三峡库区消落带3种草本植物对水陆生境变化的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡库区消落带垂直落差30m,总面积349km~2,其垂直落差和面积之大,在国内外库区消落带中实属罕见。库区消落带属于水域生态系统和陆地生态系统物质、能量、信息传输与转换最活跃,且最不稳定的生态脆弱带。世界高度关注三峡水利枢纽工程,其焦点在于库区消落带的生态环境问题。消落带植被建设是库区消落带生态环境治理的重要举措,筛选适生植物是消落带植被建设的核心。三峡水库“冬蓄夏排”独特的运行方式,导致消落带生境周期性的发生着“冬水夏陆”干湿交替变化,因此,筛选即能耐水淹,又能耐干旱的植物材料,是三峡库区消落带植被建设迫切需要解决的问题。本文以“十一五”期间在巫山县建立的消落带植被建设试验示范区为依托,按照不同海拔高度划分深水位区段、浅水位区段和对照区段,以试验示范区主栽植物香附子(Cyperus rotundus)、狗牙根(Cynodon dactylon)和香根草(Vetiveria zizanioioles)为对象,定位观测经历水陆生境变化后,不同海拔区段观测对象的植物种群密度、形态性状、生物量及其分配以及光合生理响应,以期为三峡库区消落带适生植物材料筛选提供科学依据。主要结论如下:
     (1)经历水陆生境区段香附子的种群密度、根系长度、根系数量、块茎分蘖植株数量、总生物量、地上生物量、地下生物量、地下生物量与地上生物量的比值比对照区段均有显著增加。7月份,浅水位区段比对照区段分别增加了102.95%、24.19%、45.85%、86.96%、89.57%、49.73%、108.93%、39.76%;深水位区段比对照区段分别增加了412.19%、55.63%、71.80%、175.36%、244.67%、162.10%、284.80%、46.84%。
     (2)狗牙根的根径、根系长度和地下生物量与地上生物量的比值比对照区段显著增加。7月份,浅水位区段分别增加了141.37%、37.16%和13.19%,深水位区段分别增加了160.72%、41.80%和48.49%。浅水位区段种群密度、一级、二级分枝节间长度显著增加,一级、二级分枝数量减少,深水位区段种群密度减少,一级、二级分枝数量显著增加。
     (3)香根草的平均叶片长度、最长叶片长度、地下生物量、地下生物量与地上生物量的比值比对照区段增加,总丛数、植株平均高度、植株最高高度、每丛叶片数量、总生物量、地上生物量比对照区段减少。7月份,香根草的平均叶片长度、最长叶片长度、地下生物量、地下生物量与地上生物量的比值比对照区段分别增加10.37%、5.34%、30.04%和151.71%;总丛数、植株平均高度、植株最高高度、每丛叶片数量、总生物量、地上生物量比对照分别减少41.70%、15.61%、9.34%、0.36%、10.58%和48.46%。
     (4)香附子的净光合速率、气孔导度、蒸腾速率均比对照显著提高。7月份,浅水位区段比对照区段分别提高了23.52%、40.67%和40.67%,深水位区段分别提高了72.74%、55.07%和31.54%。水分利用效率、表观CO_2利用效率、表观光能利用效率(5-6月)、光饱和点提高;浅水位区段和深水位区段香附子的光补偿点变化趋势不同,浅水位区段的光补偿点显著降低,深水位区段光补偿点显著提高;最大净光合速率无显著变化,表观量子效率、暗呼吸速率均显著降低。
     (5)狗牙根的净光合速率、气孔导度、蒸腾速率均比对照显著提高。7月份浅水位区段分别提高了106.80%、68.03%和228.75%,深水位区段分别提高了81.63%、64.81%和200.80%。6月份水分利用效率、表观光能利用效率显著高于对照区段,7月份显著低于对照区段。表观CO_2利用效率、最大净光合速率、表观量子效率、暗呼吸速率比对照区段均有提高,而饱和点、光补偿点显著降低。
     (6)香根草的净光合速率比对照提高了7.23%,而气孔导度降低了9.19%,但均未达到显著差异程度;蒸腾速率降低了20.75%。香根草的水分利用效率、表观CO_2利用效率、表观光能利用效率、光补偿点均有提高;最大净光合速率、表观量子效率、暗呼吸速率均无显著变化,光饱和点显著降低。
     (7)同未经历水陆生境变化变化区段相比较,经历水陆生境变化后,香附子、狗牙根、香根草3种草本植物均具有较高的种群密度和生物量,表明3种草本植物对三峡库区消落带水陆生境变化具有较强的适应性。加速根系生长与分蘖,增加地下生物量的分配,为水位下降后的快速生长提供营养及能量储备是3种草本植物对水陆生境变化的主要生态适应对策。
     (8)香附子、狗牙根的净光合速率的提高是气孔因素和非气孔因素共同作用的结果。水陆生境变化导致气孔导度增加,气孔开放程度增大,外界CO_2进入叶肉细胞的量增加,而伴随着外界CO_2进入叶肉细胞的量增加,胞间CO_2浓度反而降低,表明非气孔因素,即光合机能的提高是其光合速率提高的主要因素。香根草的净光合速率有所提高,而气孔导度下降,胞间CO_2浓度降低,表明非气孔因素,即光合机能的提高是其光合速率提高的主要原因。
     (9)经历水陆生境变化后,香附子对强光的适应能力提高,狗牙根对弱光的利用能力增强,虽然,香根草可利用的光照范围有所缩短,但是,未对其维持较高净光合速率造成显著影响;香附子和香根草的生长潜力未因水陆生境变化而发生改变;相反,这种水陆生境的变化对狗牙根生长潜力的发挥起到了一定的促进作用。
Hydro-fluctuation belt of Three Gorges Reservoir with area of 349 km~2 and vertical drop 30m is rare at home and abroad, which is the most unstable ecotone where the matter, energy and information between water ecosystem and terrestrial ecosystem translate and converse most actively. Three Gorges are greatly concerned with focus on its Ecological environment changes.Vegetation construction in hydro-fluctuation belt is an important measurement to ecological environment treatment, and screening suitable plant plays the vital role on the success. With operating mode“winter storage while summer row”, the habitats in hydro-fluctuation belt of Three Gorges Reservoir are in water in winter and into land in summer alternately. Therefore, screening plants that have the tolerance to flooding and draught is urgent in vegetation construction of hydro-fluctuation belt of Three Gorges Reservoir.
