀菌剂1%双氧水和0.5%次氯酸钠溶液中的稳定性,及其在去离子水中的湿热稳定性。结果表明,190℃-2h热处理后的静电纺PSF纤维膜在上述溶液中具有优异的化学稳定性,在60℃以下的去离子水中具有优良的湿热稳定性,但是在80℃热水处理4+4d后,纤维膜的外观形态和孔隙结构受到严重破坏。经90℃-15min湿热处理后的静电纺PA6/66纤维膜,在双氧水和次氯酸钠溶液中处理4d后,其力学性能遭到严重破坏,而在其他试剂中浸泡处理4+4d后,仍能保持原有的形态结构,力学性能保持性较好;在40℃热水中处理4+4d后,仍然能保持较好的力学性能,而在60℃热水中,随着处理时间增加,力学性能遭到严重破坏。
     为了改善静电纺PSF纤维膜的亲水性,减小膜孔径,并能进一步提高膜的断裂强度,减小断裂伸长,以达到去除染料,减少膜污染和减小过滤时由于过滤压力而引起的膜变形情况,先采用氧气等离子体预处理静电纺PSF纤维膜,再采用戊二醛交联壳聚糖溶液浸轧处理纤维膜。结果表明,经交联壳聚糖溶液浸轧处理后,纤维膜的孔径减小,力学性能和亲水性能均显著改善。经2%-120(壳聚糖质量百分数-戊二醛体积/μl)交联壳聚糖溶液处理后,纤维膜的部分孔隙被壳聚糖膜覆盖,孔径小于0.09μm,并且初始模量和断裂强度分别增加了277.2%和126.8%,断裂伸长率减小了86.9%。经2%-100交联壳聚糖溶液处理后,纤维膜平均孔径由4.5μm减小为2.62μm,初始模量和断裂强度分别增加了134.7%和53.9%,断裂伸长率减小了77.2%。
     研究了死端恒压过滤条件下,经190℃-2h干热处理后的静电纺PSF原样、2%-100改性PSF、2%-120改性PSF和经90℃-15min湿热处理后的PA6/66纤维膜对分散蓝2BLN悬浮液和弱酸性蓝N-RL水溶液的过滤性能。结果表明,在0.1MPa恒压过滤条件下,分散蓝2BLN悬浮液为0.1g/L时,2%-120的截留率为99.5%,但是过滤通量远小于其他三种。除此之外,其他三种纤维膜的截留率相近,均达94%以上,经25min后,这三种纤维膜的过滤通量趋于一致。当过滤压力从0.1MPa增加到0.3MPa时,2%-120改性PSF纤维膜对分散蓝2BLN的截留率并没有发生明显变化,增加压力也未能使其通量有大幅度提高。此外,研究还发现,多层叠加纤维膜没有达到提高过滤效果的目的;分散蓝2BLN悬浮液的浓度与静电纺PSF纤维膜对其截留率之间没有显著的关系。静电纺PSF原样、PA6/66及两者的复合纤维膜对0.1g/L弱酸性蓝N-RL的截留率均较小,过滤后的滤液色度没有显著变化,但稳定过滤通量与过滤分散蓝2BLN相似,均在45~51L/m2.h范围内,而2%-120改性PSF对弱酸性蓝N-RL溶液的截留率可达92.4%,过滤后滤液颜色明显变浅,具有较好的效果,但是过滤通量小仍然是该试样的主要缺陷。
Membrane filtration is a clean producing technique, which has excellent separationefficiency, mild operating conditions and simple equipments, so that it is widely used inindustry waste water and special waste water treatment. It can be realized that the dyes arerecycled in dying waste water through membrane filtration. Although there are manymethods to prepare filtration membranes, the electrospun fibrous membrane is paidextensive attention for their high specific surface area, throughout pores and high porosity.
     Polysulfone (PSF) is widely used as waste water filtration membrane material for itsexcellent chemical and thermal stability. The diameter of PSF fibers can reach fromhundreds to thousands nanometer through electrospinning technique, and the pore size ofelectrospun PSF membrane can reach thousands nanometer. Meanwhile PA6/66also hasgood chemical stability, and its electrospun fiber diameter can reach dozens of nanometer,its membrane pore size is to a few nanometers. So these two electrospun membranes havepotential application in dye waste water. But till now, there was not systematic research ofthese two membranes used in filtering dye waste water.
     In this paper,the parameters of electrospun polysulfone fibrous membrane wereoptimized. In order to improve the strength of the membrane which was obtained atoptimized parameters, dry heat treatment parameters were also optimized. The resultsshowed that when polysulfone was dissolved in DMF under room temperature, theconcentration of spinning solution was20wt%, spinning voltage was12kV,collectingspinning distance was15cm,solution flow rate was1.5ml/h, the obtained fibers had bettermicro-morphology. When the optimized membrane was treated at190℃for2h withloading tension, the membrane has better mechanical property, which can be regarded asthe optimized heat treating parameters. The average pore size of membrane was4.5μm andits surface contact angle was130.2°under this condition.
