层板包扎容器多元物料蒸气爆炸及壳体力学响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在设计理念上,层板包扎容器一度被认为是非常安全的结构。然而,在使用历史上,出现了许多失效、泄漏乃至爆破等事故。尤其是平阴尿塔爆炸事故以来,尿塔塔体严重爆破的原因受到了高度重视。不同专家对尿塔爆炸的原因提出了不同的观点。为了探索尿塔爆炸的真实原因,作者对尿塔塔体爆破相关的科学问题展开研究:一是液相区泄漏时多元物料蒸气爆炸的机理和爆炸载荷大小;二是带间隙多层圆筒结构的力学行为,包括层板裂纹的启裂与扩展和结构完整层板结构对冲击载荷的力学响应。只有弄清这两个问题,才能解决尿塔等层板包扎容器爆炸的根本原因,进而提出有针对性的爆炸防范措施。
     针对带间隙多层圆筒的线弹性和弹塑性应力状态,已有一些计算公式。但是,这些计算方法存在一些错误。作者通过修正的带间隙多层圆筒的应力计算公式,计算了多层圆筒在存在层板间隙的情况下,层板线弹性和弹塑性应力沿半径的分布规律,并且用于层板上轴向裂纹的临界长度的确定。结果表明,在正常工作状态下,多层圆筒层板的各向应力状态呈现出较大的不连续性。内部层板应力提高,外部层板应力降低。同时,作者基于波动方程的解的结构定理,提出了求解圆筒在动态载荷作用下结构响应的广义的解的结构定理,可以方便的求解不同边界条件和初值条件下的关于结构动力响应的偏微分方程。在求解单层筒体的结构动力响应的基础上,提出了求解带间隙的多层筒体的动力结构响应的方法。该方法的求解结果能够反映出因为层板间隙的存在,外部层板在结构响应时的滞后效应。
     基于统计热力学能量涨落理论,对在用压力容器液相区泄漏的蒸气爆炸进行了理论计算。分析了在蒸气爆炸过程中,蒸气爆炸压力、均相成核速率、液相温度和气相温度等热力学参数随时间的变化规律,以及各参数之间的内在联系。结果表明,盛装高温高压介质的容器,液相区的泄漏能够引发蒸气爆炸。蒸气爆炸能否发生以及爆炸载荷峰值的大小与泄漏面积密切相关。泄漏面积越大,就越容易出现蒸气爆炸压力反弹,反弹幅度也就越大。以平阴尿塔为例,在容器液相区壁面出现900mm的轴向穿透裂纹时,如果不考虑裂纹的扩展,蒸气爆炸压力峰值会达到31.40MPa;如果考虑轴向裂纹的扩展,在裂纹半长由376mm扩展为1235mm时,蒸气爆炸压力峰值会达到32.9 MPa。
     将带间隙多层圆筒的应力计算公式引入层板轴临界向裂纹长度的确定。分析表明,多层圆筒的各层板轴向裂纹的临界尺寸不同,内部层板临界裂纹尺寸较短,外部临界裂纹尺寸较长。以尿塔为例,在正常的操作压力下,盲层上轴向裂纹的临界半长为为185mm,最外层裂纹临界半长为866mm。使用ABAQUS的XFEM模块,对一个三层带间隙的圆筒上的裂纹扩展路径进行分析,外部层板裂纹在接近环焊缝处发生转向,变成近似环向裂纹。这种现象说明分段多层包扎容器在焊根处存在较大间隙时,沿轴向扩展的层板裂纹在接近环焊缝转变为环向裂纹。
     针对化学爆炸对带间隙多层圆筒的影响,作者使用理论计算和有限元计算方法分析了平面应力状态下带间隙多层圆筒的弹性动力响应。使用有限元方法,计算了局部冲击载荷作用下多层圆筒的动力响应。分析表明,冲击载荷对多层圆筒结构的影响存在局部效应。直接作用区域的应力峰值最大。离冲击载荷作用区域越远,受到的影响越小。对一带上下球形封头的多层圆筒的上封头区域施加1OOMPa冲击载荷,其他区域施加20MPa的冲击载荷。多层圆筒的内半径为700mm,长度为7410mm。接近上封头区域的圆筒内壁的应力峰值为653.56MPa,轴向方向离开该点1.9m处,应力峰值减小为490MPa;离开该点7.4m处,应力峰值骤减为310MPa。
     分析了裂纹等导致尿塔泄漏的缺陷是导致尿塔塔体发生灾难性破坏的根本原因,深环焊缝结构和焊根附近的间隙是容器断为三段的根本原因。根据对爆炸原因的分析,提出了尿塔爆炸防范措施。对于新造尿塔,提出了将现在的深环焊缝结构改进为兼有分段包扎和整体包扎优势的焊缝结构。对于在用尿塔,提出按照863课题——“层板包扎高压容器剩余寿命试验评价技术”的最新成果进行无损检测、缺陷评定和寿命预测。
     总之,通过对带间隙多层圆筒的层板应力分析和蒸气爆炸载荷的计算,层板轴向裂纹的启裂和扩展分析,层板结构在冲击载荷下的力学响应,确认了尿素合成塔的塔体爆破机理为层板的原始缺陷和蒸气爆炸的发生,并提出了相应的爆破防范措施。深化了对尿素合成塔等层板包扎容器爆炸原因、过程和最后破坏形态的认识,对于采取有效的措施去防范爆炸事故的发生,提高容器的安全性,具有重要意义。此外,层板包扎容器爆炸事故非常复杂,要想彻底对爆炸的原因进行溯源,尚需进行小尺寸容器的爆破模拟实验来确认本文的分析结果。
The layered vessel is considered as a safe structure in design concept. However, in the history, the layered vessels were involved in some failure accidents, such as leakage and explosion. From the Pingyin Urea reactor explosion which happened in 2005, the catastrophic explosion reasons related to urea reactor and the same style layered vessels attracted more and more eyes of vessel experts. Different experts gave us different viewpoints on the rupture reasons. In order to figure out the true reason of the explosion, the scientific issues related to urea reactor shell rupture are investigated. There are two key issues behind the explosion phenomena, one is the mechanism of vapor explosion and the explosion pressure which triggered by the liquid leakage, and the other one is mechanical behavior of the layered cylinder with interlayer gaps, including the initiation and propagation of the longitudinal cracks in layers, and the structural response of the layered vessel under the impact loading.
