化学组装法制备汽车尾气净化催化剂
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车尾气的污染已经引起了人们的普遍关注。汽车尾气的主要污染物可导致酸雨和城市光化学烟雾,严重影响生态环境,危害人体健康。因此治理汽车尾气污染已经成为一项刻不容缓的任务。针对汽车尾气污染源的流动性,人们在汽车岐管内安装催化转化器使污染物在排入大气之前转化为无害的物质,但是汽车冷启动时所造成的污染仍然得不到治理。基于此,利用金属基体热容量小的特点,本研究采用电化学阳极氧化技术制备金属蜂窝载体,再用化学组装法制备汽车尾气净化催化剂力图解决汽车冷启动时的污染问题。
     采用电化学阳极氧化技术,以高纯铝箔为原料,在草酸或硫酸电解质中,恒电压下阳极氧化铝箔均可制备纳米氧化铝模板。在制备过程中,我们分别考察了电抛光工艺、氧化时间、氧化电压、电解质种类、体系温度和腐蚀液的体积比等因素对纳米氧化铝孔径的影响,并确定了最佳工艺条件:在0.3mol·L~(-1)的草酸电解质中,40V的氧化电压下氧化4小时,然后于5%的磷酸溶液中化学刻蚀清洗之后,再在相同的电解体系中氧化2小时,最后于体积比为5:1的6%磷酸和1.8%的铬酸组成的混合腐蚀液中进行腐蚀。
     以纳米氧化铝模板(AAMs)为催化剂载体,氯化钯为原料,采用浸渍法制备了Pd-AAMs汽车尾气净化催化剂样品。考察了氯化钯溶液的浓度、浸渍次数、焙烧温度、反应温度及制备工艺对该催化剂的催化活性的影响。研究表明纳米氧化铝模板在1%的氯化钯活性液中浸渍4次,于600℃下焙烧样品,反应温度在140~250℃下,该催化剂的活性都较好,对CO的转化率可达到92%。
     以纳米氧化铝模板为催化剂载体,氯化钯和亚硝酸铈为原料采用浸渍法制备了Pd-CeO_2-AAMs催化剂样品,并考察了硝酸亚铈溶液的浓度、气体流量、反应温度对该催化剂活性的影响及该催化剂
    
    硕士学位论文摘要
    的热稳定性。研究发现:随着ceo:含量的增加,Pd一ceoZ~AAMs在
    低温段的催化活性稍有提高,当反应温度达到200℃以上时,催化
    活性趋于一致,而且CeO:的加入使得Pd一AAMS的热稳定性也得到
    大大提高。
Pollution of automobile exhaust has already attracted people's widespread attention. The main pollutant in the automobile exhaust may cause acidic rain and photochemical smog, pollute environment severely and endanger people's health. Therefore, controlling of automobile exhaust pollution has already become an urgent task today. Aiming at the fluid of the source of exhaust pollution, converter is equipped in the discharging pipe that makes pollutant harmless. However, in the case of cold-start, it is useless. According to this, making use of the characteristics of the small thermal capacity of metal-based supports, metal honeycomb supports are prepared by anodic oxidizing technology and are made them assemble catalytic component of purification of automotive exhaust in order to solve the problem of pollution during the cold start in the research.
    High purity aluminum foils are used as the starting materials and are anodized by anodic oxidizing technology in the constant voltage. The nanometer anodic alumina membranes (AAMs) were both prepared in the sulfuric and oxalic acid solution. During the preparation of AAMs, the factors affecting its pore diameter, such as technique of electropolishing, anodization time, anodization voltage, the type of electrolyst, temperature in the cell and the proportion of etching solution were investigated, and make sure that the optimal processes were: in 0.3 mol /L oxalic acid under 40V, anode oxidize aluminum foil for 4 hours, then chemical etch in the phosphoric acid solution of which the content is 5%, and then anode oxidize in the same condition for 2 hours, and finally erode in a mixture of 6% phosphoric acid and 1.8% chromic acid, at the volume proportion of 5:1.
    The Pd-AAMs catalyst samples were prepared by impregnation method, that is,using AAMs and PdCl2 as carriers and active component respectively. The factors affecting the catalytic activities, such as
    concentration of PdCl2, times of impregnation, calcinations temperature,
    