     The pH value of dye waste water is from2to14, and the membranes may be cleaned by chemical solvent at some time. In this paper, the stability of electrospun PSF membraneand PA6/66membrane in different pH value of hydrochloride and sodium hydroxidesolution, deionized water,1%H2O2and0.5%NaClO were studied, and the wet thermalstability in hot deionized water was also studied. The results showed that190℃-2helectrospun PSF membrane had excellent stability in above solution, and also had excellentthermal stability in deionized water below60℃, but the morphology and porous structureof membrane was damaged seriously after treated in deionized water at80℃for4+4days.So it can be cleaned by the above solution and can be used under60℃for long time. Theelectrospun PA6/66membrane which was treated at90℃for15min under wet condition,had good stability in different pH value of hydrochloride and sodium hydroxide solution,but was damaged seriously in1%H2O2and0.5%NaClO solution, So it can not be cleanedby H2O2and NaClO solution. It has good stability in hot deionized water below40℃, butwas damaged seriously under60℃.
     In order to improve the hydrophilicity and mechanical property of electrospun PSFmembrane, and also decreased its pore size, so that it can remove dyes, decrease membranefouling and resist larger filtering pressure. The190℃-2h electrospun PSF membrane wastreated by O2plasma at first, then it was padded by chitosan solution crossliked withglutaraldehyde. The results showed that the hydrophilicity and mechanical property of themembrane were both improved significantly, and its pore size was also decreased largely.After the membrane was padded with2%-120crosslinked chitosan solution which meansmass percentage of chitosan was2%and volume of glutaraldehyde was120μl, its poresize was below0.09μm due to partial pores were covered by chitosan, its initial modulusand breaking strength increased by277.2%and126.8%respectively, and its breakingenlongation decreased by86.9%. After the membrane was padded with2%-100crosslinked chitosan solution, its average pore size decreased from4.5μm to2.62μm, itsinitial modulus and breaking strength increased by134.7%and53.9%respectively,and itsbreaking enlongation decreased by77.2%。
     The filtration property of190℃-2h electrospun PSF membrane,2%-100modified PSFmembrane,2%-120modified PSF membrane and90℃-15min electrospun PA6/66membrane to disperse blue2BLN suspension and weak acid blue N-RL solution wasstudied under dead-end condition. The results showed that the separation factor of2%-120 modified PSF membrane was99.5%, when the concentration of disperse blue2BLNsuspension was0.1g/L under constant pressure0.1MPa, but the filtration flux was greatlysmaller than other membranes. The separate factors of other membranes were similar, allabove94%, and the filtration flux was going to same after filtering for25min. Theseparation factor of2%-120modified PSF membrane was not changed obviously when thefiltration pressure was increased from0.1MPa to0.3MPa. Meanwhile multi-layers couldnot increase the separation factor, and there was not obvious relationship betweenconcentration of disperse blue and separation factor of electrospun PSF membrane. Whenfiltered0.1g/L weak acid blue solution under constant pressure0.1MPa, the separationfactors of190℃-2h electrospun PSF membrane and90℃-15min electrospun PA6/66membrane were all smaller, but the stable filtration flux were similar, which was at45~51L/m2.h. The separation factor of2%-120modified PSF membrane was above92.4%,and the permeated solution was clearer, but the filtration flux was still too small, which isthe main defect of the modified membrane.
引文
[1]汪锰,王湛,李政雄.膜材料及其制备[M].北京:化学工业出版社,2003.
    [2] A. Rushton, A.S. Ward, R.G. Holdich. Solid-liquid filtration and separationtechnology [M]. Chemical Industry Press,2005.
    [3] J.M. Michael, O. Clyde. Filtration: Principles and practices [M]. New York: MarcelDekker, INC.1987:133-161,184-199,383-393.
    [4]严希康.生化分离工程[M].北京:化学工业出版社.2001:19-24,76-97.
    [5]王湛.膜分离技术基础[M].北京:化学工业出版社,2000:210-264,287-295.
    [6]许振良,马炳荣.膜分离技术与应用丛书:微滤技术与应用[M].北京:化学工业出版社,2005:1-14.
    [7] Y. Ergum, N. Alper. Water softening in a crossflow membrane reactor [J].Desalination,2003,159:139-152.
    [8] W.R. Bowen, J.I. Calvo, A. Hmandez. Steps of membrane blocking in flux declineduring protein microfiltration [J]. Membrane Science,1995,101(1-2):153-165.
    [9] B.E. Cagatayhan, B. Washington.Ultrafiltration of ink and latex wastewaters usingcellulose membranes [J]. Desalination,2004,164(1):63-70.
    [10] B. Keskinler, E. Yildiz, E. Erhan, et a1. Cross-flow microfitration of lowconcentration-nonliving yeast suspensions[J]. Membrane Science,2004,233(1-2):59-69.
    [11]贺礼清.工程流体力学[M].北京:石油工业出版社,2004:229-253.
    [12]贺礼清.工程流体力学[M].北京:石油工业出版社,2004:229-253.
    [13]韩方式.非牛顿流体本构方程和计算解析理论[M].北京:科学出版社,2000:1-10.