     The formulae for the linear elastic and elastoplastic stress calculation for layered cylinder with gaps have been modified in this paper. The elastic stress and elastoplastic stress has been calculated. It can be used for calculating the crack critical length in layers. The results show that the hoop stress along the radial direction is not continuous. Compared with monobloc cylinder, the inside stress is increased, and the outside stress is decreased. Based on the solution structure theorem for wave equation, the generalized solution structure theorem has been proposed. It can be use for solving the partial differential equation with different initial values and boundary conditions for structural response. Once the structural response of monobloc cylinder has been obtained, the structural response for the layered cylinder with gaps can be solved easily with the method proposed in this paper. The result shows that the response of outside layers is delayed due to gaps.
     According to the probability distribution of energy fluctuation in statistical thermodynamic fluctuation theory, the theoretical model for the vapor explosion trigged by the liquid release in the in-service pressure vessel was established. The vapor explosion pressure, homogeneous nucleation rate, liquid temperature, and vapor temperature are analyzed. The relationship between the vapor explosion amplitude and the crack length is also analyzed. The results show that the vapor explosion is possible when the liquid release for a vessel with high temperature and pressure contents. It depends on the liquid leakage mass flux rate. The crack opening area is bigger, and the possibility of vapor explosion is bigger, and the pressure amplitude is also bigger. For example, in Pingyin urea reactor, when the longitudinal crack length is 900mm, the peak explosion pressure is 34.4MPa. In this process, if the crack propagation is considered, the peak pressure is 32.9 MPa.
     The elastic stress calculation formulae are introduced to the longitudinal crack critical length determination. The crack critical length in different layer is different. The crack length in inside layers is short, and in the outside layers is long. For example, in Pingyin urea reactor, the crack critical half length is 185mm in the dummy layer, and is 866 in the outermost layer. The crack propagation path in the outside layer in a double layered vessel with gaps is analyzed in ABAQUS. The XFEM method is used for the crack modeling. The longitudinal crack will change to an almost circumferential crack when it propagated to heavy circumferential weld. The reason is the gap near the weld root is cannot removed.