    
    
    reactive temperature etc. have been investigated, when AAMs were immersed in the 1% PdCl2 solution for four times, and then calcined in the 600 C,the catalytic materials for purifying automobile exhaust are finally obtained, and when the optional reaction temperature is the range of 140~250 C of reaction temperature. The conversion rate of CO can arrive 92%.
    The Pd-CeO2-AAMs catalyst samples were also prepared by impregnation method, in which AAMs, PdCl2 and Ce(NO3)3 are used as starting materials. The factors affecting the Pd-CeO2-AAMs catalytic activities, such as the concentration of Ce(NO3)3, fluid capacity of simulated automobile exhaust and reaction temperature have been investigated. What's more, their thermal stabilities also have been discussed. The results showed that catalytic activities increased little with the growing of CeO2 under relatively low temperature. When reaction temperature was over 200 C, the contents of CeO2 in the catalysts seemed have no effect on their activities. Moreover, the thermal stabilities of Pd-CeO2-AAMs were improved with the concentrations of CeO2.
引文
[1] 沈迪新,陈宏德,田群.我国汽车尾气污染控制与对策.环境科学进展,1997,5(6):23~33
    [2] Michaeni Church. Catalyst Formulations 1960 to Present. Society of Automotive Engineers, 1989,(5):32~36
    [3] 翟德华,汽车排气污染及其净化.城市环境与城市生态,1998,(11):39~41
    [4] 王全荣.汽车尾气净化技术的发展及建议.石油炼制与化工,1994,25(5):58~63
    [5] 周可斌,李学隽,王道.汽车尾气净化用稀土钙钛矿型复合氧化物催化剂.大学化学,2001,16(2):43~46
    [6] 刘元鹏.国外汽油机排放净化技术的现状与发展.世界汽车,2000,(9):4~5
    [7] 夏耀勤,王敬生.汽车尾气催化剂的应用和展望.汽车工艺与材料,2000,(1):27~30
    [8] Tamaru K, Mills G A. Catalysts for Control of Exhaust Emission. Catalysis Today, 1994,(22):349~360
    [9] Hegedus L L, Gumbletom J J. Catalyst Computers and Cars: a Growing Symbiosis. Chemtech., 1990,(10):630~642
    [10] 王亚明,等.催化原理及新催化技术.昆明:云南出版社,1995:146~151
    [11] 罗宁,姚金华,刘治中.稀土催化剂在汽车尾气净化方面的应用.重庆环境科学,1998,20(3):34~35
    [12] 高娃.汽车尾气净化催化剂及其金属载体的研究进展.兵器材料科学与工程,2000,23(4):67~70
    [13] 安琴,冯长根,游少雄,等.车用催化剂载体的发展与选择.环境保护,1999,(11):22~23
    [14] 王亚军,彭希,冯长根.汽车催化剂技术发展及研究概况.工业催化,2000,8(2):5~6
    [15] 王亚军,冯长根,王丽琼.稀土在汽车排气催化净化方面的应用.工业催化,2000,8(5):5~6
    [16] 安琴,冯长根,曾庆轩,等.陶瓷蜂窝载体γ-Al_2O_3涂层研究进展.化学通报,
    
    2001,(3):136~137
    [17] 王全荣.汽车尾气净化技术的发展趋势及建议.石油炼制与化工,1994,25(5):59~60
    [18] 周寒枝,黎澄宇.汽车尾气净化催化剂研究的现状.环境与开发,1999,14(3):13~14
    [19] Nakatsuji T, Okuno M, Yashimoto M. Catalsis for Removal of Nitrogen Oxide, Hydrocarbons, and Carbon Monoxide from Waste Gases [P]. Jap, 05-76762. 1993-03-30
    [20] Fujikawa H, Tanaka H, Takashi T, et al. Catalysts for Purification of Exhaust Gases [P], Jap, 07-80311.1995-03-28
    [21] 陈天蛋,施剑林,等.硼掺杂的γ-Al_2O_3催化膜的制备及其热稳定性的研究.无机材料学报,2001,(3):510~514
    [22] 朱洪法.催化剂载体.北京:化学工业出版社,1980
    [23] 高正中.实用催化.北京:化学工业出版社,1996
    [24] 郭建军,罗来涛,李松军.汽车尾气催化剂的研究进展.江西化工,2001,(2):3~7
    [25] Church M L, Cooper B J, Willsom P J. Catalysts in Automobiles: a History. Automotive Engineering, 1989, 97(6):69~74
    [26] 肖霞,何新秀.我国汽车尾气污染的催化净化.环境科学研究,1998,11(5):26~33
    [27] 林河成.稀土在治理汽车尾气中的应用及发展.世界有色金属,2000,(2):40~41
    [28] 王亚军,曾庆轩,冯长根.汽车尾气净化催化剂载体.工业催化,1999,(6):5~6
    [29] 安琴,冯长根,游少雄等.车用催化剂载体的发展与选择.环境保护,1999,(11):22~23
    [30] Souvik Bhattacharyya, Randip k Das. Catalytic Control of Automotive NOx: A Review. Int J Energy Res., 1999,23:351~369
    [31] Huang Kelong, Wang Hongxia, Liu Suqing, et al. Synthesis and Catalytic Property of Cu-Mn-Ce/γ-Al_2O_3 Complex Oxide. Trans. Nonferrous Met. Soc. China, 2002,12(2): 317~320
    [32] Kung M C, Park D W, Kim D W. Lean NO_x Catalysis over Sn/Al_2O_3 Catalysts.
    