    [14] M. Shirato, T. Aragaki, M. Iritani. Blocking filtration laws for filtration of power-lawnon newtonnian fluids [J]. Chemical Engneering of Japan,1979,12(2):162-164.
    [15] A. Fadili, P.M.J. Tardy, J.R.A. Pearson. A3D filtration law for power-low fluids inheterogeneous porous media [J]. Non-newtonian Fluid Mechanics,2002,106:121-146.
    [16] Yang Zuodong, Lu Qishao. Nonexistence of positive solutions to a quasilinear ellipticsystem and blow-up eastimates for a non-newtonian filtration system [J]. AppliedMathematics Letters,2003,16:581-587.
    [17] F.M. Tiller, K.S. Cheng. Delayed cake filtration [J]. FiItration and Separation,1977,1/2:13-18.
    [18] T. Toda. Recent advances in the application of rotary disk filter press [J]. Filtrationand Separation,1981,18(2):118.
    [19]郑荣勤.多级膜过程在印染废水深度处理中的应用研究[D].杭州:浙江工业大学,2012.
    [20]乔宁宁.聚偏氟乙烯膜的制备及其共混改性的实验研究[D].北京:北京化工大学,2009.
    [21]黄恒梅等.聚砜类分离膜的研究进展[J].功能材料,2004,35:2088-2093.
    [22]李娜,刘忠洲,续曙光.再生纤维素分离膜制备方法研究进展[J].膜科学与技术,2001,21(6):27-32.
    [23]张芳.多孔氧化铝陶瓷支撑体及其微滤膜的制备与表征[D].太原:中北大学,2005.
    [24]董应超.新型低成本多孔陶瓷分离膜的制备与性能研究[D].合肥:中国科学技术大学,2008.
    [25]覃小红,李妮,杨恩龙,等.静电纺纳米纤维毡在新型高效过滤器上的使用优势与前景[J].产用纺织品,2007,4:30-34.
    [26]魏取福,非织造滤布过滤性能研究[J].纺织学报,2001,22,(4):59-60.
    [27]林红军,陆晓峰,段伟,沈飞.膜生物反应器中膜过滤特征及膜污染机理的研究[J].环境科学,2006,27(12):2511-2517.
    [28] T.H. Bae, T.M. Tak. Interpretation of fouling characteristics of ultrafiltrationmembranes during the filtration of membrane bioreactor mixed liquor[J].Membrane Science,2005,264:151-160.
    [29]吕晓龙,刘惠玉.多孔膜的污染及其控制方法[J].天津工业大学学报,2004,23(1):18-22.
    [30] H.J. Yang, H.S. Kim. Effect of coagulation on MF/UF for removal of particles as apretreatment in seawater desalination [J]. Desalination,2009,247(1-3):45-52.
    [31] K. Kimura, Y. Hane, Y. Watanabe. Effect of pre-coagulation on mitigatingirreversible fouling during ultrafiltration of a surface water [J]. Water ScienceTechnology,2005,51(6-7):93-100.
    [32] T. Carroll. The fouling of microfiltration membranes by NOM after coagulationtreatment [J]. Water Research,2000,34(11):2861-2868.
    [33] X.J. Gai, H.S. Kim. The role of powdered activated carbon in enhancing theperformance of membrane systems for water treatment[J]. Desalination,2008,225(1-3):288-300.
    [34] J. Kim, Z. Cai, M.M. Benjamin. Effects of adsorbents on membrane fouling by naturalorganic matter [J]. Membrane Science,2008,310(1-2):356-364.
    [35] J.H. Kweon. Evaluation of coagulation and PAC adsorption pretreatments onmembrane filtration for a surface water in Korea: Apilot study[J]. Desalination,2009,249(1):212-216.
    [36] T. Lebeau. Immersed membrane filtration for the production of drinking water:combination with PAC for NOM and SOCs removal [J]. Desalination,1998,117(1-3):219-231.
    [37] M. Campinas, M.J. Rosa. Assessing PAC contribution to the NOM fouling control inPAC/UF systems[J]. Water Research,2010,44(5):1636-1644.
    [38] C.F. Lin, Y.J. Huang, O.J. Hao. Ultrafiltration processes for removing humicsubstances: effect of molecular weight fractions and PAC treatment [J]. WaterResearch,1999,33(5):1252-1264.
    [39] S.J. Lee, K.H. Choo, C.H. Lee. Conjunctive use of ultrafiltration with powderedactivated carbon adsorption for removal of synthetic and natural organic matter [J].Industrial and Engineering Chemistry,2000,6(6):357-364.
    [40] W. Tsujimoto. Membrane filtration and pre-treatment by GAC [J].Desalination,1998,119(1-3):323-326.
    [41] B. Schlichter, V. Mavrov, H. Chmiel. Study of a hybrid process combiningozonation and microfiltration/ultrafiltration for drinking water production fromsurface water [J]. Desalination,2004,168:307-317.