     In order to study the effect of chemical explosion to layered cylinder, the elastodynamic response of layered cylinder with gaps is calculated theoretically and numerically. The layered cylinder is considered to be infinite long, and in the plane strain status. The structural response under the local impact pressure is also calculated by finite element method. The results indicate that the impact loading have a local effect to the layered structure, that is, the peak hoop stress is biggest in the zone under the pressure directly. The farther from the loading applied zone, the effect is smaller. For example, a layered vessel is constructed by layered section and two hemisphere head. The layered section is constructed by 14 layers. All the interlayer gaps are equal to 0.05mm. The inner radius is 700mm, and the length is 7410mm. An impact pressure which applied into the inner surface of top head is 100MPa, and the pressure which applied into the inner surface of top head and layered section is 20MPa. The peak hoop stress in the inner surface near top head is 653.56MPa. The peak hoop stress is 490MPa in the point which is 1.9m far from the top head. The peak hoop stress is reduced to 310 MPa in the point which is 7.4m far from the top head.
     The basic reason for the catastrophic rupture of urea reactor is analyzed using the conclusions obtained above. The vapor explosion which trigged by liquid leakage is the basic reason for the rupture. The heavy circumferential weld and the big gap near the weld root is reason for the urea reactor ruptured in to three sections. According to the explosion analyzed above, the prevention method for the urea reactor explosion is proposed. For the new designed urea reactor, a modified circumferential weld structure is proposed. This structure has the advantage of both segment layered vessel and integral layered vessel. For the in-service urea reactor, the nondestructive testing, defect assessment, and the life prediction should accord to the 863 Program-Experimental Remaining Life Evaluation Technology for Layered High Pressure Vessels.
     In a word, the urea reactor explosion reason was focused on, and the basic issues were researched. The following topic is discussed intensively:the stress calculation of layered cylinder with gaps, the mechanism of vapor explosion and the pressure calculation, the initiation and propagation of longitudinal cracks in layers, the elastodynamic response of layered cylinder with gaps, the confirmation of the urea reactor mechanism, and the proposal for the prevention of urea reactor explosion. This research enhances the recognition level to the layered urea reactor explosion. It is meaningful for the explosion prevention and the vessel safety. However, the mechanism of the layered urea reactor explosion is so complicated that the small scale vessel explosion testing is required to confirm the analysis result in this paper.
引文
[1]袁一.尿素[M].北京:化学工业出版社,1997:111.
    [2]Bozzano G, Dente M, Zardi F. New internals for urea production reactors [J]. Journal of Chemical Technology and Biotechnology,2003,78(2-3):128-133.
    [3]Helmut T, Florence C. Failures in urea reactor vessels[J]. Ammonia Plant Safety and Related Facilities,1996,36:232-253.
    [4]国家质量技术监督检验检疫总局.国质检特函(2005)689号文——关于进一步加强尿素合成塔生产使用检验工作的通知.
    [5]Secretary of Labor, Complainant v. Arcadian Corporation, Respondent. OSHRC Docket No. 93-0628.
    [6]Jojima T. Urea reactor failure[J]. Ammonia Plant Safety and Related Facilities,1979,21: 111-119.
    [7]吕延茂.尿素合成塔的化学爆炸分析[J].特种设备安全技术,2007,(6):26-28.
    [8]徐书根,王威强,李梦丽,等.尿素合成塔爆炸载荷类型与破坏形态的关系分析[J].山东大学学报(工学版),2008,38(3):51-57.
    [9]杨柏森.关于尿素合成塔气相层化学性爆炸问题的探讨[J].中氮肥,1992,(1):72-74.
    [10]Marsh's Risk Consulting Practice. Large property damage losses in the hydrocarbon-chemical industries (20th ed.) [EB/OL]. [2007-7-10]. http://www.marshriskconsulting.com/Load/ article_452602.pdf.
    [11]Secretary of Labor, Petitioner v. Arcadian Corporation and OSHRC, Respondents. United States Court of Appeals, Fifth Circuit. No.96-60126.
    [12]河北省迁安化肥厂事故调查组.河北省迁安化肥厂关于1#尿素合成塔爆炸事故的调查报告[R].1996.
