基于数字信号处理功能实现的动态探针研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶轮机械内部流动规律(损失与稳定性)研究一直是复杂流动科学问题探索的难点和热点问题,由于其内部流动具有强三维、非定常、涡干涉、激波结构、流动失稳、强逆(顺)压梯度、动/静干涉等特点,在实验研究方面高频响测试技术就成了实验研究的主要依靠,为此,国际上一直将该项测试技术的研究列为重点课题,每年ASME流动与测试技术方面的研究工作都囊括了这方面研究进展。
     以气动多孔探头与微型压力传感器为基础的高频响测试技术是进行叶片式转动机械实验研究的主要测试手段,一直是内部流动测试技术研究的国际热点问题。本文从交叉学科的角度出发,尝试采用DSP(数字信号处理)与高频响测试技术的融合,试图将零点漂移、线性度修整、动态海量测试数据储存、增益范围可调、先进数据处理方法集为一体,实现高频响测试(总压、静压、马赫数、速度方向)的系统化、智能化、和便捷化。同时针对其测量精度、测量范围、频响、对流场影响等开展工作。这一研究有望能从另一个侧面提升叶轮机械内部流动测试技术的水平。
     为实现上述研究目的,本文工作主要包括:
     (1)完成探针设计、制造及标定,测量动态频响;
     (2)进行数值计算,研究探针阻塞效应对流场影响;
     (3)利用DSP数字信号处理装置实现测量系统化、智能化、便捷化;
     (4)在低速压气机试验台和平面叶栅试验台进行测量,并与其他测量系统比较。
     结果表明:探针标定结果具有良好的测量精度和频响(11.5kHz);探针对测量通道产生阻塞效果,影响流量分布,压力系数产生角度偏移;引入DSP实现线性度休整、零点漂移、增益设置、在线数据处理、海量数据储存;实验测量结果具有较高精度。
The internal flow mechanism of turbomachinery is one of the most difficult issues of complex flow, which has attracted researchers’attention for many years. High-frequency responding measurement technology is necessary to investigate the internal flow by experiments, due to the three dimensional flow, unsteadiness, vortex interaction, shock wave structures, flow instability, strong adverse pressure gradient, interaction between rotor and stator existing in the internal flows. The investigation of high-frequency responding measurement technology thus is an important project, and the related researches are published in the Journal of Turbomachinery every year.
     As a main measurement method of experimental research on turbomachinery, fast response measurement techniques based on pneumatic multi-hole probe and micro-pressure sensor is an international hot issue. In this paper, a new measurement method integrating fast response aerodynamic probe and DSP(digital signal processing) is carried out. Zero drift, linearity trimming, dynamic mass test data storage, adjustable gain range etc. are realized in the method which make the fast response measurement technique more systematic, intelligent, and convenient. Some work on measurement accuracy, measurement range, pneumatic eigenfrequency, blockage effects is done. This study is expected to raise the level of measurement technology of turbomachinery internal flow.
     The dissertation is organized as follows:
     1. Probe design, construction and calibration. Calculating the eigenfrequency of the probe.
     2. A Computational Fluid Dynamics analysis was conducted to assess the blockage effect when the probe intrudes into the duct.
     3. Digital Signal Processor was used to make the measurement system systematic, intelligent and convenient.
     4. Experiments were conducted in the cascade and axial compressor using the pneumatic probe.
     The results show that:The internal design of the probe led to a sensor cavity eigenfrequency of 11.5kHz. The probe will block the area if it is intruded into the duct between two vanes and influence the distribution of the mass flow of the ducts and. There will be a shift in the entire pressure distribution around the probe, towards the suction side of the vane if the probe is intruded. A new measurement method integrating fast response aerodynamic probe and DSP (digital signal processing) is carried out. Zero drift, linearity trimming, dynamic mass test data storage, adjustable gain range etc. are realized in the method.
引文
[1]Chivers JWH. The development and application of miniature silicon pressure transducers for gas turbine engine research and development. Measurement Techniques,1995-01.
    [2]Cherret MP. Temperature error compensation applied to pressure measurements taken with miniature semi-conductor pressure transducers in a high speed research compressor. Proceedings of the 10th Symposium on Measuring Technique for Transonic and Supersonic Flows in Cascades and Turbo machines, VKI.
    [3]Wood NB, Langford RW, Pridly WJ. Effects of flow unsteadiness on the time-mean response of a Kiel-type total pressure probe:preliminary investigation. Proceedings of 6th Symposium on Measuring Technique for Transonic and Supersonic Flow in Cascades and Turbo machines, Ecole Centrale de Lyon.
    [4]Shreeve RP, Neuhoff F. Measurements of the flow from a high speed compressor rotor using dual probe sampling technique. J Eng for Gas Turbines & Power 106(2):366-375.
    [5]Elmendorf W, Kauke GK. Semi-conductor wedge probes for unsteady flow measurements. Proceedings of 9th Symposium on Measuring Techniques for Transonic and Supersonic Flow in Cascades and Turbo machines, St. Catherines College Oxford.
    [6]Epstein AH. High frequency response measurements in turbo machines. VKI LS 1985-03.
    [7]Larguier R. Experimental analysis methods for unsteady flows in turbo machines. J Eng Power 103:15-424.