     Located monitoring sample plots of vegetation construction experiment and demonstration areas which were set up during the“11~(th) five year plan”period were set up in-between different elevation sections of the hydro-fluctuation belts of the Three Gorges Reservoir at Wushan section, where population density, morphological characters, biomass and photosynthetic physiology of Cyperus rotundus, Cynodon dactylon and Vetiveria zizanioioles responding to changing flooding-drying habitats were observed. The main conclusions are as follows:
     (1)Compared with no flooding area, after flooding-drying habitat changes, the population density, root length, root number, the number of shooting plant per tuber, total biomass, aboveground biomass, underground biomass and underground and aboveground biomass ratio of Cyperus rotundus increased significantly. In July, Cyperus rotundus in shallow water area increased by 102.95%, 24.19%, 45.85%, 86.96%, 89.57%, 49.73%, 108.93% and 39.76% separately, while in the deep water area increased by 412.19%, 55.63%, 71.80%, 175.36%, 244.67%, 162.10%, 284.80% and 46.84% separately.
     (2)Compared with no flooding area, after flooding-drying habitat changes, the root diameter, root length and underground and aboveground biomass ratio of Cynodon dactylon increased significantly. In July, root diameter, root length and underground and aboveground biomass ratio of Cynodon dactylon in the shallow water area increased by 141.37%, 37.16% and 13.19% separately, and in the deep water area 160.72%, 41.80% and 48.49% separately. In the shallow water area, the population density and internode lengths of primary and secondary branching nodes increased significantly, while in the deep water area, the population density decreased significantly and number of the primary and secondary branches increased significantly.
     (3)Compared with no flooding area, after flooding-drying habitat changes, the average leaf length, maximum leaf length, underground biomass and underground and aboveground biomass ratio of Vetiveria zizanioioles increased by 10.37%, 5.34%, 30.04% and 151.71% separately in the shallow water area in July, while total cluster number, average plant height, maximum plant height, leaf number per cluster, total biomass, aboveground biomass decreased by 41.70%, 15.61%, 9.34%, 0.36%, 10.58% and 48.46% separately.
     (4)Compared with no flooding area, after flooding-drying habitat changes, Pn, Cond, Tr of Cyperus rotundus increased significantly. In July, Pn, Cond, Tr of Cyperus rotundus increased by 23.52%, 40.67% and 40.67% in the shallow water area and 72.74%, 55.07% and 31.54% in the deep water area. WUE, CUE, LUE(June to July), LSP of Cyperus rotundus increased, LCP in the shallow water area declined significantly and in the deep water area increased significantly. There was no obvious changes in P_(max) of Cyperus rotundus and AQY and Rd of Cyperus rotundus declined significantly.
     (5)Compared with no flooding area, after flooding-drying habitat changes, Pn, Cond, Tr of Cynodon dactylon increased by 106.80%, 68.03% and 228.75% in the shallow water area and 81.63%, 64.81% and 200.80%in the deep water area. WUE and LUE of Cynodon dactylon was significantly higher in June and significantly lower in July. CUE, P_(max), AQY and Rd of Cynodon dactylon increased and LSP and LCP declined significantly.