    [13]池树增.国外某厂尿素合成塔爆破事故原因初探[J].中氮肥,2006,(2):10-13.
    [14]陈宪禧,王威强,朱衍勇,等.平阴鲁西化工第三化肥厂有限公司尿素合成塔失效分析报告[R],2005.
    [15]Patterson L B. Ammonia separator accident [J]. Ammonia Plant Safety and Related Facilities, 1979,21:95-99.
    [16]黄雪琴,王振辉,李廷杰,等.尿塔断裂失效分析[J].河北科技大学学报,2003,24(1):80-85.
    [17]任德亮,王云程,陈恺,等.多层包扎式筒体焊接缺陷区的裂纹分析[J].机械工程学报, 2000,36(4): 109-112.
    [18]丁春燕,杨杰.尿塔物理断裂失效分析[J].河北工业科技,2008,25(1):21-23.
    [19]周昌玉,涂善东.一台高压容器破坏原因探讨[J].化工装备技术,1997,18(6):34-36.
    [20]国家质检总局特种设备事故调查处理中心.特种设备事故典型案例集[M].北京:航空工业出版社,2005:93-96.
    [21]Wang W Q, LiAJ, Zhu Y Y, et al. The explosion reason analysis of urea reactor of Pingyin [J]. Engineering Failure Analysis,2009,16 (3):972-986.
    [22]胡德栋,王威强,吴俊飞,等.平阴尿塔的物料和爆炸能量估算.山东大学学报(工学版)2008,38(3):46-50.
    [23]吴俊飞,王威强,胡德栋,等.平阴尿塔塔体爆炸能量分析与计算.山东大学学报(工学版),2008,38(4):80-83.
    [24]钱镜清.尿塔安全生产讨论[J].氮肥与甲醇,2006,1(5):5-10.
    [25]钱镜清.再谈尿素合成塔爆炸原因[J].氮肥与甲醇,2008,3(2):55-59.
    [26]罗建烘.尿素合成塔爆炸的新思考[J].氮肥与甲醇,2008,3(3):61-66.
    [27]罗建烘.也谈尿素合成塔爆炸[J].氮肥与甲醇,2006,1(4):20-23.
    [28]池树增.国内尿素合成塔爆破原因探讨[J].氮肥与甲醇,2008,3(6):53-55.
    [29]吕延茂.鲁西化工厂合成塔爆炸原因剖析[J].特种设备安全技术,2008,(6):34-37.
    [30]沈华民.尿素合成的安全[J].化肥设计,2005,43(4):3-8.
    [31]赵树德.尿素塔为何会发生化学爆炸[J].化工设计通讯,2005,31(4):45.
    [32]李化,金长义,黄卫星.化工装置连锁爆炸实例研究[J].中国安全生产科学技术,2008,4(1):99-103.
    [33]Peterson D F. BLEVE:facts, risk factors, and fallacies[J]. Fire Engineering,2002,155 (4):97-103.
    [34]Center for chemical Process Safety-AIChE. Guidelines for evaluating the characteristics of vapor cloud explosions, flash fires and BLEVE's [M]. New York,1994.
    [35]BirkAM, Cunningham M H. The boiling liquid expanding vapour explosion[J]. Journal of Loss Prevention in the Process Industries,1994,7 (6):474-480.
    [36]Birk A M, Poirier D, Davison C. On the response of 500 gal propane tanks to a 25% engulfing fire[J]. Journal of Loss Prevention in the Process Industries,2006,19:527-541.
    [37]Birk A M, Davison C, Cunningham M. Blast overpressures from medium scale BLEVE tests[J]. Journal of Loss Prevention in the Process Industries,2007,20 (3):194-206.
    [38]Manu C C, Birk A M, Kim I Y. Stress rupture predictions of pressure vessels exposed to fully engulfing and local impingement accidental fire heat loads[J]. Engineering Failure Analysis, 2009,16(4):1141-1152.
    [39]俞昌铭,Venart J.压力陡降及容积加热条件下气液两相系统瞬态分析[J].工程热物理学报,1994,15(2):205-209.
    [40]Venart J, Sollows K, Sumathipaia E, et al. Boiling liquid compressed bubble explosions: experiments/models[J]. ASME FED,1993,165:55-60.