    [8]Sieverding CH, Arts T, DeAnos. Annular cascade tests. In:Dunker R (ed) Advances in Engines Technology, J Wiley & Sons, pp 235-284.
    [9]Kerrebrock JL, Epstein AH, Tompkins WT. A miniature high frequency sphere probe. ASME Book No.100130 Measurement Methods in Rotating Components of Turbo machines.
    [10]Cook SCP. The development of a high response aerodynamic wedge probe and use on a high speed research compressor. Proceedings of 9th International Symposium on Air Breathing Engines. Athens, Greece.
    [11]Ainsworth RW, Allen JL, Batt JJM. The development of fast response aerodynamic probes for flow measurements in turbo machines. J Turbo mach 117:625-634.
    [12]Cherret MA, Bryce JDZ, Ginder RB. Unsteady 3D flow in a single-stage transonic fan. Part I:Unsteady rotor exit flow field. ASME 94-GT-223 & Part II:Unsteady stator exit flow field. ASME 94-GT-223.
    [13]Bubeck H. Entwicklung einer Keilsonde zur drei-dimensinalen instationaEren StroEmungsmessung und deren Anwendung in einem Axialversichter. Mitteilungen des Instittut fuEr Thermische StroEmungsmaschinen und Maschinenlaboratorium der UniversitaEt Stuttgart No.27.
    [14]Ainsworth RW, Allen JL, Dietz AJ. Methods for making unsteady aerodynamic pressure measurements in a rotating turbine stage. AGARD Con Proc 468.
    [15]Ainsworth RW, Stickland AD. Experimenting with fast response aerodynamic pressure probes. Proceedings of 11th Symposium on Measuring Techniques for Transonic and Supersonic Flow in Cascades and Turbo machines, UniversitaEt der Bundeswehr MuEnchen.
    [16]Shepherd IC. A four-hole pressure probe for fluid flow measurements in 3-dimensions. J Fluids Eng 103:590-594.
    [17]Ainsworth RW. Recent developments in fast response aerodynamic probe technology. VKI LS 1995-01.
    [18]Matsunaga S, Ishibashi H, Nishi M. Accurate measurement of non-steady 3-D incompressible flow by means of a combined 5-hole probe. In:Crow DE; Miller JH (eds) Non-steady fluid dynamics. ASME.
    [19]SchaEffer A, Miatt DC. Experimental evaluation of heavy fan-high-pressure compressor interaction in a three-shaft engine; Part Ⅰ:Experimental set-up and results. J Eng for Gas Turbines and Power 107:828-833.
    [20]Heneka A. Development and application of a wedge probe for unsteady 3-D flow measurements in turbo machines. Ph.D. thesis, University Stuttgart.
    [21]Gossweiler CR. Sonden und Messsysteme fuEr schnelle aerodynamische StroEmungsmessung mit piezoresistiven Druckgebern. Dissertation ETH ZuErich No. 10253.
    [22]Brouckaert J-F, Sieverding CH, Manna M. Development of fast response 3-hole pressure probe. Proceedings of the 14th Symposium on Measuring Techniques in Transonic and Supersonic Flows in Cascades and Turbo machines, University of Limerick.
    [23]Pfau A., Schlienger J., Kalfas A.I., Abhari R.S. Unsteady,3-dimensional flow measurement using a miniature virtual 4 sensor Fast Response Aerodynamic Probe.2003, GT2003-38128.
    [24]M. Mansour, N. Chokani, A. I. Kalfas, and R. S. Abhari. Unsteady Entropy Measurements in a High-Speed Radial Compressor. ASME Paper No. GT2007-27450.
    [25]Dieter Warnack. An Optimized Pneumatic Probe for Investigation of Gas Turbine Aerodynamics in Full Scale Gas Turbines. ASME Paper No. GT2002-30044.
    [26]Ainsworth, R.W., Miller, R.J., Moss, R.W., Thorpe, S.J., Unsteady pressure measurement. Measurement Science Technology. Vol.11, p1055-1076.
    [27]Humm, H.J., Gossweiler, C.R., Gyarmathy, G. On Fast-Response Probes Part 2.1994, Aerodynamic Design Studies-ASME 94-GT-27, Den Haag NL.
    [28]西北工业大学.航空发动机气动参数测量.国防工业出版社.
    [29]Dudzinski, T. J., Krause, L. N.. Flow direction measurement with fixed position probe.1969, NASA TM X1904.
    [30]Gabitza, S., Mandas, N.. An investigation into the influence of the different calibration coefficients upon measurements with aerodynamic pressure probes.1990, Proceedings of the 10th symposium on measuring techniques for transonic and supersonic flows in cascades and turbomachines Von Karman Institute.
    [31]柳兆荣,陈金娥,黄东群.压力传感器频率响应的分析.力学学报,1980.
    [32]Simon Coldrick, Paul Ivey, Roger Wells. Considerations for Using 3D Pneumatic Probes in High Speed Axial Compressors.
    [33]姜沫岐,许涵,俞鹏等.DSP原理与应用从入门到提高.机械工业出版社,2006.
    [34]苏奎峰,吕强,常天庆,张永秀.TMS320X281x DSP原理及C程序开发.北京航空航天大学出版社,2008.
    [35]庄平,俞镔,谭春青,张伟.IET跨音速平面叶栅风洞使用说明(透平风洞鉴定材料之二).中国科学院工程热物理研究所,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700