过渡金属改性铈基材料电子结构及储放氧机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,机动车产量与保有量的迅猛增长,给大气环境带来了巨大压力。我国相继出台了日益严格的排放法规,控制机动车污染物排放,对尾气净化催化剂提出了更高要求。铈基材料具有优异的储放氧性能和催化活性,可提高贵金属的污染物净化效率。研究发现,过渡金属改性可明显提高铈基材料性能,但机理不明。据此,本文通过基于密度泛函理论的第一性原理方法,研究了过渡金属改性铈基材料的电子结构及储放氧机理,为开发高性能铈基储放氧材料提供基础数据和理论支撑。
     通过密度泛函理论与Hubbard U模型相结合,研究CeO2的储放氧机理。结果表明:在释放氧过程中,体系产生氧空位缺陷。氧离子遗留在空位中的补偿电子,被近邻Ce 4f能带捕获。在强相关效应的作用下,4f能带发生裂分,4f电子强烈局域在Ce~(4+)上,发生Ce~(4+)→Ce~(3+)的还原反应;反之,氧气储存是氧气释放的逆过程。在氧分压调变过程中,氧空位的产生与消失是表象,Ce 4f电子“局域-离域”的可逆变换是本质。
     通过DFT+U及其改进方法,研究FeO、NiO 3d电子的晶体场裂分机理。结果表明:通过占据态初始值设定,配位场对称性微扰等改进方法,实现了对FeO、NiO带隙的预测。在Hubbard U模型作用下,Fe 3d电子的t2g能带发生裂分,是FeO绝缘体特征的内因;Ni 3d电子的t2g被完全占据,是NiO带隙较大的内因。
     通过Hubbard U模型,同时处理Fe 3d、Ni 3d电子和Ce 4f电子,研究了Fe、Ni改性铈基材料的储放氧性能及机理。按照储放氧性能高低排序为Ce_(0.97)Ni_(0.03)O_2>Ce_(0.97)Fe_(0.03)O_2>CeO_2。对于Fe改性铈基材料,通过Fe 3d-Ce 4f相互作用,降低了Ce 4f能带裂分需要的能量,Ce被还原为+3价;对于Ni改性铈基材料,通过引入比Ce 4f能量更低的Ni 3d带隙态,降低了体系接受额外电子的能量,Ni被还原为+2价。Fe、Ni通过不同方式,修饰铈基材料电子结构;基于不同掺杂效应,降低接受额外电子的能带能量,调变了铈基材料的储放氧机理,使储放氧性能获得不同程度的提高。
Recently, for the drastic increase of the automotive, the huge quantity of exhausts makes the atmosphere environment worse than before. According to the strict regular, there are many challenges for the clarify catalysts. Transition metal has an impressed effect on the development of the oxygen storage capacity and catalysis activity. Unfortunately, there is no clear mechanism for such system. The ab initio density function theory has been employed to study the electronic structure and oxygen storage mechanism on the transition metal doped ceria-based materials.
     Based on the combination of density function theory and Hubbard U model, an unlinear core corrected ultra soft pseudopotential has been used. During the oxygen release process, there are two extra electrons left by the removing of the neutral oxygen, which has been totally localized on the nearest neighborhood of the oxygen vacancy. According to the strong correlation effect, the Ce 4f band has been spited by the electron occupation. On the other hand, oxygen storage is the reverse process of release. During the oscillation of the oxygen partial pressure, the formation and accommodation of oxygen vacancy result in the occupation and unoccupation of Ce 4f bands.
     For FeO and NiO, the modified DFT+U methods have been employed to study the spin split mechanism of 3d electrons. Through changing the initial occupation state of 3d and the symmetry distortion of local structures, the t2g state of Fe 3d have been totally splited, which predicts that FeO is insulator.
     For Fe, Ni doped ceria-based materials, Hubbard U model has been used to deal with Fe 3d, Ni 3d and Ce 4f. For iron dopant, there is a strong Fe 3d-Ce 4f interaction due to the combination of Fe 3d and Ce 4f in the conduct band, which lower the oxygen formation energy and promote the oxygen release process. On the other hand, Ni dopant induced a gap state between the O 2p and Ce 4f, which means that Ni will be reduced through the oxygen release process instead of Ce. Although there are different dopants effect in details, generally a lower energy level than the empty Ce4f band to accommodate the extra electron would be the basic mechanism for the increased redox ability.
引文
[1] Esch F., Fabris S., Zhou L. et al., Electron localization determines defect formation on ceria substrates, Science, 2005, 309(5735):752-755.
    [2] Martinez-Arias A., Conesa J. C., Soria J., O2-probe EPR as a method for characterization of surface oxygen vacancies in ceria-based catalysts, Research on Chemical Intermediates, 2007, 33(8-9):775-791.
    [3] Martinez-Arias A., Fernandez-Garcia M., Belver C. et al., EPR study on oxygen handling properties of ceria, zirconia and Zr-Ce (1 : 1) mixed oxide samples, Catalysis Letters, 2000, 65(4):197-204.