    [41]McDevitt C A, Steward F R, Venart J. Boiling liquid expanding vapour explosions-an update[C]//Proceedings of the 5th Technical Seminar on Chemical Spills, Pergamon Press, New York,1989:1-14.
    [42]北川彻三.爆炸事故的分析[M].黄九华,刘培德,译.北京:化学工业出版社,1984:236-248.
    [43]Ogiso C, Takagi N, Kitagawa T. On the mechanism of vapor explosion[C]//First Pacific chemical engineering congress, Kyoto,1972:233-240.
    [44]McDevitt C A, Chan C K, Steward F R, et al. Initiation step of boiling liquid expanding vapour explosions [J]. Journal of Hazardous Materials,1990,25(1-2):169-180.
    [45]Venart J, Rutledge G A, Sumathipala K, et al. To BLEVE or not to BLEVE:anatomy of a boiling liquid expanding vapour explosion[J]. Process Safety Progress,1993,12(2):67-70.
    [46]Ramier S, Venart J. Boiling liquid expanding vapor explosions:dynamic re-pressurization and two-phase discharge [J]. Institution of chemical Engineers Symposium Series,2000,147: 527-537.
    [47]林文胜,顾安忠,鲁雪生,等.液化石油气蒸汽爆炸的模拟试验研究[J].工程热物理学报,2002,23(6):678-680.
    [48]Stawczyk J. Experimental evaluation of LPG tank explosion hazards[J]. Journal of Hazardous Materials,2003,96 (2-3):189-200.
    [49]陈思凝,孙金华,褚冠全,等.锅炉沸腾液体膨胀蒸汽爆炸(BLEVE)的小尺寸模拟试验[J].热能动力工程,2006,21(2):132-135.
    [50]俞昌铭,Venart J,熊音.一种冷爆炸现象的物理数学模型初探[J].工程热物理学报,1995,16(3):354-357.
    [51]Yu C M, Venart J. The boiling liquid collapsed bubble explosion (BLCBE):a preliminary model[J]. Journal of Hazardous Materials,1996,46 (2-3):197-213.
    [52]林文胜,顾安忠,鲁雪生.低温容器的蒸汽爆炸现象初探[J].低温与特气,2002,20(2):20-23,36.
    [53]王海蓉,马晓茜.LNG容器蒸气膨胀爆炸特性研究[J].低温工程,2006,(5):57-60.
    [54]陈建存.多层包扎式高压容器的强度计算[J].华东石油学院学报,1978,(1):63-88.
    [55]刘纪炎.层板包扎高压容器层板间存在的间隙对应力的影响[J].青岛化工学院学报,1995,16(2):184-186.
    [56]Pimshtein P G, Tatarinov V G. Elastoplastic operation of multilayer cylinders with gaps [J]. Chemical and Petroleum Engineering,1969,5(7):523-528.
    [57]Tarabasov N D, Gribanov A V. Strength calculations of multilayer cylindrical sections of high pressure vessels[J]. Chemical and Petroleum Engineering,1972,8(6):608-611.
    [58]Pimshtein P G. Strength of multilayer high pressure vessels[J]. Chemical and Petroleum Engineering,1968,4(7):574-578.
    [59]黄炎.多层容器的应力分析[J].化工炼油机械通讯,1980(3):20-27.
    [60]陈国理,赖仁芳.多层高压容器存在间隙时的应力分析与计算程序[J].华南工学院学报,1981,9(4): 90-104.
    [61]ASME BPVC SECTION VIII Division 3:alternative rules for construction of high pressure vessels. New York, USA:American Society of Mechanical Engineers,2007.
    [62]宋明大,王威强,赵亚凡,等.多层包扎尿素合成塔应力状况分析[J].机械强度,2008,30(1):93-100.
    [63]Pimshtein P G, Borsuk E G, Tsvik L V, et al. Steength of multilayer vessels having side unions [J]. Chemical and Petroleum Engineering,1975,11(12):1065-1068.
    [64]Pimshtein P G, Borsuk E G. Experimental investigation of the stress state of a coiled shell under the action of internal pressure[J]. Strength of Materials,1978,10(9):1050-1055.
    [65]Zhukova V N, Pimshtein P G. Thermally stressed state of a laminated cylinder exposed to internal pressure and steady-state external heating[J]. International Applied Mechanics,1989, 25(8):808-813.