    Catal, 1999,18(1):1~13
    [33] Xu C B, Wu S L. Experimental Study on Purification of NOx in Automobile Exhaust Using a New Type of Complex Metal-oxide Catalyst. Environmental Science, 1998,19(3): 3~21
    [34] Burch R, Watling T C. Kinetics and Mechanism of the Reduction of NO by C_3H_8 over Pt/A1203 under Lean-bum Conditions. Catal, 1997,169(1): 45~53
    [35] Loof P, Kasemo B, Andorsson S. Influence of Ceria on the Interaction of CO and NO with Highly Dispersed Pt and Rh. Catal, 1991,130(1):181~192
    [36] Bhasin M M, Tarrell M S. Catalysts for Treating Exhaust Gases from Internal Combustion and Stationary Source Engines [P].EP, 584887. 1994-03-02
    [37] Morikuchi T, Nishikawa H, Eto S, et al. Three-Way Catalysts for Treatment of Exhaust Gases [P].EP, 10-85604. 1998-04-07
    [38] Inui T. Role of Rare Earth Oxides as Transport Media for Rapid Catalytic Reactions. Alloys and Compounds, 1993,193(12):47~51
    [39] 陈英红,刘育,李树本等.一氧化碳催化还原消除氮氧化物的研究进展.分子催化,2000,14(5):392~397
    [40] Conesa J C, Martinez A, Ferandez G M, et al. Surface Structure and Redox Chemistry of Ceria Containing Automotive Catalytical Systems. Res Chem Intermedia, 2000,26(1): 103~108
    [41] Hodjati S, Vaezaadeh K, Petit C, et al. Absorption/Desorption of NO Process on Perovskites: Performance to Remove NO from a Lean Exhaust Gas. Appl Catal B: Environment, 2000,26(1):5~16
    [42] 崔梅生,郭耘.汽车尾气净化技术发展现状.化工进展,2000,(6):9~12
    [43] 王亚军,冯长根等.稀土在汽车排气催化净化中的应用.工业催化,2000,8(9):3~7
    [44] Tabata K, Misono M. Elimination of Pollutant Gases--Oxidation of CO, Reduction and Decomposition of NO. Catal Today, 1990, (8): 249~254
    [45] 卢冠中,汪仁.氧化铈在非贵金属氧化物催化剂中的作用—(Ⅰ)铜和铈负载型氧化物中氧的性能.催化学报,1985,12(2):83~86
    [46] Summers J C. Interaction of Cerium Oxide with Noble Metals. J Catal., 1977, 58:131~137
    