    [4] Martinez-Arias A., Fernandez-Garcia M., Iglesias-Juez A. et al., New Pd/CexZr1-xO2/Al2O3 three-way catalysts prepared by microemulsion - Part 2. In situ analysis of CO oxidation and NO reduction under stoichiometric CO+NO+O2, Applied Catalysis B-Environmental, 2001, 31(1):51-60.
    [5] Fernandez-Garcia M., Martinez-Arias A., Iglesias-Juez A. et al., New Pd/CexZr1-xO2/Al2O3 three-way catalysts prepared by microemulsion - Part 1. Characterization and catalytic behavior for CO oxidation, Applied Catalysis B-Environmental, 2001, 31(1):39-50.
    [6] Martinez-Arias A., Fernandez-Garcia M., Salamanca L. N., et al., Structural and redox properties of ceria in alumina-supported ceria catalyst supports, Journal of Physical Chemistry B, 2000, 104(17):4038-4046.
    [7] Martinez-Arias A., Fernandez-Garcia M., Galvez O., et al., Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO4 catalysts, Journal of Catalysis, 2000, 195(1):207-216.
    [8] Fernandez-Garcia M., Martinez-Arias A., Iglesias-Juez A., et al., Structural characteristics and redox behavior of CeO2-ZrO2/Al2O3 supports, Journal of Catalysis, 2000, 194(2):385-392.
    [9] Martinez-Arias A., Fernandez-Garcia M., Ballesteros V., et al., Characterization of high surface area Zr-Ce(1:1) mixed oxide prepared by a microemulsion method, Langmuir, 1999, 15(14):4796-4802.
    [10] Descorme C., Madier Y., Duprez, D., Infrared study of oxygen adsorption and activation on cerium-zirconium mixed oxides, Journal of Catalysis, 2000, 196(1):167-173.
    [11] Madier Y., Descorme C., Le Govic A. M. et al., Oxygen mobility in CeO2 and CexZr(1-x)O2 compounds: Study by CO transient oxidation and O-18/O-16 isotopicexchange, Journal of Physical Chemistry B, 1999, 103(50):10999-11006.
    [12] Dong F., Suda A., Tanabe T. et al., Dynamic oxygen mobility and a new insight into the role of Zr atoms in three-way catalysts of Pt/CeO2-ZrO2, Catalysis Today, 2004, 93-95:827-832.
    [13] Colin M., Duprez D., Pelissier M., Elementary steps in oxygen exchange on oxide surfaces: possible implications in oxygen migration, Spillover and Migration of Surface Species on Catalysts, 1997, 112:303-312.
    [14] Duprez D., Study of surface mobility by isotopic exchange: recent developments and perspectives, Spillover and Migration of Surface Species on Catalysts, 1997, 112:13-28.
    [15] Duprez D., Study of surface reaction mechanisms by O-16/O-18 and H/D isotopic exchange, Catalysis Today, 2006, 112(1-4):17-22.
    [16] Duprez D., Descorme C., Birchem T. et al., Oxygen storage and mobility on model three-way catalysts, Topics in Catalysis, 2001, 16(1-4):49-56.
    [17] Galdikas A., Duprez D., Bion N. et al., Oxygen isotopic exchange on three-way catalysts: A dynamic kinetic model, Materials Science-Medziagotyra, 2007, 13(3):193-205.
    [18] Maillet T., Madier Y., Taha R. et al., Spillover of oxygen species in the steam reforming of propane on ceria-containing catalysts, Spillover and Migration of Surface Species on Catalysts, 1997, 112:267-275.
    [19] Huang M. and Fabris S., Role of surface peroxo and superoxo species in the low-temperature oxygen buffering of ceria: Density functional theory calculations, Physical Review B, 2007, 75(8): 081404.1-081404.4.
    [20] Liechtenstein A.I., Anisimov. V. I., Zaanen J., Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators, Physical Review B, 1995, 52(8): R5467 - R5470.
    [21] Anisimov V.I., Gunnarsson O., Density-functional calculation of effective Coulomb interactions in metals, Physical Review B, 1991, 43(10):437570-437574.
    [22] Anisimov V.I., Zaanen J., Andersen O.K. et al.,Band theory and Mott insulators: Hubbard U instead of Stoner I, Physical Review B, 1991, 44(3):44943-44954.
    [23] Mullins D. R., Radulovic P. V., Overbury S. H., Ordered cerium oxide thin films grown on Ru(0001) and Ni(111), Surface Science, 1999, 429(1-3):186-198.
    [24] Fujimori A., Mixed-Valent Ground State Of CeO2, Physical Review B, 1983, 28(4):2281-2283.
    [25] Allen J. W., Valence fluctuations in narrow band oxides, J. Magn. Magn.Mater., 1985, 47:168-174.