    [42] S. Mozia, M. Tomaszewska, A.W. Morawski. Application of an zonation-adsorption-ultrafiltration system for surface water treatment[J]. Desalination,2006,190(1-3):308-314.
    [43] K. Farahbakhsh. A review of the impact of chemical pretreatment onlow-pressure water treatment membranes[J]. Environmental Engineering and Science,2004,3(4):237-253.
    [44] J. Kim. Effect of ozone dosage and hydrodynamic conditions on the permeate flux ina hybrid ozonation-ceramic ultrafiltration system treating natural waters[J]. MembraneScience,2008,311(1-2):165-172.
    [45] P.R. Neal, H. Li, A.G. Fame, et al. The effect of filament orientation on critical fIuxand partical desposition in spacerfilled channels[J]. Membrane Science,2003,214(2):165-178.
    [46] R.W. Field, D. Wu, J.A. Howell, et al. Critical flux concept for microfiltration fouling[J]. Membrane science,1995,100(3):259-272.
    [47] Wu Dengxi, J.A. Howell. Critical flux for measurement for model colloid[J].Membrane science,1999,152(1):89-98.
    [48] S.S. Madaeni. An investigation of the mechanism of critical flux in membranefiltration using electron microscopy [J]. Poro Mate,1997,4(4):239-244.
    [49] Y. Shimizu. Filtration characteristics of hollow fiber microfiltration membranes usedin membrane bioreactor for domestic wastewater treatment [J]. Water Research,1996,30(10):2385-2392.
    [50] P.J. Smith. A new approach to backwash initiation in membrane systems[J].Membrane Science,2006,278(1-2):381-389.
    [51] N.O. Yigit. Effects of various backwash scenarios on membrane fouling in amembrane bioreactor [J]. Desalination,2009,237(1-3):346-356.
    [52] H.Y. Yu, M.X. Hu, Z.K. Xu, et al. Surface modification of polypropylenemicroporous membranes to improve their antifouling property in MBR: NH3plasmatreatment [J]. Separation and Purification Technology,2005,45(1):8-15.
    [53] H.Y. Yu, X.C. He, L.Q. Liu, et al. Surface modification of poly(propylene)microporous membrane to improve its antifouling characteristics in an SMBR: O2plasma treatment [J]. Plasma Processes and Polymers,2008,5(1):84-91.
    [54] H.Y. Yu, Z.K. Xu, H. Lei, et al. Photoinduced graft polymerization of acrylamide onpolypropylene microporous membranes for the improvement of antifoulingcharacteristics in a submerged membrane-bioreactor[J]. Separation and PurificationTechnology,2007,53(1):119-125.
    [55] A. Sainbayar, J.S. Kim, W.J. Jung, et al. Application of surface modifiedpolypropylene membranes to an anaerobic membrane bioreactor[J]. EnvironmentalTechnology,2001,22(9):1035-1042.
    [56] J. Kochan, T. Wintgens, T. Melin, et al. Characterization and filtration performance ofcoating-modified polymeric membranes used in membrane bioreactors [J]. ChemicalPapers,2009,63(2):152-157.
    [57] T.H. Bae, T.M. Tak. Effect of TiO2nanoparticles on fouling mitigation ofultrafiltration membranes for activated sludge filtration [J]. Membrane Science,2005,249(1-2):1-8.
    [58] X. Wen, P. Sui, Huang X. Exerting ultrasound to control the membrane fouling infiltration of anaerobic activated sludge-mechanism and membrane damage[J]. WaterScience and Technology,2008,57(5):773-779.
    [59] Z. Allie, E.P. Jacobs, A. Maartens,et al. Enzymatic cleaning of ultrafiltrationmembranes fouled by abattoir effluent[J]. Membrane Science,2003,218(1-2):107-116.
    [60] S. Poele, J.V. Graaf. Enzymatic cleaning in ultrafiltration of wastewater treatmentplant effluent [J]. Desalination,2005,179(1-3):73-81.
    [61] M. Marcucci, I. Ciabatti, A. Matteucci, et al. Membrane technologies applied to textilewastewater treatment [J]. Annals of the New York Acadamy of Sciences,2003,984:53-64.
    [62]范荣桂,黄大青,方辽卫,白永新,梁红星.高级氧化技术在纺织印染废水处理中的应用[J].安全与环境工程,2011,18(2):40-44.
    [63] J.M. Poyaos,M.M. Munio, M.C. Almecija, et al. Advanced oxidation processes forwastewater treatment: state of the art [J]. Water, Air and Soil Pollution,2010,205(1/2/3/4):187:204.
    [64] P.C.C. Faria, J.J.M. Orfao, M.F.R. Pereira. Mineralization of substituted aromaticcompounds by ozonation catalyzed by cerium oxide and a cerium oxide-activedcarbon composite [J]. Catalysis Letters,2009,127(1/2):195-203.
    [65]王海龙,张玲玲,王新力,刘超.臭氧氧化工艺在印染废水处理中的应用进展[J].工业水处理,2011,31(7):18-21.
    [66]稂友明.混凝-Fenton氧化法处理印染废水试验研究[D].长沙:长沙理工大学,2010.