     (6)Compared with no flooding area, after flooding-drying habitat changes, Pn of Vetiveria zizanioioles increased by 7.23%, Cond of Vetiveria zizanioioles decreased by 9.19%, but they both did not reach the significant level. Tr of Vetiveria zizanioioles decreased significantly by 20.75%. WUE, CUE, LUE and LCP of Vetiveria zizanioioles increased. P_(max), AQY and Rd of Vetiveria zizanioioles had no significantly changes, LSP decreased significantly.
     (7)Compared with no flooding area, after flooding-drying habitat changes, Cyperus rotundus, Cynodon dactylon and Vetiveria zizanioioles had high population density and biomass, which indicated that the 3 herbs had good adaptability to flooding-drying habitat changes which improved the restoration growth to some extent. All three herbst showed increasing in underground growth and underground biomass allocation, which indicated that flooding-drying habitat changes promoted the root growth and tillering. Increasing underground biomass allocation preparing nutrition and energy for the regrowth after flooding was the common policy of 3 herbs to flooding-drying habitat changes.
     (8)Increasing of Pn of Cyperus rotundus and Cynodon dactylon were the results of stomatal and nonstomatal factors. Flooding-drying habitat changes led to the Cond and the degree of stomatal opening increasing that caused the increase of external CO_2 into the leaf cells, while Ci decreased as external CO_2 into the leaf cells increase. This indicated nonstomatal factors(improving of photosynthetic function)were the main factors of improvement of Pn. Pn of Vetiveria zizanioioles increased , while the decrement of Cond and Ci of Vetiveria zizanioioles indicated nonstomatal factors(improving of photosynthetic function)were the reason of improving of Pn。
     (9)After flooding-drying habitat changes, the adaptability of high light intensity of Cyperus rotundushad and the efficiency of low light intensity of Cynodon dactylon was improved. Although the scope of available light of Vetiveria zizanioioles was reduced, it did not affect the high Pn. Flooding-drying habitat changes did not cause significant changes to potential production of Cyperus rotundus, while the potential production of Cynodon dactylon was improved.
引文
[1]陈法杨.三峡库区生态修复之我见[J].中国水土保持,2004(1):9-29.
    [2]刁承泰,黄京鸿.三峡水库水位涨落带土地资源的初步研究[J].长江流域资源与环境,1999,8(1):75-80.
    [3]戴方喜,许文年,陈芳清.对三峡水库消落区生态系统与其生态修复的思考[J].中国水土保持,2006(12):6-8.
    [4] Sparks Re ,Nelson J C,Jin Y.Naturaljzation of the flood regime in regulated rivers[J].BioScience,1998,48:706-720.
    [5] Sunil N Z Y C J.Application of remote sensing and geographic information systems to the delineation and analysis of riparian buffer zones[J].Aquatic Botany,1997(58):393-409.
    [6]袁辉,王里奥,詹艳慧,等.三峡库区消落带健康评价指标体系[J].长江流域资源与环境,2006,15(02):249-253.
    [7]苏维词.三峡库区消落带的生态环境问题及其调控[J].长江科学院院报.2004,21(02):32-41.
    [8]黄川,谢红勇,龙良碧.三峡湖岸消落带生态系统重建模式的研究[J].重庆教育学院学报.2003,16(3):63-66.
    [9]范小华,谢德体,魏朝富.三峡水库消落区生态环境保护与利用对策研究[J].水土保持学报,2006,20(2) :165-169
    [10]范小华,谢德体,魏朝富.三峡水库消落区生态环境保护与调控对策研究[J].长江流域资源与环境.2006,15(04):495-501.
    [11] Burkett V R,Rassa O,Draugelis Dale,et al.Effects of flooding regime and seedling treatment on early survival and growth of Nuttall Oak.Restoration Ecology,2005,13(3):471-479.
    [12] Kern Ewing . Tolerance of four wetland plant species to flooding and sediment deposition [J].Environmental and Experimental Botany,1996,36(2):131-146.
    [13] Simmons M E,Wu X B.Whisenant.Bottomland hardwood forest species responses to flooding regimes along an urbanization gradient[J].Ecological Engineering,2007,29(3):223-231.
    [14] Capon S J,Brock M A.Flooding,soil seed bank dynamics and vegetation resilience of a hydrologically variable desert floodplain[J].Freshwater Biology,2006(51):206-223.
    [15] Katja Geissler,Axel Gzik.The impact of flooding and drought on seeds of Cnidium dubium,Gratiola officinalis,and Juncus atratus,three endangered perennial river corridor plants of Central European lowlands[J].Aquatic Botany,2008,89(3):283-291.
    [16]张建春,彭补拙.河岸带及其生态重建研究[J].地理研究,2002(3):373-383.
    [17]张建春,史志刚,彭补拙.皖西南大别山麓河岸带滩地生态重建与植物护坡效能分析[J].山地学报,2002,20(1):85-89.
    [18]张建春,彭补拙.河岸带研究及其退化生态系统的恢复与重建[J].生态学报,2003,23(01):56-63.