    [26] Matsumoto M., Soda K., Ichikawa K. et al., Resonant photoemission study of CeO2, Physical Review B, 1984, 50(16):11340-11346.
    [27] Henderson M. A., Perkins, C.L., Engelhard M. H. et al., Redox properties of water on the oxidized and reduced surfaces of CeO2(111), Surf. Sci., 2003, 526(1-2):1-18.
    [28] Veronica G. P. M., Hofmann A., Sauer J., Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges, Surface Science Reports, 2007, 62(6):219-270.
    [29] Fujimori A., Comment on“spectroscopic evidence for localized and extended f-symmetry states in CeO2”, Physical Review Letters, 1984, 53(26):2518-2518.
    [30] Laegsgaard J., Svane A., Theory of the alpha-gamma phase transition in Ce, Physical Review B, 1999, 59(5):3450-3459.
    [31] Held K., McMahan A. K., Scalettar R. T., Cerium volume collapse: Results from the merger of dynamical mean-field theory and local density approximation, Physical Review Letters, 2001, 87(27): 276404.1-276404.4.
    [32] Skorodumova N. V., Ahuja R., Simak S. I. et al., Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles, Physical Review B, 2001, 6411(11):115180-115188.
    [33] Yang Z. X., Woo T. K., Baudin M. et al., Atomic and electronic structure of unreduced and reduced CeO2 surfaces: A first-principles study, Journal of Chemical Physics, 2004, 120(16):7741-7749.
    [34] Skorodumova N. V., Simak S. I., Lundqvist B. I. et al., Quantum origin of the oxygen storage capability of ceria, Physical Review Letters, 2002, 89(16): 166601.1-166601.4.
    [35] Pacchioni G., Modeling doped and defective oxides in catalysis with density functional theory methods: Room for improvements, Journal of Chemical Physics, 2008, 128(18): 182505.1-182505.10.
    [36] Munzenberg M., Felsch W., Schaaf P., Tuning the 4f state occupancy of Ce in highly correlated CeSi/Fe multilayers: An x-ray absorption spectroscopy study, Physical Review B, 2007, 76(1): 014427.1-014427.11.
    [37] Loschen C., Carrasco J., Neyman K. M. et al., First-principles LDA plus U and GGA plus U study of cerium oxides: Dependence on the effective U parameter, Physical Review B, 2007, 75(3): 035115.1-035115.8.
    [38] Ganduglia-Pirovano M. V., Hofmann A., Sauer J., Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges, Surface Science Reports, 2007, 62(6):219-270.
    [39] Da Silva J. L. F., Stability of the Ce2O3 phases: A DFT+U investigation, Physical Review B, 2007, 76(19): 193108.1-193108.4.
    [40] Andersson D. A., Simak S. I., Johansson B., et al., Modeling of CeO2, Ce2O3, and CeO2-x in the LDA plus U formalism, Physical Review B, 2007, 75(3):035109.1-035109.6.
    [41] Nolan M., Fearon J. E., Watson G. W., Oxygen vacancy formation and migration in ceria, Solid State Ionics, 2006, 177(35-36):3069-3074.
    [42] Fabris S., de Gironcoli S., Baroni S., et al., Taming multiple valency with density functionals: A case study of defective ceria, Physical Review B, 2005, 71(4): 041102.1-041102.4.
    [43] Da Silva J. L. F., Ganduglia-Pirovano M. V., Sauer J., et al., Hybrid functionals applied to rare-earth oxides: The example of ceria, Physical Review B, 2007, 75(4): 045121.1-045121.10.
    [44] Hay P. J., Martin R. L., Uddin J. et al., Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional, Journal of Chemical Physics, 2006, 125(3):034712.1-034712.8.
    [45] Nolan M., Molecular Adsorption on the Doped (110) Ceria Surface, Journal of Physical Chemistry C, 2009, 113(6):2425-2432.
    [46] Ganduglia-Pirovano M. V., Da Silva J. L. F., Sauer J., Density-Functional Calculations of the Structure of Near-Surface Oxygen Vacancies and Electron Localization on CeO2(111), Physical Review Letters, 2009, 102(2):026101-026104.
    [47] Fabris S., de Gironcoli S., Baroni S., et al., Taming multiple valency with density functionals: A case study of defective ceria, Phys.Rev. B, 2005, 71(4): 041102.1-041102.4.
    [48] Cococcioni M., de Gironcoli S., Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Physical Review B, 2005, 71(3): 035105.1-035105.16.
    [49] Jiang Y., Adams J. B., van Schilfgaarde M., Density-functional calculation of CeO2 surfaces and prediction of effects of oxygen partial pressure and temperature on stabilities, Journal of Chemical Physics, 2005, 123(6):064701.1-064701.9.
    [50] Wuilloud E., Delley B., Schneider W.-D., et al., Spectroscopic evidence for localized and extended f-symmetry states in CeO2, Physical Review Letters, 1984, 53(2): 202-205.