    [67]刘占孟,聂发辉,李敬.高浓度染料中间体废水湿式电化学处理研究[J].工业水处理,2006,26(6):14-16.
    [68]褚旅云,廖传华,方向.超临界水氧化法处理高含量印染废水研究[J].水处理技术,2009.38(8):84-86.
    [69]马万征,李忠芳,王艳,谢越,邹海明,马万敏.印染废水处理技术的现状及其发展趋势[J].应用化工,2012,41(12):2154-2155.
    [70]范迪,王琳,王娟.新型复合混凝脱色剂处理印染废水试验研究[J].环境科学,2007,28(6):1285-1289.
    [71]高立新,王燕,张大全.电化学法处理印染废水[J].印染,2010(10):12-15.
    [72] A. Sakalis, K. Fytianos, U. Nickel, et a1. A comparative study of pla-tinised titaniumand niobe/synthetic diamond as anodes in the electrochemical treatment of textilewastewater [J]. Chemical Engineering,2006,1l9(2/3):127-133.
    [73] A.S. Koparal, Y. Yaviz, C. Gurel, et a1. Electrochemical degradation and toxicityreduction of C.I. Basic Red29solution and textile wastewater by using diamondanode [J]. Hazardous Materials,2007,145(1/2):100-108.
    [74]王星敏,陈胜福.印染废水的光催化氧化处理新进展[J].重庆工商大学学报(自然科学版),2004,21(6):229-232.
    [75] A.V. Vorontson, E.V. Savinov, L. Davydov, et al. Environmental Applications ofSemiconductor Photo Catalysis[J]. Applied Catalysis B-Environmental,2001,(32):11-24.
    [76]赵立杰,于海霞,翟明犟等.Ti02膜光电催化氧化法降解印染废水的研究[J].化工时刊,2012,26(3):14-17.
    [77]雷俊侠,高智荣.纳米Ti02光催化法和UV-Fenton法联合作用的应用研究[J].广东化工,2011,38(213):56-57.
    [78]张佳瑜.高级氧化一生物法联合处理印染废水的研究进展[J].广州化工,2012,40(22):37-38.
    [79]杨莉.基于酵母模板/载体的光催化剂制备及其处理印染废水的应用研究[D].西安:长安大学,2010.
    [80]李芸.UV-fenton/纳米TiO2催化氧化法处理印染废水的研究[D].武汉:武汉理工大学,2010.
    [81]明银安等.印染废水处理技术进展[J].工业安全与环保,2003,29(8):16-19.
    [82]白晓慧.印染废水处理技术及其进展[J].印染,2000,26(12):39-43.
    [83] N.C. Tan, F.X. Prenafet-Boldu. Experimental study on reactive dye wastewater,treatment by a combined anaerobie-aerobie membrane bioreactor processes[J]. Apply Microbial Biotechnology,1999,51(l):865-871.
    [84]董新娇,吴楚,林贤芬等.染料脱色菌群的初筛及脱色条件的研究[J].浙江师大学报(自然科学版),1999,12(4):71-75.
    [85]李青.改性膨润土和硅藻土吸附处理染料废水及再生研究[D].青岛:青岛科技大学,2011.
    [86]林谦.高内相乳液模板法制备有机硅聚苯乙烯多孔材料及应用[D].武汉:湖北大学,2010.
    [87]贺宝元.壳聚糖/明胶微球对活性染料吸附净洗性能研究[D].陕西:陕西科技大学,2012.
    [88]杨大春,张光辉,顾平.Fenton-微滤工艺处理印染废水研究[J].中国给水排水,2003,19(3):46-48.
    [89]王振余,郭树才.炭膜处理染料水溶液的研究[J].膜科学与技术,1997,17(5):7-10.
    [90] C. Soma. Use of mineral membranes in the treatment of textile effluents[C]. Pore1stInternational l Conference of Inorganic Membrane, Montpellier,1989:523–526.
    [91] Ilyes Jedidi. Preparation of a new ceramic microfiltration membrane from mineralcoal fly ash:Application to the treatment of the textile dying effluents[J]. PowderTechnology,2011,208:427-432.
    [92]裴振琦,韩式荆.用聚砜超滤膜从染色废水中回收染料[J].环境科学,1985,4(2):105-107.
    [93]姜安玺,郭维华.用超滤回收印染废水中的士林染料[J].环境保护学,1984,(3):19-25.
    [94]吴开芬.用超滤法处理靛兰废水[J].环境科学进展,1986,6(增刊):124-127.
    [95]吴开芬等.膜分离技术在环境工程中应用研讨会论文集[C].井冈山,1997,28-32.
    [96] S. Barredo-Damas. Ceramic membrane behavior in textile wastewater ultrafiltration[J]. Desalination,2010,250:623-628.
    [97] G.M. Zeng, X. Li, J.H. Huang, et al. Micellar-enhanced ultrafiltration of cadmium andmethylene blue in synthetic wastewater using SDS[J]. Hazardous Materials,2011,185(2-3):1304-1310.