    [19]刘云峰,刘正学.三峡水库消落区极限条件下狗牙根适生性试验[J].西南农业大学学报,2005,27(5) :661-663.
    [20]马利民,唐燕萍,张明,等.三峡库区消落区几种两栖植物的适生性评价[J].生态学报,2009,29(4) :1885 - 1892.
    [21]江明喜,蔡庆华.长江三峡地区干流河岸植物群落的初步研究[J].水生生物学报,2000,24(5):458-463.
    [22]白宝伟,王海洋,李先源,等.三峡库区淹没区与自然消落区现存植被的比较[J].西南农业大学学报,2005 ,27 (5) :684-688.
    [23] Leyer I.Predicting plant species’responses to river regulation:the role of water level fluctuations [J].Applied Ecology,2005,42:239-250.
    [24] Santos A M,Assis Esteves F.Influence of water level fluctuation on the mortality and aboveground biomass of the aquatic macrophyte Eleocharis interstincta (VAHL) Roemer et Schults[J].Brazilian archives of biology and technology,2004,47(2):281-290.
    [25] Azim U Mallik,John S Richardson.Riparian vegetation change in upstream and downstream reaches of three temperate rivers dammed for hydroelectric generation in British Columbia,Canada[J].Ecological Engineering,2009,35(5):810-819.
    [26] Bernard W Sweeney,Stephen J Czapka.Riparian forest restoration:why each site needs an ecological prescription[J].Forest Ecology and Management,2004,192(2/3):361-373.
    [27] Edward P Glenn,Pamela L Nagler.Comparative ecophysiology of Tamarix ramosissima and native trees in western U.S.riparian zones[J].Arid Environments,2005,61(3):419-446.
    [28] Jonathan L Horton,Janelle L Clark.Water table decline alters growth and survival of Salix gooddingiiand Tamarix chinensis seedlings[J].Forest Ecology and Management,2001,140(2/3):239-247.
    [29]曹昀,王国祥.土壤水分含量对菖蒲(Acorus calamus)萌发及幼苗生长发育的影响[J].生态学报,2007,27(05):1748-1755.
    [30]陈婷,曾波,罗芳丽,等.外源乙烯和α-萘乙酸对三峡库区岸生植物野古草和秋华柳茎通气组织形成的影响[J].植物生态学报,2007,31(5):919-922.
    [31]张艳红,曾波,付天飞,等.长期水淹对秋华柳(Salix variegata Franch)根部非结构性碳水化合物含量的影响[J].西南师范大学学报:自然科学版,2006,31(3):153-156.
    [32]王海锋,曾波,乔普,等.长期水淹条件下香根草(Vetiveria zizanioides)、菖蒲(Acorus calamus)和空心莲子草(Alternanthera philoxeroides)的存活及生长响应[J].生态学报,2008,28(06):2571-2580.
    [33]罗芳丽,曾波,陈婷,等.三峡库区岸生植物秋华柳对水淹的光合和生长响应[J].植物生态学报,2007,31(05):910-918.
    [34]罗芳丽,王玲,曾波,等.三峡库区岸生植物野古草(Arundinella anomala Steud.)光合作用对水淹的响应[J].生态学报,2006,26(11):3602-3609.
    [35]张小萍,曾波,陈婷,等.三峡库区河岸植物野古草(Arundinella anomaly var.depauperata Keng )茎通气组织发生对水淹的响应[J].生态学报,2008,28(4):1864-1871.
    [36]李娅,曾波,叶小齐,等.水淹对三峡库区岸生植物秋华柳(Salix variegata Franch.)存活和恢复生长的影响[J].生态学报,2008,28(05):1924-1931.
    [37]王海锋,曾波,李娅,等.完全水淹条件下空心莲子草的生长、存活及出水后的恢复动态研究[J].武汉植物学研究,2008,26(2):147-152.
    [38]王海锋,曾波,李娅,等.长期完全水淹对4种三峡库区岸生植物存活及恢复生长的影响[J].植物生态学报,2008,32(5):977-984.
    [39]陈芳清,李永,郄光武,等.水蓼对水淹胁迫的耐受能力和形态学响应[J].武汉植物学研究,2008,26(2):142-146.
    [40] Pezeshki S R.Wetland plant responses to soil flooding[J].Environmental and Experimental Botany,2001,46(3):299-312.
    [41] Manes F,Donato E,Vitale M.Physiological response of Pinus halepensis needles under ozone and water stress conditions[J].Physiologia plantarum,2001,113:249-257.
    [42] Swift C C,Jacobs S M,Esler K J.Drought induced xylem embolism in four riparian trees from theWestern Cape Province:Insights and implications for planning and evaluation of restoration[J].South African Journal of Botany,2008,74(3):508-516.