    [51] Fabris S., de Gironcoli S., Baroni S., et al., Reply to "Comment on 'Taming multiple valency with density functionals: A case study of defective ceria'", Physical Review B, 2005, 72(23):237102-237103.
    [52] Kresse G., Blaha P., Da Silva J. L. F. et al., Comment on "Taming multiple valency with density functionals: A case study of defective ceria", Physical Review B, 2005, 72(23):237101-237102.
    [53] Castleton C. W. M., Kullgren J., Hermansson K., Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria, Journal of Chemical Physics, 2007, 127(24): 244704.1-244704.11.
    [54] Nolan M., Parker S. C., Watson G. W., The electronic structure of oxygen vacancy defects at the low index surfaces of ceria, Surface Science, 2005, 595(1-3):223-232.
    [55] Kaspar J., Fornasiero P., Hickey N., Automotive catalytic converters: current status and some perspectives, Catalysis Today, 2003, 77(4):419-449.
    [56] Kaspar J., Fornasiero P., Graziani M., Use of CeO2-based oxides in the three-way catalysis, Catalysis Today, 1999, 50(2):285-298.
    [57] Kaspar J., Di Monte R., Fornasiero P. et al., Dependency of the oxygen storage capacity in zirconia-ceria solid solutions upon textural properties, Topics in Catalysis, 2001, 16(1-4):83-87.
    [58] Kaspar J., Fornasiero P., Nanostructured materials for advanced automotive de-pollution catalysts, Journal of Solid State Chemistry, 2003, 171(1-2):19-29.
    [59] Yoshida H., Miura H. D., K., Horiuchi M., et al., Investigation of the relationship between the ionic conductivity and the local structures of singly and doubly doped ceria compounds using EXAFS measurement, Solid State Ion., 2001, 140(3-4); 191-199.
    [60] Inaba H., Tagawa H., Ceria-based solid electrolytes, Solid State Ion., 1996, 83(1-2): 1-16.
    [61] Guo X., Shaobo M. , Waser R., Nonlinear electrical properties of grain boundaries in oxygen ion conductors: Acceptor-doped ceria, Electrochem. Solid State Lett., 2005, 8(1): J1-J3.
    [62] Terribile D., Trovarelli A., de Leitenburg C., et al., Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria-zirconia solid solutions, Catalysis Today, 1999, 47(1-4):133-140.
    [63] Trovarelli A., Structural and oxygen storage/release properties of CeO2-based solid solutions, Comments on Inorganic Chemistry, 1999, 20(4-6):263-284.
    [64] Balducci G., Kaspar J., Fornasiero P. et al., Surface and reduction energetics of the CeO2-ZrO2 catalysts, Journal of Physical Chemistry B, 1998, 102(3):557-561.
    [65] Mamontov E., Egami T., Brezny R. et al., Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia, Journal of Physical Chemistry B, 2000, 104(47):11110-11116.
    [66] Li P., Chen I. W. Penner-Hahn, J. E., J. Am. Ceram. Soc., 1994, 77:118-.
    [67] Minervini L., Zacate M. O., Grimes R. W., Defect cluster formation in M2O3-doped CeO2, Solid State Ionics, 1999, 116(3-4):339-349.
    [68] Li G. S., Smith R. L., Inomata H., Synthesis of nanoscale Ce1-xFexO2 solid solutions via a low-temperature approach, Journal of the American Chemical Society, 2001, 123(44):11091-11092.
    [69] Kaneko H., Ishihara H., Taku S. et al., Cerium ion redox system in CeO2-xFe2O3solid solution at high temperatures (1,273-1,673 K) in the two-step water-splitting reaction for solar H-2 generation, Journal of Materials Science, 2008, 43(9):3153-3161.
    [70] Liu Q. S., Ma W. P., He R. X. et al., Reaction and characterization studies of an industrial Cr-free iron-based catalyst for high-temperature water gas shift reaction, Catalysis Today, 2005, 106(1-4):52-56.
    [71] Mineshige A., Taji T., Muroi Y. et al., Oxygen chemical potential variation in ceria-based solid oxide fuel cells determined by Raman spectroscopy, Solid State Ionics, 2000, 135(1-4):481-485.
    [72] Li L. P., Li G. S., Smith R. L. et al., Microstructural evolution and magnetic properties of NiFe2O4 nanocrystals dispersed in amorphous silica, Chemistry of Materials, 2000, 12(12):3705-3714.
    [73] Takano Y. O., T. Nakagawa, S.; Suzuki H. et al., Mossbauer study of Fe-57 doped LaSryCu2O6, Bulletin of Materials Science, 1995, 30(7): 789-794.
    [74] McBride J. R., Hass K. C.; Poindexter B. D. et al., Raman and X-ray studies of Ce1-xRexO2-y, where Re=La, Pr, Nd, Eu, Gd, and Tb, Journal of Applied Physics, 1994, 76(4): 2435-2441.
