压力容器常用钢在碳酸盐溶液中的应力腐蚀试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
资料显示,近年来国内外发生多起形式类似的尿塔爆炸事件,造成了严重的人身伤害和物质损失。专家对于事故原因的分析存在一定的分歧,其一的解释是泄漏到层板间隙的检漏蒸汽中的碱性杂质浓缩后对层板产生严重应力腐蚀,进而造成塔体破裂。作为碱性溶液之一的碳酸盐环境应力腐蚀,已在化工炼油行业中的设备管道中被频繁报道,但是工业中的碳酸盐环境往往是由多种复杂介质构成的,认为由其引起的应力腐蚀开裂仅是定性的认识。由于我国压力容器常用钢在碱性环境方面的应力腐蚀定量数据积累甚少,故本文选择碱性环境之一的碳酸盐环境作为应力腐蚀试验溶液,进行试验研究,积累我国压力容器常用钢在该环境下的应力腐蚀定量数据,为设备管道的寿命预测奠定数据基础。
     本文选择几组碳酸盐溶液进行两种材料的慢应变拉伸试验以及在室温、90℃以及150℃三种温度和不同碳酸盐中进行16MnR和15MnVR钢的预裂纹试样(WOL)应力腐蚀试验。主要的结论如下:
     (1)慢拉伸试验表明在所选碳酸盐溶液中材料没有应力腐蚀倾向。
     (2)不同温度下,两种材料在Na_2CO_3溶液中的预裂纹试验未发生应力腐蚀开裂,试样表面存在致密的表面膜。
     (3)不同温度下,两种材料在NaHCO_3和混合溶液中未发生应力腐蚀开裂,试样表面存在较为严重的蚀孔,存在应力腐蚀的可能性。
The material demonstrated that, sevaral similar accidental explosions of urea synthesizers occurred in recent years on the world, which had caused the serious human damage and material loss. The analysis of accidents' cause had certain differences. The stress corrosion cracking(SCC) of alkalescence was one explanation,Which induced the outburst of vessel's body, and then the accidental explosions happened. In the industry of chemical and oil refining ,the SCC in the carbonate solution were often reported on the equipment and pipelines,which is one of the alkalescence solution. But the SCC of carbonate in the industry circumstance was just a qualitative analysis,and the industry circumstance always contain complex mediums,not just the carbonate. Because really few quantitative data of the SCC of the own pressure vessel commonly used steel in alkalescence solution were accumulated, hence the carbonate solution is choosed as the testing solution,in which the Stress corrosion cracking(SCC) of 16MnR steel and 15MnVR steel were studied by the method of stress corrosion test for pro-cracked wedge-open loading(WOL) specimens and slow strain rate testing (SSRT).The main research conclusions are as follows:
     1 .SSRT indicated that the material has very low sensitivity of SCC in thechoosed carbonate solution.
     2.At different temperatures, the WOL specimens of two steel did not takeplace SCC in the Na_2CO_3 solution which were choosed in the testing, anddense film exists on the surface of specimens.
     3. At different temperatures, the WOL specimens of two steel did not takeplace SCC in the NaHCO_3 solution which were choosed in the testing,Corrosion pin holes exist on the surface of specimens,which could be thepossibility of SCC.
引文
[1]柯伟,杨武主编.腐蚀科学技术的应用和失效案例[M].北京,工业出版社,2006:473
    [2]GB/T15970.7-2000,金属和合金的腐蚀-应力腐蚀试验第7部分:慢拉伸速率试验[S]
    [3]Kentish P J.Gas pipeline failures:Australian expenrience[J].Br.Corros J,1985,20(3):139-146
    [4]方丙炎,王俭秋,朱自勇等.埋地管道在近中性pH和高pH环境中的应力腐蚀破裂[J].金属学报,2001,37(5):453-458
    [5]Sridhar N,Lichtner P C,and Dunn D S.Evolution of environment under disbonded coating on cathodically protected pipeline——preliminary modeling and experimental studies[R].CORROSION/98,NACE International,Houston,TX,1998,Paper No.680
    [6]Beavers J A and Jaske C E.Near—neutral pH SCC in pipelines:effects of pressure fluctuations on crack propagation[R].CORROSION/98,NACE International,Houston,TX,1998,Paper No.257