    [43] Hongjun C,Robert G Q,Glenn C Miller.Adaptive responses of Lepidium latifolium to soil flooding:biomass allocation , adventitious rooting , aerenchyma formation and ethylene production[J].Environmental and Experimental Botany,2002,48(2):119-128.
    [44] Hongjun C,Robert G Qualls,Robert R Blank.Effect of soil flooding on photosynthesis,carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium[J].Aquatic Botany,2005,82(4):250-268.
    [45] Capon S J,James C S,Williams L,et al.Responses to flooding and drying in seedlings of a common Australian desert floodplain shrub : Muehlenbeckia florulenta Meisn . (tangled lignum)[J].Environmental and Experimental Botany,2009,66(2):178-185.
    [46] Henshaw T L,Gilbert R A,J M S Scholberg,et al.Soya bean(Glycine max L.Merr.) genotype response to early season flooding:II.Aboveground growth and biomass[J].Journal of Agronomy and Crop Science,2007,193(3):189-197.
    [47]李昌晓,钟章成.不同水分条件对池杉幼苗实生土壤营养元素含量的影响[J].水生生物学报,2008,32(2):154-160.
    [48]李昌晓,钟章成.池杉幼苗对不同土壤水分水平的光合生理响应[J].林业科学研究,2006,19(1):54-60.
    [49]李昌晓,钟章成,刘芸.模拟三峡库区消落带土壤水分变化对落羽杉幼苗光合特性的影响[J].生态学报,2005,25(8):1953-1959.
    [50]李昌晓,钟章成.模拟三峡库区消落带土壤水分变化条件下落羽杉与池杉幼苗的光合特性比较[J].林业科学,2005,41(6):28-34.
    [51]李昌晓,钟章成.模拟三峡库区消落带土壤水分变化条件下水松幼苗的光合生理响应[J].北京林业大学学报,2007,29(3):23-28.
    [52]冯大兰,刘芸,钟章成,等.三峡库区消落带芦苇(Phragmites communis(reed))的光合生理响应和叶绿素荧光特性[J].生态学报,2008,28(05):2013-2021.
    [53]李昌晓,钟章成.三峡库区消落带土壤水分变化对落羽杉(Taxodium distichum)幼苗根部次生代谢物质含量及根生物量的影响[J].生态学报,2007,21(11):4394-4402.
    [54]李昌晓,钟章成.三峡库区消落带土壤水分变化条件下池杉幼苗光合生理响应的模拟研究[J].水生生物学报,2005,29(6):712-716.
    [55]陈芳清,郭成圆,王传华,等.水淹对秋华柳幼苗生理生态特征的影响[J].应用生态学报,2008,19(6):1229-1233.
    [56]刘旭,程瑞梅,郭泉水,等.香附子对不同土壤水分梯度的适应性研究[J].长江流域资源与环境,2008,17(1):60-65.
    [57]刘旭.三峡库区消落带植物材料筛选研究[D].北京:中国林业科学研究院,2008.
    [58]焦国安,张根芳,种文生,等.“5%香附子一次净TM”对大豆田香附子防除试验研究初报[J].农业科技通讯.2007,11:50-52.
    [59]尚成名.香附子的发生与防治[J].安徽农学通报.2006,12(9):79-79.
    [60]覃建林,龙丽萍,梁卫忠,等.13种除草剂对甘蔗田恶性杂草香附子的防除效果试验及评价[J].广西农业科学.2005,36(4):359-362.
    [61]中国植物志编辑委员会,中国植物志[M].科学出版社,1961,北京:134-134.
    [62]王鸿,苏卫华.香附子生物生态学特性和防除措施研究[J].安徽农业科学,1991,(4):371~374.
    [63]中国植物志编辑委员会.中国植物志[M].科学出版社,1961,北京:82-84.
    [64]王赞,吴彦奇,毛凯.狗牙根研究进展[J].草业科学,2001 ,18 (5) :37-41.
    [65] Dalton P A,Smith R J,Troung P N V.Vetiver grass hedges for erosion control on a cropped flood plain:hedge hyduaulica[J].Agric,Water Management,1992,31:91-104.
    [66] Pang J,Chan G S Y,Zhang J,etal.Physiological aspects of vetiver grass for rehabilitation in abandoned metalliferous mine wastes[J].Chemosphere,2003,52:1559–1570.
    [67] Sagare B N,Sharna D B,Guhe Y S.The status of N、P、K in soil with contour farming graded bunding and intercropping[J].Agropedology,1992,2:67-73.
    [68] Rane P V,Sagare B N,Rewatkar S S.Avail siol moisture storage and nutrient uptake by cotton as influenced by vegetative barriers[J].Annals of Plant Physiology,1995,9:139-141
    [69] Bharad G M,Bathkal B C.Update on vetiver research in India synopsis of three years data[J].Vetiver Newslette,1991,(5):1-2.