    [98] Cheima Fersi, Mahmoud Dhahbi. Treatment of textile plant effluent by ultrafiltrationand/or nanofiltration for water reuse [J]. Desalination,2008,222:263-271.
    [99] Yi He, Guang-Ming Li, Hua wang. Experimental study on the rejection of salt and dyewith cellulose acetate nanofiltration membrane [J]. Taiwan Institute of ChemicalEngineers,2009,40:289-295.
    [100] C.N. Lopes, J.C.C. Petrus, H.G. Rella. Color and COD retention by nanofiltrationmembranes [J]. Desalination,2005,172:77-83.
    [101] Yuzhen Xu, Remie.Lebrun, et al. Treatment of textile dye plant effluent bynanofiltration membrane [J]. Separation Science and Technology,1999,34(13):2501-2519.
    [102]刘梅红,姜坪.膜法染料废水处理工艺研究[J].膜科学与技术,2001,21(3):50-52.
    [103] Jian-Jun Qin, Maung Htun Oo, Kiran A. Kekre. Nanofiltration for recoveringwastewater from a specific dyeing facility [J]. Separation and Purification Technology,2007,56:199-203.
    [104] A. Bes-Pia, A. Iborra-Clar, C. Garcia-Figueruelo. Comparison of three NFmembranes for the reuse of secondary textile effluents [J]. Desalination2009,241:1-7.
    [105] I. De Vreese, B. Van der Bruggen. Cotton and polyester dyeing using nanofilteredwastewater [J]. Dyes and Pigments,2007,74:313-319.
    [106] M. Unlu, H. Yukseler, U. Yetis. Indigo dyeing reclamation by membrane-basedfiltration and coagulation processes [J]. Desalination,2009,240:178-185.
    [107] R. Jiraratananon, A. Sungepet, P. Luangsowan. Performance evaluation ofnanofiltraion membranes for treatment of effluents containing reactive dye and salt [J].Desalination,2000,130:177-183.
    [108] Carl-Erik Nielson. Recycling of wastewater from textile dyeing using crossflowmembrane filtration [J]. Filtration&Separation,1994,31:593-595.
    [109] M.I. Alcaina-Miranda, S. Barredo-Damas, A. Bes-Pia. Nanofiltration as a final steptowards textile wastewater reclamation [J]. Desalination,2009,240:290-297.
    [110] Goksen Capar, Levent Yilmaz, Ulku Yetis. Reclamation of acid dye bath wastewater:Effect of pH on nanofiltration performance [J], Membrane Science,2006,281:560-569.
    [111]刘梅红,朱碧文,成坚.活性染料染色废水反渗透膜法处理试验研究[J].水处理技术,2009,35(3):90-93.
    [112]罗川南等.PSF/ER合金膜的膜材料对膜性能的影响[J].化学世界,2003,7:350-356.
    [113]罗川南等.PSF/PC相容性对合金膜结构和性能的影响[J].石化技术与应用,2002,9:305-310.
    [114]罗川南等.添加剂对PSF/ER合金膜结构和性能的影响[J].化工科技,2002,10(2):14-17.
    [115] W. Zhang, C.M. Tang, J. Kerres. Development and characterization of sulfonated-unmodified and sulfonated-aminated PSF blend membranes[J]. Separation andPurification Technology,2001,22-23:209-221.
    [116] Xianfeng Li,et al. Poly(sulfone)/sulfonated poly(ether ketone) blend membranes:morphology study and application in the filtration of alcohol based feeds [J].Membrane Science,2008,324:67-75.
    [117] W. Richard Bowen, A.D. Teodora, Hua-Bing Yin. Separation of humic acid from amodel surface water with PSU/SPEEK blend UF/NF membranes [J]. MembraneScience,2002,206:417-429.
    [118] B. Chakrabarty, A.K. Ghoshal, M.K. Purkait,et al. Ultrafiltration of stableoil-in-water emulsion by polysulfone membrane [J]. Membrane Science,2008,325:427-437.
    [119] Qing-Zhu Zheng, Peng Wang, Ya-Nan Yang, et al. The relationship between porosityand kinetics parameter of membrane formation in PSF ultrafiltration membrane [J].Membrane Science,2006,286:7-11.
    [120] Mu-Ya Hung, Shih-Hsiung Chen, Rey May Liou, et al. Pervaporation separation ofwater/ethanol mixture by TGN/PSF blending membrane[J]. European Polymer,2003,39:2367-2374.
    [121] Jae-Hyun Choi, Jonggeon Jegal, Woo-Nyon Kim. Fabrication and characterization ofmulti-walled carbon nanotubes/polymer blend membranes [J]. Membrane Science,2006,284:406-415.
    [122] Zhifeng Fan, Zhi Wang, Ning Sun, Jixiao Wang, Shichang Wang. Performanceimprovement of polysulfone ultrafiltration membrane by blending with polynilinenanofibers [J]. Membrane Science,2008,320:363-371.
    [123] H.A. Tsai, L.D. Li, K.R. Lee, et al. Effect of surfactant addition on the morphologyand pervaporation performance of asymmetric polysulfone membranes[J]. MembraneScience,2000,176:97-103.