    [7]李鹤林.天然气输送钢管研究与应用中的几个热点问题[R].石油管道工程应用基础研究论文集,北京,石油工业出版社,2001:3-18
    [8]R.C.Strong.Oil&Gas J.,1991,Vol89(39):82-84
    [9]王宇.制氢装置脱碳系统的腐蚀及措施[J].石油化工腐蚀与防护,1992,2:11-13
    [10]陈匡民主编.过程装备腐蚀与防护[M].北京,化学工业出版社,2001:212
    [11]陈其忠等编.电化学保护在化肥生产中的应用[M].北京,石油化学工业出版社,1975:99
    [12]陈学东,杨铁成,艾志斌等.基于风险的检测(RBI)在实践中若干问题讨论[J].压力容器,2005,(22):36-44
    [13]肖纪美编著.应力作用下的金属腐蚀[M].北京,化学工业出版社,1990:87
    [14]池琳.管线钢的应力腐蚀行为与检测技术基础研究[D].北京化工大学硕士学位论文,2004
    [15]E.B.Castro,J.R.Vilche and A.J.Arvia,Corr Sci,1991,32:37
    [16]J.M.Blengino,M.Keddam,J.P.Labbe and L.Robbiola.Corr.Sci,1995,37:621
    [17]A.M.Riley and J.M.Sykes,Electrochim.Acta,1990,35:35
    [18]R.N.Parkins,Corr.Sci,1980,20:147
    [19]R.N.Parkins,W.K.Blanchard,B.S.Delanty,Corrosion,1994,50:394
    [20]黎明,林志成.氧对低碳钢在碳酸盐溶液中极化特性影响[J].腐蚀与防护,1991,12(1):26-29
    [21]林志成,黎明.碳钢钝化膜在碳酸盐溶液中的阴极还原机理[J].化学学报,1989,47(12):1146-1151
    [22]J.M.BLENGTNO,f,M.KEDDAM,J.P.LABBE.and L.ROBBIOLA,PHYSICO-CHEMICAL CHARACTERIZATION OF CORROSION LAYERS FORMED ON IRON IN A SODIUM CARBONATE-BICARBONATE CONTAINING ENVIRONMENT[J].Corrosion Science.1995,Vol.37,No.4:621-643
    [23]Beavers J A,Berry W E,Parkins R N.Standard test procedure for stress corrosion cracking threshold stress determination[J].MP,1986,25(6):9-17
    [24]Parkins R N.Strain rate effects in stress corrosion cracking[J].Corrosion,1990,46(3)178-189
    [25]Parkins R N.,Singh P M.Stress corrosion crack coalescence[J].Corrosion,1990,46(6):485-499
    [26]Parkins R N.,Belhimer E,Blanehard W K J r.Stress corrosion cracking characteristics of a range of pipeline steels in carbonate-bicarbonate solution[J].Corrosion,1993,49(12):951-966[27]Pilkey A K,Lambert S B,Plumtree A.Stress corrosion cracking of X-60 line pipe steel in a carbonate-bicarbonate solution[J].Corrosion,1995,51(2):91-96[28]闫茂成,翁永基.环境溶液对管道钢应力腐蚀过程电化学行为的影响[J].中国腐蚀与防护学报,2005年2月,25(1)[29]冯皓.局部环境对埋地管线钢应力腐蚀开裂的影响[D].北京科技大学,2005[30]Ahmed T M,Lambert S B,Sutherby R,et al.Cyclic crack growth rates of X-60pipeline steel in a neutral dilute solution[J].Corrosion,1997,53(7):581-590[31]Gu B,Yu W Z,Luo J L,et al.Transgranular stress corrosion cracking of X-80and X-52 pipeline steels in dilute aqueous solution with near-neutral pH[J].Corrosion,1999,55(3):312-318
    [32]Zhang X Y,Lambert S B,Sutherby R,et al.Transgranular stress corrosion cracking of X-60 pipeline steel in simulated ground water[J].Corrosion,1999,55(3):297-305
    [33]Wang X-Z,Revie R W,Parkins R N.Mechanistic aspects of stress corrosion crack initiation and early propagation[A].CORROSION/99,NACE International[C],Houston,TX,1999:143
    [34]Lambert S B,Plumtree A,Sutherby R.Modeling of environmental crack growth in pipeline steel[A].CORROSION/2000,NACE ntemational[C],Houston,TX,2000:364
    [35]汪兵,刘素娥,朱自勇等.管线钢在近中性pH值溶液中的应力腐蚀开裂[J].腐蚀科学与防护技术,2001,13(2):71
    [36]郭浩,李光福,蔡荀等.恒位移加载条件下X-70管线钢在近中性pH溶液中的裂纹扩展行为[J].腐蚀与防护,2004,25(12):510-512
    [37]R.N.PARKINS and S.ZHOU.THE STRESS CORROSION CRACKING OF C-Mn STEEL IN CO_2-HCO_3~--CO_3~(2-)SOLUTIONS.I:STRESS CORROSION DATA[J].Corrosion Science,1997,39(1):159-173
    [38]刘烈炜,杨志强.中性碳酸盐水介质HS-离子对碳钢腐蚀加速作用的研究[A].第十一届全国缓蚀剂学术讨论会论文集[C],1999.