    [75] Shannon R. D., Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides, Acta Cryst., 1976, A32:751-767.
    [76] Lambrou P. S., Efstathiou A. M., The effects of Fe on the oxygen storage and release properties of model Pd-Rh/CeO2-Al2O3 three-way catalyst, Journal of Catalysis, 2006, 240(2):182-193.
    [77] Wang X., Gorte R. J., The effect of Fe and other promoters on the activity of Pd/ceria for the water-gas shift reaction, Appl. Catal. A: Gen., 2003, 247(1): 157-162.
    [78] Yamazaki K., Takahashi N., Shinjoh H. et al., The performance of NOx storage-reduction catalyst containing Fe-compound after thermal aging, Applied Catalysis B-Environmental, 2004, 53(1):1-12.
    [79] Bernal S., Calvino J. J., Cauqui M. A. et al., Some recent results on metal/support interaction effects in NM/CeO2 (NM : noble metal) catalysts, Catalysis Today, 1999, 50(2):175-206.
    [80] Imamura S., Hagashihara T., Saito Y. et al., Decomposition of methanol on Pt-loaded ceria, Catalysis Today, 1999, 50(2):369-380.
    [81] Sun H. P., Pan X. P., Graham G. W. et al., Partial encapsulation of Pd particles by reduced ceria-zirconia, Applied Physics Letters, 2005, 87(20):201915-201917.
    [82] Mastelaro V. R., Briois V., de Souza D. P. F. et al., Structural studies of a ZrO2-CeO2 doped system, Journal of the European Ceramic Society, 2003, 23(2):273-282.
    [83] Kaneko H., Miura T., Fuse A., et al., Rotary-type solar reactor for solar hydrogenproduction with two-step water splitting process, Energy & Fuels, 2007, 21(4): 2287-2293.
    [84] Kaneko H., Miura T., Ishihara H. et al., Reactive ceramics of CeO2-MOx (M = Mn, Fe, Ni, Cu) for H2 generation by two-step water splitting using concentrated solar thermal energy, Energy, 2007, 32(5):656-663.
    [85] Perez-Alonso F. J., Granados M. L., Ojeda M. et al., Chemical structures of coprecipitated Fe-Ce mixed oxides, Chemistry of Materials, 2005, 17(9):2329-2339.
    [86] Perez-Alonso F. J., Granados M. L., Ojeda M. et al., Relevance in the Fischer-Tropsch synthesis of the formation of Fe-O-Ce interactions on iron-cerium mixed oxide systems, Journal of Physical Chemistry B, 2006, 110(47):23870-23880.
    [87] Yang Z. X., Luo G. X., Lu Z. S. et al., Oxygen vacancy formation energy in Pd-doped ceria: A DFT+U study, Journal of Chemical Physics, 2007, 127(7): 0747041-0747045.
    [88] Yang Z. X., Luo G. X., Lu Z. S. et al., Structural and electronic properties of NM-doped ceria (NM = Pt, Rh): a first-principles study, Journal of Physics-Condensed Matter, 2008, 20(3):035210-035216.
    [89] Vidmar P., Fornasiero P., Kaspar J. et al., Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide, Journal of Catalysis, 1997, 171(1):160-168.
    [90] Markaryan G. L., Ikryannikova L. N., Muravieva G. P. et al., Red-Ox properties and phase composition of CeO2-ZrO2 and Y2O3-CeO2ZrO2 solid solutions, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1999, 151(3):435-447.
    [91] Narula C. K., Haack L. P., Chun W., et al., Single-phase PrOy-ZrO2 materials and their oxygen storage capacity: A comparison with single-phase CeO2-ZrO2, PrOy-CeO2, and PrOy-CeO2-ZrO2 materials, Journal of Physical Chemistry B, 1999, 103(18):3634-3639.
    [92] Ikryannikova L. N., Aksenov A. A., Markaryan G. L. et al., The red-ox treatments influence on the structure and properties of M2O3-CeO2-ZrO2 (M = Y, La) solid solutions, Applied Catalysis a-General, 2001, 210(1-2):225-235.
    [93] Andersson D. A., Simak S. I., Skorodumova N. V. et al., Optimization of ionic conductivity in doped ceria, Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(10):3518-3521.
    [94] Andersson D. A., Simak S. I., Skorodumova N. V. et al., Redox properties of CeO2-MO2 (M=Ti, Zr, Hf, or Th) solid solutions from first principles calculations, Applied Physics Letters, 2007, 90(3):031909-031911.
    [95] Andersson D. A., Simak S. I., Skorodumova N. V. et al., Theoretical study of CeO2 doped with tetravalent ions, Physical Review B, 2007, 76(17): 174119.1-174119.10.
    [96]杨小震,分子模拟与高分子材料,北京:科学出版社, 2002.
    [97] Born M., O. R., Zur Quantentheorie der Molekeln, Annalen der Physik, 1927, 389(20):457-484.