    [66]Pimshtein P G, Zhukova V N. Stress state and allowable temperature gradients in high-pressure autoclaves[J]. Chemical and Petroleum Engineering,2003,39(9-10):515-522.
    [67]Gribanov A V. Investigation of the stress distribution in sleeved multilayer vessels[J]. Chemical and Petroleum Engineering,1972,8(12):964-968.
    [68]Gordeev V N, Mikitarenko M A, Perelmuter A V. Stress analysis of coiled multilayer high-pressure vessels in the elastoplastic stage[J]. Strength of Materials,1979,11(7):778-783.
    [69]Tatarinov V G, Tatarinova C G. Calculation of the stress state of single-layer elements of vessels connected with a multilayer cylinder[J]. Chemical and Petroleum Engineering,1987, 23(6):257-261.
    [70]刘东学.用有限元法对多层高压容器筒体的弹塑性分析[J].机械强度,1983(4):1-13.
    [71]陆建华.多层高压容器圆筒的弹塑性有限元分析及其理论解[D].广州:华南理工大学,1990.
    [72]傅忠红,陈国理.多层高压容器应力和导热性能的综合研究[J].压力容器,1995,12(3):188-193.
    [73]宋明大.多层包扎尿素合成塔检验与剩余寿命评估方法研究[D].山东大学机械工程学院,2008.
    [74]Hodge P. The influence of blast characteristics on the final deformation of circular cylindrical shells[J]. Journal of Applied Mechanics,1956,23(12):617-622.
    [75]Cinelli G. An extension of the finite hankel transform and applications[J]. International Journal of Engineering Science,1965,3(5):539-559.
    [76]Cinelli G. Dynamic vibrations and stresses in elastic cylinders and spheres[J]. Journal of Applied Mechanics,1966,33(4):825-830.
    [77]Baker WE, Hu W C L, Jackson T R. Elastic response of thin spherical shells to axisymmetric blast loading[J]. Journal of Applied Mechanics,1966,33(4):800-806.
    [78]Senitskii YE. On a solution of the dynamic problem of a shallow spherical shell[J]. International Applied Mechanics,1966,2(3):11-14.
    [79]Ko W L, Pennick H G, Baker W E. Elasto-plastic response of a multi-layered spherical vessel to internal blast loading[J]. International Journal of Solids and Structures,1977,13(6): 503-514.
    [80]Aleksandrov LN, Ivanov A G, Mineev V N, et al. Plastic deformation of spherical steel shells under internal blast loading[J]. Journal of Applied Mechanics and Technical Physics,1982, 23(6):831-835.
    [81]Cemal E A, Erdogan S S. Elastodynamics Volume Ⅱ—linear theory[M]. New York, Academic Press,1975:490-492.
    [82]王熙,龚育宁.弹性动力学轴对称问题的理论解[J].力学学报,1992,24(1):93-101.
    [83]WANG X, GONG Y. An elasto-dynamic solution for multilayered cylinders[J]. International Journal of Engineering Science,1992,30(1):25-33.
    [84]王熙.有界圆柱体的动应力和动应力集中现象[J].振动与冲击,1995,(1):23-29.
    [85]王熙.具有初始层间压力的层合圆筒的热冲击研究[J].应用数学和力学,1999,20(10):1065-1071.
    [86]Wang X, Xia X H, Hao W H. An elastodynamic solution of finite long orthotropic hollow cylinder under torsion impact[J]. Journal of Sound and Vibration,2003,267(1):67-86.
    [87]丁皓江,王惠明,陈伟球.圆柱壳的轴对称平面应变弹性动力学解[J].应用数学和力学,2002,23(2):128-134.
    [88]Ding H J. Wang H M, Hou P F. The transient responses of piezoelectric hollow cylinders for axisymmetric plane strain problems[J]. International Journal of Solids and Structures,2003, 40(1):105-123.
    [89]Wang H M, Ding H J, Chen Y M. Dynamic solution of a multilayered orthotropic piezoelectric hollow cylinder for axisymmetric plane strain problems[J]. International Journal of Solids and Structures,2005,42(1):85-102.