    [39]A.M.Riley and J.M.Sykes,Electrochim.Acta,1990,35:35
    [40]Haruna,T.,Zhu,L.,Shibata,T.Environment-induced degradation in strength for carbon steel in carbonate/bicarbonate solutions containing chloride ions[J].Zairyo to Kankyo/Corrosion Engineering,1998,47(12):771-776
    [41]陈立铭,董泽华,范汉香.碳钢在饱和CO_2的高浓度NaCl溶液中的腐蚀行为研究[J].化工腐蚀与防护,1996,2
    [42]黄先球,郑家桑.碳钢在CO_2饱和的氯化钠溶液中腐蚀及缓蚀研究[J].腐蚀与防护.1997,18(6):247
    [43]Al-Kharafi,F.M.,Ateya,B.G.,Abdallah,R.M.Electrochemical behaviour of low carbon steel in concentrated carbonate chloride brines Journal of Applied Electrochemistry[J].2002,32(12):1363-1370
    [44]Z.A.Foroulis.碳钢在热钾碱溶液中的应力腐蚀开裂[J].化工腐蚀与防护,1989,17(1):50-54
    [45]Hixson,D.,Uhlig,H.H.Corrosion,1976,32,56
    [46]李兆斌.预防炼油设备的湿硫化氢腐蚀[J].石油化工设备技术,2004,25(3)
    [47]Parkins,R.N.Stress Corrosion Cracking-The Slow Strain Rate.(Bds.Ugiansky.G.M.& Poyer.J H.)ASTM.Philadelphia,1977:5-23
    [48]褚武扬,王霞,王燕斌等.预蠕变对应力腐蚀的抑制作用[J].科学通报1992:564-565
    [49]Staehle R W.In:Jones R H ed.Chemistry and Electrochemistry of Corrosion and Stress Corrosion Cracking:A Symposium Honoring the Contributions of Staehle R W,New Orleans,LA:TMS,2001
    [50]曾荣昌,韩恩厚编著.材料的腐蚀与防护[M].北京,化学工业出版社,2006
    [51]Parkins,R.N.Brit.Corrosion J.,7,17,197
    [52]Parkins,R.N.,eta l.Brit.Corrosion J.,8,117(1973)
    [53]中国腐蚀与防护学会编.腐蚀试验方法与仿腐检测技术[M].北京,化学工业出版社,1995
    [54]R.N.Parkins.Slow strain rate testing-25 years experince,Slow strain rate testing for the evaluation of environmentally induced cracking:research and engineering applications,ASTM STP 1210,Russell D.Kane,Editor,Philadephia,(1993),p7-21
    [55]R.N.Parkins.Development of slow strain rate testing and its implications,Stress corrosion cracking:slow strain rate technique,ASTM STP665,GM.Ugiansky and J.H.Payer,Eds.,American Society for Testing and Materials,Philadephia,(1979),p5-25
    [56]J.H.Payer,W.E.Berry,W.K.Boyd.Evaluation of slow strain-rate stress corrosion tests results,Stress corrosion cracking:slow strain rate technique,ASTM STP665,G.M.Ugiansky and J.H.Payer,Eds.,American Society for Testing and Materials.Philadephia,(1979),p61-77
    [57]吴荫顺主编.金属腐蚀研究方法[M].北京,冶金工业出版社,1993.P156
    [58]GB/T 15970.7-2000,金属和合金的腐蚀,应力腐蚀试验第7部分:慢应变速率试验[S]
    [59]蒋兴钢,褚武扬,肖纪美.氢促进解理裂纹形核的机制[J].中国腐蚀与防护学报,1995.15(1):54-56
    [60]王燕斌,褚扬武,肖纪美.氢致解理断裂机理[M].中国科学1989:A 1065-1073
    [61]V.Hauk.Structural and residual stress analysis by non destructive methods[J].Elsevier,Amsterdam.1997
    [62]M.Buchheim.Gerrit.Ways to deal with wet H_2S cracking revealed by study[J]. Oil.Gas J.1990,88(28):892-896
    [63]R.Gee,Z.Y.Chen.Hydrogen embrittlement during the corrosion of steel by wet element sulphur[J].Corros.Sci.1995,37(12):2003-2011
    [64]乔利杰.应力腐蚀机理[M].科学出版社,1993年
    [65]GB2038-91,金属材料延性断裂韧度J1c试验方法[S]
    [66]胡刚,许淳淳,池琳等.HCO_3~-/CO_3~(2-)浓度对X70管线钢钝化行为的影响[J].北京化工大学学报,2004,31(3):43-47
    [67]李向欣,孙立,那桂兰.关于金属应力腐蚀问题的分析[J].中国氯碱,2004,3(3)
    [68]Danielson Mike J,Jones Russell H.Krist Kevin.Effect ofmicrostructure and microchemistry on the SCC behavior of pipeline steels in a high pH environment[R].CORROSION/2000.NACE International,Houston,TX,2000,Paper No:359
    [69]郭浩,李光福,蔡王旬等.恒位移加载条件下X70管线钢在近中性pH溶液中的裂纹扩展行为[J].腐蚀与防护,2004,25(12):510-512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700