    [98] Stephen A. G., Ronald E. C., Sergej Y. S., Structure, metal-insulator transitions, and magnetic properties of FeO at high pressures, American Mineralogist, 2003, 88:257-261.
    [99] John P. P., Kieron B., Matthias E., Generalized Gradient Approximation Made Simple, Physical Review Letters, 1996, 77(18):3865-3868.
    [100] Baldereschi A., Mean-Value Point in the Brillouin Zone, Physical Review B, 1973, 7(12):5212-5215.
    [101] Chadi D. J., Cohen M. L., Special Points in the Brillouin Zone, Physical Review B, 1973, 8(12):5747-5753.
    [102] Monkhorst H. J., Pack J. D., Special points for Brillouin-zone integrations, Physical Review B, 1976, 13(12):5188-5192.
    [103] de Gironcoli S., Lattice dynamics of metals from density-functional perturbation theory, Physical Review B, 1995, 51(10):6773-6776.
    [104] Fu C. L., Ho K. M., First-principles calculation of the equilibrium ground-state properties of transition metals: Applications to Nb and Mo, Physical Review B, 1983, 28(10):5480-5486.
    [105] Marzari N., Vanderbilt D., De Vita A. et al., Thermal Contraction and Disordering of the Al(110) Surface, Physical Review Letters, 1999, 82(16):3296-3299.
    [106] Pickett W. E., Pseudopotential methods in condensed matter applications, Computer Physics reports, 1989, 9(3):115-197.
    [107] Zunger A., Cohen M. L., First-principles nonlocal-pseudopotential approach in the density-functional formalism: Development and application to atoms, Physical Review B, 1978, 18(10):5449-5472.
    [108] Hamann D. R., Schluter M. and Chiang C., Norm-conserving pseudopotentials, Physical Review Letters, 1979, 43(20):1494-1497.
    [109] Kerker G. P., Non-singular atomic pseudopotentials for solid state applications, J. Phys. C: Solid State Phys, 1980, 13:L189-L194.
    [110] Kleinman L., Bylander D. M., Efficacious Form for Model Pseudopotentials, Physical Review Letters, 1982, 48(20):1425-1428.
    [111] Gerward L., Olsen J. S., Petit L. et al., , Bulk modulus of CeO2 and PrO2 - An experimental and theoretical study, Journal of Alloys and Compounds, 2005, 400(1-2):56-61.
    [112] Duclos S. J., V. Y. K., Ruoff A. L. et al., High-Pressure X-ray-Diffraction Study of CeO2 to 70 GPA and Pressure-Induced Phase-Transfmation From the fluorite stucture, Physical Review B, 1988, 38(11): 7755-7758.
    [114] Nakajima A., Yoshihara A., Ishigame M., Defect-Induced Raman-Sprctra in Doped CeO2, Physical Review B, 1994, 50(18): 13297-13307.
    [115] Pinto H., Mintz M. H., Melamud M. et al., Neutron-Diffraction Study of Ce2O3, Physics Letters A, 1982, 88(2): 81-83.
    [116] B?rnighausen H., Schiller G., J. L.-C. M., The crystal-structure of A-Ce2O3, Journal of the Less-Common Metals, 1985, 110: 385-390.
    [117] Baroni S., C. A. D., de Gironcoli S. et al., http://www.pwscf.org.
    [118] Vanderbilt D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review B, 1990, 41(11):7892-7895.
    [119] Pinto H., Mintz. M. H., Melamud M. et al., Neutron diffraction study of Ce2O3, Physical Letters A, 1982, 88(2):81-83.
    [120] Eyring L., Handbook on the Physics and Chemistry of Rare Earths (North-Holland, Amsterdam, 1979).
    [121] Methfessel M., Paxton A. T., High-precision sampling for Brillouin-zone integration in metals, Physical Review B, 1989, 40(6):3616-3621.
    [122] Pickett W. E., Erwin S. C., Ethridge E. C., Reformulation of the LDA+U method for a local-orbital basis, Physical Review B, 1998, 58(3):1201-1209.
    [123] Anisimov V. I., Solovyev I. V., Korotin M. A. et al., Density-functional theory and NiO photoemission spectra, Physical Review B, 1993, 48(23):16929-16934.
    [124] Vanderbilt D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review B, 1990, 41(11):7892-7895.
    [125] Anisimov V. I.; Zaanen J.; Andersen O. K., Band Theory and Mottinsulators: Hubbard U instead of Stoner I, Physical Review B, 1991, 44(3):943-954.
    [126] Liechtenstein A. I., Anisimov V. I., Zaanen J., Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators, Physical Review B, 1995, 52(8):R5467-R5470.
    [127] Mikami M., Nakamura N., Electronic structure of rare-earth sesquioxides and oxysulfides, Journal of Alloys and Compounds, 2006, 408:687-692.
    [128] Hanyu T., On the valence states of cerium in CeO2, Solid State Commun., 1985, 56(4): 381-383.