    [70] Ranade D H,Sharma R A,Gupta P K.Patel A N.Effect of mechanical and vegetative barriers on cinservation of runoff siol and plant nutrients[J].Crop Research Hisar,1995,9:218-223
    [71]韩露,张小平,刘必融,等.香根草对土壤中几种重金属离子富集能力的比较研究[J].生物学杂志,2005,22(5):20-23
    [72]林辉,罗海凌,林占熺.香根草栽培毛木耳的研究[J].食用菌,2004,6:14-15
    [73]钟伟,龙瑞军,Liang J B.不同比例香根草日粮对沼泽性水牛尿嘌呤衍生物排出量的影响[J].甘肃农业大学学报,2007,42(1):25-29
    [74]中国长江三峡集团公司.水情实况(EAOL)[OL].(2005.6-2009.5). http://www.ctgpc.com.cn.
    [75] Giorio P,Sorrentino G,dlAndfia R.Stomatal behaviour,leaf water status and photosynthetic response in field-grown olive trees under water deficit[J].Environ.Exp.Bot.,1999,42:95-104.
    [76] Nljs I,Ferris R,Blum H.Stomatal regulation in a changing climate:A field study using free air temperature increase (FATI) and free air CO2 enrichment [J].Plant,Cell and Environment,1997,20:1041-1 050.
    [77] Long SP,Bakernr,Raines CA.Analyzing the responses of photosynthetic CO2 assimilation to long-term elevation of atmospheric CO2 concentration[J].Vegetation,1993,104/105:33-45.
    [78]何维明,马风云.水分梯度对沙地柏幼苗荧光特征和气体交换的影响[J].植物生态学报,2000,24(5):630-634.
    [79]叶子飘.光合作用对光和CO2响应模型的研究进展[J].植物生态学报,2010,34(6):727-740.
    [80] Debabrata P,Sharma S G,SarkarR K.ChlorophyⅡfluorescence parameters,CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent reemergence in rice(Oryza sativaL.) [J].Aquatic Botany,2008,88:127-133.
    [81] MittlerR.Oxidative stress,antioxidants and stress tolerance[J].Trends in PlantScience,2002,7(9):405-410.
    [82] Blokhina O,Virolainen E,Fagerstedt K V.Antioxidants,oxidative damage and oxygen deprivation stress:a review[J].Annals of Botany,2003,91:179-194.
    [83] Peters J L,Castillo F J,Heath R H.Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollution,ozone and sulfurdioxide[J].PlantPhysiology,1989,89:159-164.
    [84]刘友良.植物水分逆境生理[M].北京:农业出版社,1992.144-187.
    [85]窦晶鑫,刘景双,王洋等.模拟氮沉降对湿地植物生物量与土壤活性碳库的影响[J].应用生态学报,2008,19(8):1714-1720.
    [86]陶勇,陈少风,江明喜.空心莲子草对水分变化的形态适应研究[J].长江流域资源与环境.2004,13(5):454-459.
    [87] Liu F L,Andersen M N,Jensen.C R.Root signal controls pod growth in drought- stressed soybeanduring the critical,abortion - sensitive phase of pod development [J].FieldCrops Research ,2004 ,85 ,159-166.
    [88] Weisner S E B,Strand J A. Rhizome architecture in Phragmites australis in relation to water depth ,implications for within—plant oxygen transport distances[J].Folia Geobotanica et Phytotaxonomica,1996,31:91-97.
    [89]李冬林,张纪林,潘伟明等.地表积水状况对芦苇形态结构及生物量的影响[J].江苏林业科技2009,36(3):17-20
    [90]郭水良,方芳.入侵植物加拿大一枝黄花对环境的生理适应性研究[J].植物生态学报,2003,27(1):47-52.
    [91]王海锋,曾波,李娅等.长期完全水淹对4种三峡库区岸生植物存活及恢复生长的影响[J].植物生态学报,2008,32(5):977-984.
    [92] Vretare V,Weisner S E B,Strand J A,etal.Phenotypic plasticity in Phragmites australisas a functional response to water depth [J].AquaticBotany,2001,69:127-145.
    [93] Dinka M,Szeglet P.Carbohydrate and nutrient content in rhizomes of Phragmites australis from different habitats of Lake Fert?/Neusiedlersee [J].Limnologica-Ecology and Management of Inland Waters,1999,29:47-59.
    [94] Das KK,Sarkar RK,Ismail AM Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice[J].Plant Science,2005,168,131-136.
    [95] Manzur ME,Grimoldi AA,Insausti P,etal.Escape from water or remain quiescent? Lotus tenuis changes its strategy depending on depth of submergence[J].Annals of Botany,2009,104,1163-1169.
    [96] Gibbs J,Greenway H.Mechanisms of anoxia tolerance in plants.Ⅰ.Growth,survival and anaerobic catabolism[J].Functional Plant Biology,2003,30:1-47.