    [124] Katherine Zodrow, Le′na Brunet, Shaily Mahendra, et al. Polysulfone ultrafiltrationmembranes impregnated with silver nanoparticles show improved biofoulingresistance and virus removal [J]. Water Research,2009,43:715-23.
    [125]P riscila Anad o, Laís Fumie Sato, Hélio Wiebeck, et al. Montmorillonite as acomponent of polysulfone nanocomposite membranes [J]. Applied Clay Science,2010,48:127-132.
    [126] H.A. Tsai. et al.[J]. Membrane Science,2002,198(2):245-258.
    [127] H.A. Tsai, et al.[J]. Industrial and Engineering Chemistry Research,2001,40(25):5917-5922.
    [128] L. Li, G.P. Yan, J.Y. Wu. Modification of polysulfone membranes via surfaceinitiated atom transfer radical polymerization and their antifouling properties [J].Applied Polymer Science,2009,lll(4):1942-1946.
    [129] Han-Bang Dong, You-Yi Xu, Zhuan Yi, Jun-Li Shi. Modification of polysulfonememebranes via surface-initiated atom transfer radical polymerization [J]. AppliedSurface Science,2009,255:8860-8866.
    [130] Y.P. Jane, H. Metin, A. Ariya. Polysulfone-graft-Poly(ethyleneglyco1)graftcopolymers for surface modification of polysulfone membranes [J]. Biomaterials,2006,27:856-865.
    [131] Bozena Kaeselev, John Pieraui, Georges Belfort.Photoinduced grafting ofultrafiltration membranes: comparision of poly(ether sulfone) and poly(sulfone)[J].Membrane Science,2001,194:245–261.
    [132] H. Taniguchi, J.E. Kilduff, G. Belfort. Low fouling synthetic membranes byUV-assisted graft polymerization: monomer selection to mitigate fouling by naturalorganic matter[J]. Membrane Science,2003,222(1-2):59-70.
    [133] E.F. Castro Vidaurre, C.A. Achete, R.A. Simao, et al. Surface modification of porouspolymeric membranes by RF-plasma treatment[J]. Nuclear Instruments and Methodsin Physics Research B,2001,175-177:732-736.
    [134] L. Michelle, Steen, Lynley Hymas, D. Elizaboth, et al. Low temperature plasmatreatment of asymmetric polysulfone membranes for permanent hydrophilic surfacemodification [J]. Membrane Science,2001,188:97-114.
    [135] Wavhal, S. Dattatray, et al.[J]. Materials Research Society Symposium-Proceedings,2003,(52):53-58.
    [136] S. Wavhal, Dattatray, et al.[J]. Langmuir,2003,19(1):79-85.
    [137] S. Wavhal, Dattatray, et al.[J]. Membrane Science,2002,209(1):255-269.
    [138] Chen Hua, G. Belfort. Surface modification of poly (ether sulfone) ultrafiltrationmembranes by low temperature plasma-induced graft polymerization[J]. AppliedPolymer Science,1999,72(13):1699-1711.
    [139] Song Yanqiu, Sheng Jing, Wei Min, et a1. Surface modification of polysulfonemembranes by low temperature plasma graft poly(ethylene glyco1)onto polysulfonemembranes[J]. Applied Polymer Science,2000,78(5):979-985.
    [140] Ilconich, Jeffery B, et al.[J]. Membrane Science,2003,214(1):143-156.
    [141]吴玉婷,施亚钧.辐照接枝丙烯酸改性聚砜超滤膜[J].水处理技术,1995,21(1):21-25.
    [142] Zuwei Ma, M. Kotaki, S. Ramakrishna. Surface modified nonwovenpolysulphone(PSU) fiber mesh by electrospinning:A novel affinity membrane[J].Membrane Science,2006,272:179-187.
    [143] S. SH. Homaeigohar, Joachim Koll, Erica Thea Lilleodden, Mady Elbahri. Thesolvent induced interfiber adhension and its influence on the mechanical andfiltration properties of polyethersulfone electrospun nanofibrous microfiltrationmemranes[J]. Separation and Purification Technology,2012,98:456-463.
    [144] K. Yoon, B.S. Hsiao, B. Chu. Formation of functional polyethersulfone electrospunmembrane for water purification by mixed solvent and oxidation processes[J].Polymer,2009,50:2893-2899.
    [145] Xinsheng Zhu, et al. Preparation of high strength ultrafine polyvinyl chloride fibrousmembrane and its adsorption of cationic dye[J]. Polymer Research,2010,17(6):769-777.
    [146] Gang Li, Peng Li, Chen Zhang, et al. Inhomogeneous toughening of carbonfiber/epoxy composite using electrospun polysulfone nanofibrous membranes by insitu phase separation [J]. Composites Science and Technology,2008,68:987-994.
    [147] Gang Li, Peng Li, Yunhua Yu, et al. Novel carbon fiber/epoxy composite toughenedby electrospun polysulfone nanofibers [J]. Materials Letters,2008,62:511-514.