    [129] Dexpert H., Karnatak R. C., Esteva J.M. et al., X-ray absorption studies of CeO2, PrO2, and TbO2. ii. rare-earth valence state by LIII absorption edges, Physical Review B, 1987, 36:1750-1753.
    [130] Karnatak R.C., Esteva J. M., Dexpert H. et al., X-ray absorption studies of CeO2, PrO2, and TbO2. I. Manifestation of localized and extended f states in the 3d absorption spectra, Physical Review B, 1987, 36:1745-1749.
    [131] Marabelli F., W. P., Covalent insulator CeO2: Optical reflectivity measurements,Physical Review B 36, 1987, 36(2): 1238-1243.
    [132] Wachter P., Empty f-states, Kondo insulators: or what?, Physical B, 2001, 300(1-4): 105-120.
    [133] Wuilloud E., D. B., Schneider W. D. et al., Spectroscopic Evidence for Localized and Extended f-Symmetry States in CeO2, Physical Review Letters, 1984, 53(2):202-205.
    [134] Koellig D.D., B. A. M., Wood J.H., The electronic structure of CeO2 and PrO2, Solid State Commun., 1983, 47(4): 227-232.
    [135] Wuilloud E., D. B., Schneider W.-D. et al., Spectroscopic study of localized and extended f-symmetry states in CeO2, CeN and CeSi2, J.Magn. Magn. Mater., 1985, 47: 197-199.
    [136] Pfau A., S. K. D., The electronic structure of stoichiometric and reduced CeO2 surfaces: An XPS, UPS and HREELS study, Surf. Sci., 1994, 321(1-2): 71-80.
    [137] Tasaki H., The Hubbard model - an introduction and selected rigorous results, Journal of Physics-Condensed Matter, 1998, 10(20):4353-4378.
    [138] Barin I., K. O., Kubaschewski O., Thermochemical Properties of Inorganic Substances, Springer-Verlag, Dusseldorf, 1973.
    [139] Lide D. R., CRC Handbook of Chemistry and Physics, CRC, 1993.
    [140] Tuller H. L., Nowick A. S., Doped Ceria as a Solid Oxide Electrolyte, The Journal of The Electrochemical Society, 1975, 122(2):255-259.
    [141] Chang E. K., Blumenthal R. N., The nonstoichiometric defect structure and transport properties of CeO2?x in the near-stoichiometric composition range, Journal of Solid State Chemistry, 1988, 72:330-337.
    [142] Svane A., Gunnarsson O., Transition-metal oxides in the self-interaction corrected density-functional formalism, Physical Review Letters, 1990, 65(9): 1148-1151.
    [143] Norman M. R., Crystal-field polarization and the insulating gap in FeO, CoO, NiO, and La2CuO4, Physical Review B, 1991, 44(3): 1364-1367.
    [144] Anisimov V. I., Zaanen J., Andersen O. K., Band theory and Mott insulators: Hubbard U instead of Stoner I, Physical Review B, 1991, 44(3): 943-954.
    [145] Rooksby B. T. M. W. a. H. P., Change of structure of ferrous oxide at low temperature, Acta Cryst., 1953, 6:827-831.
    [146] Fang Z., Terakura K., Sawada H. et al., Inverse versus normal NiAs structures as high-pressure phases of FeO and MnO, Physical Review Letters, 1998, 81(5):1027-1030.
    [147] Mazin II, Fei Y. W., Downs R. et al., Possible polytypism in FeO at high pressures, American Mineralogist, 1998, 83(5-6):451-457.
    [148] Yagi T., Suzuki T., Akimoto S., Static compression of wüstite (Fe0.98O) to 120 GPa, Journal of Geophysical Research B, 1985, 90:8784-8788.
    [149] Pasternak M. P., Taylor R. D., Jeanloz R. et al., High pressure collapse of magnetism in Fe0.94O: Mossbauer spectroscopy beyond 100 GPa, Physical Review Letters, 1997, 79(25):5046-5049.
    [150] Badro J., Struzhkin V. V., Shu J. et al., Magnetism in FeO at Megabar Pressures from X-Ray Emission Spectroscopy, Physical Review Letters, 1999, 83(20):4101-4104.
    [151] Cococcioni M. and de Gironcoli S., Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Physical Review B, 2005, 71(3): 035105.1-035105.16.
    [152] Bowen H. K., Adler D., Auker B. H., Electrical and optical properties of FeO, Journal of Solid State Chemistry, 1975, 12(3-4):355-359.
    [153] Szotek Z., Temmerman W. M., Winter H., Application of the self-interaction correction to transition-metal oxides, Physical Review B, 1993, 47(7): 4029-4032.
    [154] Myung Joon H., Taisuke O., Jaejun Y., O(N) LDA + U electronic structure calculation method based on the nonorthogonal pseudoatomic orbital basis, Physical Review B, 2006, 73(4):045110.1-045110.11.