    [97] Swift C.C.,Jacobs S.M.,Esler K.J.Drought induced xylem embolism in four riparian trees from the Western Cape Province : Insights and implications for planning and evaluation of restoration[J].South African Journal of Botany.2008,74 (3) :508-516.
    [98] van Eck W H JM,van de Steeg H M,Blom C W PM.H.,etalIs tolerance to summer flooding correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species[J].Oikos,2004,107:393-405.
    [99] Ma T,Wu G L,HeY L,etal.The effects of simulatedmowing of the fertilizing level on communityproduction and compensatory response on the Qinghai-Tibetan[J].Acta Ecologica Sinica,2007,27(6):2288-2293.
    [100] Bond B J,Midgley J J.Ecology of sprouting in wood plants:the persistence niche[J].Trends in Ecology and Evolution,2001,16(1):45-51.
    [101] Hu TT,Kang S Z.The compensatory effect in drought resistance of plants and its application in water-saving agriculture[J].Acta Ecologica Sinica,2005,25(4):885-891.
    [102] Huhta A P,Hellstrom K,Rautio P,Tuomi J.Grazing tolerance of Gentianella amarella and other monocarpic herbs:why is tolerance highest at low damage levels[J].Plant Ecology,2003,166(1):49-61.
    [103]马红彬,余治家.放牧草地植物补偿效应的研究进展[J].农业科学研究,2006,27(1):63-67.
    [104]张荣,杜国祯.放牧草地群落的冗余与补偿[J].草业学报,1998,7(4):13-19.
    [105]卢辉,韩建国,张泽华.典型草原亚洲小车蝗危害对植物补偿生长的作用[J].草叶科学.2008,25(5):112-116.
    [106]慕自新,梁宗锁等.土壤干湿交替下作物补偿生长的生理基础及其在农业中的应用[J].植物生理学通讯,2002,38(5):511-516.
    [107]郭羽丰,段舜山,李爱芬,等.四列藻在光限制胁迫下的超补偿生长响应[J].生态科学,2004,23(1):5-8.
    [108]段舜山,郭羽丰,刘振乾,等.四列藻在营养限制胁迫下的超补偿生长研究[J].生态学报.2003,23(3):1294-1304.
    [109]李娅,曾波,叶小齐,等.水淹对三峡库区岸生植物秋华柳(Salix variegata Franch.)存活和恢复生长的影响[J].生态学报.2008,28(05):1924-1931.
    [110]马利民,唐燕萍,张明,等.三峡库区消落区几种两栖植物的适生性评价[J].生态学报,2009,29(4):1885-1892.
    [111]金不换,陈雅君,吴艳华.早熟禾不同品种根系分布及生物量分配对干旱胁迫的响应[J].草地学报,2009,6:813-816.
    [112]李芳兰,包维凯,吴宁.白刺花幼苗对不同强度干旱胁迫的形态与生理响应[J].生态学报,2009,29(10) :5406-5416.
    [113]张晓磊,马风云,陈益泰,等.水涝胁迫下不同种源麻栎生长与生理特性变化[J].西南林学院学报,2010,30(3):16-19.
    [114] Voesenek L A C J,Clomer T D,Pierik R,etal.How plants cope with complete submergence[J].New Phytologist,2006,170:213-226.
    [115] Walker B,Steffen W.An overview of the implication of global change for natural and managed terrestrial ecosystem[J].Conservation Ecology,l997,1,2–20.
    [116] Chaves M M,Oliveira M M.Mechanisms underlying plant resilience to water deficits:prospects for watersaving agriculture[J].Journal of Experimental Botany,2004,55,2365–2384.
    [117] Scholes J D ,Press M C.Zipperlen S W. Differences in light energy utilization and dissipation between diptemearp rainforest tree seedlings[J].Oecologia,1997,109:41-48.
    [118]林金科,赖明志.茶树叶片净光合速率对生态因子的响应[J].生态学报,2000,20(3):404-408.
    [119]范杰英,郭军战.10个树种光合和蒸腾性能对水分胁迫的响应[J].西北林学院学报,2005,20(2):36-38.
    [120] Chen H J,Quails R G,Blank R R,eta1.Effect of soil flooding on photosynthesis,carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium [J].Aquatic Botany,2005.82:250-268.
    [121]李吉跃.植物耐旱性及其机理[J].北京林业大学学报,1991,13(3):92-96.
    [122]周婵,郭晓云,王仁忠,李建东松嫩草地虎尾草光合与蒸腾作用的研究[J].草业学报,2001,10(1):42-47.
    [123] Behera SK,Panda RK.Effect of fertilization and irrigation schedule on water and fertilizer solute transport for wheat crop in a sub-humid sub-tropical region[J].Agriculture,Ecosystems and Environment,2009 ,130,141-155.
    [124] Quick W P,Chaves M M,Wendler R,eta1.The effect of water stress on photosynthetic carbon netabolism in foar species grown under field conditions[J].Plant Cell Environ,1992,l5:25-35.