    [90]Ding H J, Wang H M, Chen W Q. A solution of a non-homogeneous orthotropic cylindrical shell for axisymmetric plane strain dynamic thermoelastic problems[J]. Journal of Sound and Vibration,2003,263:815-829.
    [91]Yin X, Yue Z. Transient plane-strain response of multilayered elastic cylinders to axisymmetric impulse[J]. ASME Journal of Applied Mechanics,2003,69:825-835.
    [92]尹晓春.多层厚壁圆筒频率方程的简化及一类贝塞尔函数递推公式[J].应用数学和力学,1999,20(3):319-324.
    [93]郑津洋,陈勇军,邓贵德.强动载荷下离散多层圆筒的弹性动力响应分析[J].浙江工业大学学报(工学版),2005,39(12):1847-1853.
    [94]Zheng J Y, Chen Y J, Deng G D, et al. Dynamic elastic response of an infinite discrete multi-layered cylindrical shell subjected to uniformly distributed pressure pulse[J]. International Journal of Impact Engineering,2006,32(11):1800-1827.
    [95]陈勇军,郑津洋,邓贵德,等.单层厚壁圆筒弹性动应力的简化计算方法[J].工程力学,2006,23(11).
    [96]陈勇军.离散多层爆炸容器动力响应及其工程设计方法研究[D].浙江大学,2008.
    [97]田锦邦,赵隆茂.扁平绕带式爆炸容器的弹性动力响应分析[J].石油化工设备,2004,33(4):36-39.
    [98]田锦邦,赵隆茂,郑津洋.扁平绕带式压力容器的刚塑性动力响应分析[J].应用力学学报,2005,22(3):426-430.
    [99]田锦邦,赵隆茂,郑津洋.双层扁平绕带式压力容器的刚塑性动力响应分析[J].爆炸与冲击,2006,26(1):59-64.
    [100]田锦邦,宋延泽,赵隆茂.扁平绕带式压力容器轴向爆破压力分析[J].化工机械,2005,32(2):96-99.
    [101]叶四合,刘小宁.圆筒形爆破容器的弹塑性动力响应[J].化工设计,2005,15(6):25-27.
    [102]肖丽华,刘小宁.多层圆筒形与球形容器爆破压力的确定[J].化工设计通讯,2003,29 (1): 36-39.
    [103]Cheng X. The dynamic computation of closed cylindrical shell under impact load[J]. Applied Mathematics and Mechanics,1989,10(2):175-181.
    [104]Bondar P P, Boivan V S, Plaksii V A. Dilatation of double-layered cylindrical shell under internal explosive loading[J]. Strength of Materials,1996,28 (6):446-451.
    [105]Didyk R P, Krasnovskii S S. On the problem of determining the dynamic stress field of cylindrical shells[J]. Soviet Applied Mechanics,1966,2(9):32-35.
    [106]Galiev S U, Romashchenko V A, Alpaidze Z G. Effect of anisotropy and viscosity on the propagation of waves in multilayer cylinders[J]. Strength of Materials,1983,15(9): 1236-1242.
    [107]Belov A I. Elastic response of multilayer and monometallic shells to explosive loading[J]. Strength of Materials,1990,22(6):917-920.
    [108]Gantes C J, Nikos G. Pnevmatikos. Elastic-plastic response spectra for exponential blast loading[J]. International Journal of Impact Engineering,1989,30(3):323-343.
    [109]Prucz J C, Dacquisto J, Smith J E. Dynamic response of composite pressure vessels to inertia loads[J]. Journal of Pressure Vessel Technology,1991,113(1):86-91.
    [110]Nguyen H T. Application of the relaxation method for solving nonlinear dynamic problems of cylindrical shells[J]. International Applied Mechanics,1997,19(9):831-845.
    [111]Vasil'ev V V, Lure S A. Dynamic response of cylindrical explosive chambers to internal blast loading produced by a concentrated charge[J]. International Journal of Impact Engineering, 1972,8(9-10):713-719.
    [112]Babaev A E, Gordienko V I, Kubenko V D. Dynamics of an elastic cylindrical shell containing an unsteady internal wave source[J]. International Applied Mechanics,1989,25 (10):993-998.