    [148] Kim Young Bum, Cho Donghwan, Park Won Ho. Enhancement of mechanicalproperties of TiO2nanofibers by reinforcement with polysulfone fibers[J]. MaterialsLetters,2010,641:898-191.
    [149] R. Gopal, S. Kaur, et al. Electrospun nanofibrous polysulfone membranes aspre-filters: Particulate removal[J]. Membrane Science,2007,289:210-219.
    [150] R. Gopal, S. Kaur, et al. Electrospun nanofibrous filtration membrane[J]. MembraneScience,2006,281:581-586.
    [151] D. Aussawasathien, C. Teerawattananon, A. Vongachariya. Separation of micron tosub-micron particles from water:Electrospun nylon-6nanofibrous membranes aspre-filters[J]. Membrane Science,2008,315:11-19.
    [152] S. SH. Homaeigohar, K Buhr, K Ebert. Polyethersulfone electrospun nanofibrouscomposite membrane for liquid filtration[J]. Membrane Science,2010,365:68-77.
    [153] E.J. Robinette, G.R. Palmese. Synthesis of polymer-polymer nanocomposites usingradiation grafting techniques[J]. Nuclear Instruments and Methods in PhysicsResearch B,2005,236:216-222.
    [154] Xuefen Wang, et al. High performance ultrafiltration composite membranes based onpoly(vinyl alcohol) hydrogeol coating on crosslinked nanofibrous poly(vinyl alcohol)scaffold[J]. Membrane Science,2006,278:261-268.
    [155] K. Yoon, K. Kim, Xuefen Wang, et al. High flux ultrafiltration membranes based onelectrospun nanofibrous PAN scaffolds and chitosan coating[J]. Polymer,2006,(47):2434-2441.
    [156] Z. Zhao, et al.[J]. Membrane Science,2012,394-395:209-217.
    [157] Seyed Shahin Honaeigohar, Hossein Mahdavi, Mady Elbahri. Extraordinarily waterpermeable sol-gel formed nanocomposite nanofibrous membranes[J]. Colloid andInterface Science,2012,366:51-56.
    [158] K. Yoon, B.S. Hsiao, B. Chu. High flux nanofiltration membranes based oninterfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrousscaffolds[J]. Membrane Science,2009,(326):484-492.
    [159] Seok Joo Doh, et al. Development of photocatalytic TiO2nanofibers byelectrospinning and its application to degradation of dye pollutants[J]. Hazardousmaterials,2008,154:118-127.
    [160] H. Fong, I. Chun, D.H. Reneker. Beaded nanofibers formed during electrospinning[J].Polymer,1999,40(16):4585-4592.
    [161] S.A. Therona, E. Zussmana, A.L. Yarina. Experimental investigation of thegoverning parameters in the electrospinning of polymer solutions[J]. Polymer,2004,45,2017-2030.
    [162] M.G. Hajra, K. Mehata, G.G. Chase. Effects of humidity, temperature, and nanofiberson drop coalescence in glass fiber media[J]. Separation and Purification Technology,2003,30(1):79-88.
    [163] Xiaoyan Yuan, Yuanyuan Zhang, Cunhai Dong, et al. Morphology of ultrafinepolysulfone fibers prepared by electrospinning [J]. Polymer International,2004,53:1704-1710.
    [164] Kai-Hsin Chang, Hsiu-Li Lin. Electrospin of polysulfone in N,N’-dimethylacetaminde solutions [J]. Polymer Research,2009,16:611-622.
    [165] Shenoya SL,et.al. Role of chain entanglements on fiber formation duringelectrospinning of polymer solutions:good solvent,non-specific polymer–polymerinteraction limit[J]. Polymer,2005,46:3372-3384.
    [166]夏艳杰.尼龙6/66纳米纤维非织造物的结构与性能[D].苏州:苏州大学,2007.
    [167]许振良,李鲜日,周颖.超滤-微滤膜过滤传质理论的研究进展[J].膜科学与技术,2008,28(4):1-8.
    [168] Zhan Wang, Dezhong Liu, Wenjuan Wu, Mei Liu. Study of dead-end microfiltrationflux variety law[J]. Desalination,2006,201:175-184.
    [169] P. Gibson, H. Schreuder-Gibson, D. Rivin. Transport properties of porousmembranes based on electrospun nanofibers[J]. Colloid and Surface Science, A:Physicochemical Engineering Aspects,2001,187-188:469-481.
    [170] I.H. Huisman, B. Dutrê, K.M. Persson, G. Tr g rdh. Water permeability inultrafiltration and microfiltration: viscous and electroviscous effects[J]. Desalination,1997,113:95-103.
    [171] A. Bes-Pia, A. Mendoza-RocJ, M.I. Alcaina-Miranda, et al. Combination ofphysico-chemical treatment and nanofiltration to reuse wastewater of a printing,dyeing and finishing textile industry [J]. Desalination,2003,157:73-80.
    [172] C. Tang, V. Chen. Nanofiltration of textile wastewater for water reuse[J].Desalination,2002,143:11-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700