    
    [47] Kim G. Ceria-promoted Three-way Catalysts for Automotive Exhaust Emission Control. Ind Eng Chem Prod Res Dev, 1982,21 (2):267~273
    [48] Hera R K. Dynamic Behavior of Automotive Catalysts. Ind Eng Chem Prod Res Dev, 1981,20(3): 450~464
    [49] 周春晖,李小年,葛忠华.贵金属钯催化剂的研究现状和发展前景.化工生产与技术,2000,7(1):12~16
    [50] 胡逸民,李飞鹏编著.内燃机废气净化.北京:中国铁道出版社,1994
    [51] 冯昭仁.车用催化剂与汽车污染治理.工业催化,1998,(2):3~13
    [52] Voltz S E, Morgan C R, Liederman D, et al.Kinetic Study of Carbon Monoxide and Propylene Oxidation On Platium Catalysts. Ind Eng Chem Prod Res Dev, 1973, 12(4):294~301
    [53] 李淑英,赫荣晖.纳米孔洞阳极氧化铝膜的制备及应用.全面腐蚀控制,2001,15(2):6~8
    [54] Lei Y, Cheng G S, Zhang L D. Fabrication of Highly ordered ZnO Nanowire Arrays in Anodic Alumina Membranes. Mater Res, 2000,15(11):2305~2308
    [55] David N Belton, Kathleen C Taylor. Automobile Exhaust Emission Control by Catalysts. Solid Catalysts and Porous Solids. 1999,44:97~102
    [56] Jen H W, Graham G W, Chun W, et al. Characterization of Model Automotive Exhaust Catalysts: Pd on Ceria and Ceria-zirconia supports. Catalysis Today, 1999,50:309~328
    [57] Parkhutik V P, Shershulsky Ⅵ. Modelling of Low-temperature Oxidation of Materials in Gaseous Enviroments. J.Phys D: Appl Phys,1992,25:1258~1263
    [58] Murphy J P,Michelson C E. Anodized Aluminum. Proc, ConfAnodiz. Aluminum, Nottingham: Alumin. Federation, 1961
    [59] Despic A R, Parkhutik V P. Modem Aspects of Electrochemistry, Bockris J.O'M. et al, Plenum:New York, 1989,20:397~403
    [60] Shimizu K, Kobayashi K, Skeldon P, et al. Atomic Force Microscopy Study of the Corrision and Filming Behavior of Aluminum. Corrision Sci, 1997,39:701~718
    [61] Masuda H, Yamada K, Osaka A. Synthesis Crystal Structure Refinement and Electrical Properties ofUramium Oxysulfide,UOS.Jpn. J. Appl Phys, 1998,37:
    
    1340~1351
    [62] Masuda H, Satoh M. Prepartion of Regularly structured Porous Metal Membraries with Two Different Hole Diameters at the Two Sides.Jpn. J. Appl. Phys, 1996,35:126~134
    [63] Jessensky O, Muller F, Cosele U. Self-organized Formation of Hexagonal Pore Arrays in Anodic Alumina. Appl Phys Lett, 1998,72:1173~1182
    [64] Cleude.G., Properties of Perovekite-type Oxides Ⅱ:Studies in Catalysis. Lesscommon metal. 1989,146:261~273
    [65] 何元译.汽车排气催化剂的技术动向.小型内燃机.1990,(3):60~64
    [66] X.M.米纳切夫等著.刘恒潜译.稀土在催化中的应用.北京:北京科学出版社,1987.124~129
    [67] 潘履让.固体催化剂的设计与制备.天津:南开大学出版社,1993.35~36
    [68] 陈忠.纳米TiO_2-Al_2O_3复合催化剂的制备及催化CO还原SO_2制硫粉的研究:[博士学位论文].长沙:中南工业大学,1997
    [69] Anderson J A, Galan-Fereres M. Precursor-support Interactions in the Preparation of Sepiolite-supported Ni and Pd Catalysts. Clay Minerals. 1999,34:57~63
    [70] A.B司梯勒斯著,顾其威,等译.催化剂生产.上海:华东化工学院出版社,1991.45~47
    [71] Bahranowski K., Gasior M, Kielski A, Podobinski J, et al. Physico-chemical Characterization and Catalytic Properties of Copper-doped Alumina-pillared Montmorillonites. Clays and Clay Minerals, 1998,46(1):98~103
    [72] Grigor'eva T F, Vorsina I A, Barinova A P. Mechanical Activation of Kaolinire metal-oxide Mixture. Inorganic Materials, 1997, 33(8):839~845
    [73] 郭金彦,张军营,孙明明,等.熔融法处理四氟乙烯表面的改进.中国胶粘剂,2000(3):21~23
    [74] Tarik Chafik, Olivier Dulaurent. Heat of Adsorption of Carbon Monoxide on a Pt/Rh/CeO_2/γ-AlO_3 Three-way Catalyst Using in-situ Infared Spectroscopy at High Temperature. J. Catal., 1998,179:503~518
    [75] Schlatter J C, Mitchell P. Exhaust-Catalyst Development for Methanol-fueled Vehicles Ⅲ: Formaldehyde Oxidation. J. Ind Eng Chem Prod Res Dev, 1980,
    
    19(3):288~292
    [76] Koltsakis G C, Konstantinidis P A, Stamatelos AM. Development and Application Range of Mathematical Models for Three-way catalytic converters. J. Applied Catalysis B: Environmental, 1997, (12):161~191

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700