    [155] Pickett W. E., Erwin S. C., Ethridge E. C., Reformulation of the LDA+U method for a local-orbital basis, Physical Review B, 1998, 58(3): 1201-1209.
    [156] Petukhov A. G., Mazin I. I., Chioncel L., et al., Correlated metals and the LDA+U method, Physical Review B, 2003, 67(15):153106-153109.
    [157] Capriotti L., Quantum Effects and Broken Symmetries in Frustrated Antiferromagnets, International Journal of Modern Physics B, 2001, 15(12):1799-1842.
    [158] Sawatzky G. A., Allen, J. W., Magnitude and Origin of the Band Gap in NiO, Physical Review Letters, 1984, 53(24):2339-2342.
    [159] Lee G., Oh S. J., Electronic structures of NiO, CoO, and FeO studied by 2p core-level X-ray photoelectron spectroscopy, Physical Review B, 1991, 43(18): 14674-14682.
    [160] Massidda S., Continenza A., Posternak M. et al., Quasiparticle energy bands of transition-metal oxides within a model GW scheme, Physical Review B, 1997, 55(20): 13494-13502.
    [161] Aryasetiawan F., Gunnarsson O., Electronic Structure of NiO in the GW Approximation, Physical Review Letters, 1995, 74(16): 3221-3224.
    [162] Faleev S. V., van Schilfgaarde M., Kotani T., All-electron self-consistent GW approximation: application to Si, MnO, and NiO, Physical Review Letters, 2004, 93(12):126406-126409.
    [163] Li J.-L., Rignanese G. M., Louie S. G., Quasiparticle energy bands of NiO in the GW approximation, Physical Review B, 2005, 71(19):193102-193105.
    [164] Feng X.-B., Harrison, N. M., Metal-insulator and magnetic transition of NiO at high pressures, Physical Review B, 2004, 69(3):035114-035118.
    [165] Alperin H. A., The magnetic form factor of nickel oxide Journal of the Physical Society of Japan, 1962, 17(Suppl. B-III):12-15
    [166] Cheetham A. K., Hope D. A. O., Magnetic ordering and exchange effects in the antiferromagnetic solid solutions MnxNi1-xO, Physical Review B, 1983, 27(11): 6964-6967.
    [167]王建强,铈基氧化物固溶度研究,天津:天津大学, 2009.
    [168] Eriksson O., Albers R. C., Boring A. M. et al., Surface electronic-structure of Ce in the alpha and gamma-phase, Physical Review B, 1991, 43(4A): 3137-3142.
    [169] Arend M., Finazzi M., Schutte O. et al., 4f and 5d magnetic moments in highly correlated [Ce/La/Fe] and [La/Ce/Fe] multilayers studied by x-ray magnetic circular dichroism, Physical Review B, 1998, 57(4):2174-2187.
    [170] Klose F., Schulte O., Rose F. et al., Interfaces of Ce/Fe multilayers probed by magnetic circular X-ray dichroism, Physical Review B, 1994, 50(9): 6174-6183.
    [171] Finazzi M., De Groot F. M. F., Dias A.-M. et al., Direct evidence of the role of hybridzation in the X-ray magnetic cirular-dichroism of alpha-Ce, Physical Review Letters, 1995, 75(25): 4654-4657.
    [172] Bauer Ph., Klose F., Schulte O. et al., Interfacial magnetism of Ce/Fe and CeH~2/Fe multilayers studied by 57Fe M?ssbauer spectroscopy, Journal of Magnetism and magnetic Materials, 1994, 138(1-2):163-172.
    [173] Hassdorf R., Grimsditch M., Felsch W. et al., Shear-elasticity anomaly in Ce/Fe multilayers, Physical Review B, 1997, 56(10): 5814-5821.
    [174] Arend M., Felsch W., Krill G. et al., Perpendicular magnetic anisotropy and the reorientation transition of the magnetization in CeH2/Fe multilayers probed by x-ray magnetic circular dichroism, Physical Review B, 1999, 59(5):3707-3721.
    [175] Dhesi S. S., Durr H. A., Munzenberg M. et al., Isolating the interface magnetocrystalline anisotropy contributions in magnetic multilayers, Physical Review Letters, 2003, 90(11): 117204.1-117204.4.
    [176] Lohstroh W., Schulte O., Felsch W. et al., The fragile magnetic structures of Fe/CeH2-delta multilayers, Journal of Magnetism and Magnetic Materials, 2000, 210(1-3):357-365.
    [177] Schulte O., Klose F., Felsch W., Perpendicular magnetic-anisotropy and temperature-dependent reorientation transition of the magnetization in CeH2/Fe multilayers, Physical Review B, 1995, 52(9):6480-6488.
    [178] Malterre D., Klose G., Durand J. et al., Electronic configuration of cerium inamorphous-alloys investigated by X-ray absorption-spectroscopy, Physical Review B, 1986, 34(4): 2176-2181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700