    [125] Coombs J.生物生产力和光合作用测定技术[M].邱国维,译.北京:科学出版社,1986:63- 96.
    [126]韩永伟,王垄,张汝民,等.吉兰泰地区退化梭梭蒸腾生态生理学特性[J].草地学报,2002,10(1):40.
    [127] Dordas CA,Sioulas C.Safflower yield,chlorophyll content,photosynthesis,and water use efficiency response to nitrogen fertilization under rainfed conditions[J].IndustrialCrops and Products,2008,27,75–85.
    [128] Zhao G Q, Ma B L, Ren C Z.Growth,gas exchange,chlorophyll fluorescence and ion content of naked oat in response to salinity[J].Crop Science,2007,47:123-131.
    [129] Farquhar GD,Caemmerer S,Berry JA.A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J].Planta,1980,149,78–90.
    [130] Farquhar G D,Sharkey T D.Stomatal conductance and photosynthesis[J].Annual Review of Plant Physiology,1982,33,317–345.
    [131]郑国琦.许兴,徐兆桢,等.盐胁迫对枸杞光合作用的气孔与非气孔限制[J].西北植物学报,2002,22(6):1355-1359.
    [132]周秋平,程积民,万惠娥,等.干旱胁迫下本氏针茅光合特性和水分利用效率日动态研究[J].草地学报,2009(4):510-514.
    [133]许大全.气孔的不均匀关闭与光合作用的非气孔限制[J].植物生理学通讯,1995,31(4):246-252.
    [134]罗芳丽,曾波,陈婷等.三峡库区岸生植物秋华柳对水淹的光合和生长响应[J].植物生态学报,2007,31(5):910-918.
    [135] Slatyer R.O.Comparative photosunthesis,growth and transpiration of two species of atriplex[J],Planta,1970,93:175-189.
    [136]杜占池,杨宗贵.刈割对羊草光合特性影响的研究[J].植物生态学与地植物学学报,1989,13(4):317-324.
    [137]候扶江.放牧对牧草光合作用、呼吸作用和氮、碳吸收与转运的影响[J].应用生态学报,2004,2(6):938—942.
    [138]梁银丽,康绍忠.节水灌溉对冬小麦光合速率和产量的影响[J].西北农业大学学报,1998.26(4):16-l9.
    [139]刘金祥,王铭铭,肖生鸿等.干旱胁迫对香根草生长及光合生理主要特征的影响[J].四川草原,2005,3:28-30.
    [140]靖元孝,陈兆平,杨丹菁.香根草(Vetiveria zizanioides)对淹水的反应和适应初报[J].华南师范大学学报(自然科学版),2001,4:40-43.
    [141]吴楚,王政权,范志强,等.不同氮浓度和形态比例对水曲柳幼苗叶绿素合成、光合作用以及生物量分配的影响(英文)[J].植物生态学报,2003(6):771-779.
    [142]焦娟玉,尹春英,陈珂.土壤水、氮供应对麻枫树幼苗光合特征的影响[J].植物生态学报2011,35 (1):91–99.
    [143]蔡炜,宋玉芝.水体营养盐质量浓度对苦草光合荧光特性的影响[J].环境科学研究,2009(8):907-912.
    [144]李枫,邹定辉,刘兆普,等.氮磷水平对龙须菜生长和光合特性的影响[J].植物生态学报,2009,33(6):1140-1147.
    [145]谢会成,姜志林,李际红.栓皮栎林光合特性的研究[J].南京林业大学学报:自然科学版,2004,28(5):83-85.
    [146]尚海琳,李方民,林玥,等.桃儿七光合生理特性的地理差异研究[J].西北植物学报,2008,28(7):1440-1447.
    [147]王忠.植物生理学[M].北京:中国农业出版社.2000:121-180,第1版.
    [148]武维华.植物生理学[M].北京:科学出版社,2003:168-170.
    [149] Raschke K.Temperature dependence of CO2 assimilation and stomatal aperture interruptions in leaf sections of Zea mays.Planta,1970,91:336–363.
    [150]许大全.光合效率[M].上海:上海科技出版社2002:50-68.
    [151] Kital M ,Lei T T,Koike T,Tobita H,etal.Susceptibility to photoinhibition of three deciduous broadleaf trees with different successional traits raised under various light regimes[J].Plant,Cell and Environment,2000,27(3):265—272.
    [152] Lusk C H,Reich P B.Relationships of leaf dark respiration with light environment and tissue nitrogen content in juveniles of 1 1 coldtemperate tree species[J].Oecologia,2000,123(3):318—329
    [153]肖春旺,张新时.模拟降水量变化对毛乌素油蒿幼苗生物生态过程中的影响研究[J].林业科学,2001,37(1):15-22.
    [154]肖春旺.施水量对毛乌素沙地4种优势植物叶绿素荧光的影响[J].草地学报,2001,9(4):298-301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700