    [113]Shi X H, Gao Y G. Generalization of response number for dynamic plastic response of shells subjected to impulsive loading[J]. International Journal of Pressure Vessels and Piping,2001, 78(6):453-459.
    [114]Lee Z Y. Generalized coupled transient response of 3-D multilayered hollow cylinder[J]. International Communications in Heat and Mass Transfer,2006,33(8): 1002-1012.
    [115]Kil'chevskii N A, Pivovar-Trofimchuk S S. On the dynamic deformation theory of cylindrical shells[J]. International Applied Mechanics,1971,7(1):1-6.
    [116]Lellep J, Torn K. Plastic response of a circular cylindrical shell to dynamic loadings [J]. International Applied Mechanics,2004,30(5):555-576.
    [117]宋延泽.爆炸载荷作用下扁平绕带高压容器实验研究和数值模拟[M].太原:太原理工大学,2006.
    [118]宋延泽,李志强,赵隆茂.爆炸载荷下扁平绕带式高压容器动力响应的数值模拟[J].太原理工大学学报,2006,37(2):242-245.
    [119]饶国宁,陈网桦,王立峰,等.内部爆炸载荷作用下容器动力响应的数值模拟[J].中国安全科学学报,2007,17(2):129-133.
    [120]王志荣,蒋军成,徐进.气体爆炸载荷作用下抗爆容器的动力学响应[J].石油化工高等学校学报,2006,19(3):76-80.
    [121]胡八一,柏劲松,张明.球形爆炸容器动力响应的强度分析[J].爆轰波与冲击波,2000,(9):104-108.
    [122]Thota J, Trabia M B, O'Toole B J, et al. Structural response optimization of a light-weight composite blast containment vessel[J]. Journal of Pressure Vessel Technology,2009,131(3): 03120901-03120909.
    [123]Nickell R E, Romero C. Containing explosions[J]. Mechanical Engineering,2003,125(9): 62-72.
    [124]Rodriguez E A, Romero C. Hydrodynamic modeling of detonations for structural design of containment vessels[C].//Proceedings of 2006 ASME Pressure Vessels and Piping Division. Vancouver:ASME,2006.
    [125]Mirzaei M, Biglari H, Salavatian M. Analytical and numerical modeling of the transient elasto-dynamic response of a cylindrical tube to internal gaseous detonation[J]. International Journal of Pressure Vessels and Piping,2006,83(7):531-539.
    [126]Gao C Y, Shi H J, Liu C L, et al. Measurement of dynamic fracture parameters of explosive cylindrical shells[J]. Metals and Materials,2000,6(6):549-552.
    [127]Shepherd J E. Structural response of piping to internal gas detonation [J]. Journal of Pressure Vessel Technology,2009,131(3):03120401-03120413.
    [128]邓贵德.离散多层爆炸容器内爆载荷和抗爆特性研究[D].杭州:浙江大学,2008.
    [129]Gray L J, Martha L F, Ingraffea A R, et al. Hypersingular integrals in boundary element fracture analysis[J]. International Journal For Numerical Methods in Engineering,1990,29(6): 1135-1158.
    [130]Liu W K, Hao S, Belytschko T, et al. Multiple scale meshfree methods for damage fracture and localization [J]. Computational Materials Science,1999,16(1-4):197-205.
    [131]Li S, Liu W K, Rosakis A J, et al. Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition[J]. International Journal of Solids and Structures, 2002,39(5):1213-1240.
    [132]Fries T P, Belytschko T. The intrinsic XFEM:a method for arbitrary discontinuities without additional unknowns[J]. International Journal for Numerical Methods in Engineering,2006, 68(13):1358-1385.
    [133]Zi G, Chen H, Xu J, et al. The extended finite element method for dynamic fractures[J]. Shock and Vibration,2005,12(1):9-23.
    [134]Maligno A R, Rajaratnam S, Leen S B, et al. A three-dimensional (3D) numerical study of fatigue crack growth using remeshing techniques[J]. Engineering Fracture Mechanics,2010, 77(1):94-111.
    [135]Konosu S, Mukaimachi N. Plastic collapse assessment procedure for vessel with local thin area simultaneously subjected to internal pressure and external bending moment[J]. Journal of Pressure Vessel Technology,2008,130(1):01120701-01120710.
    [136]Tang X, Wu S, Zheng C, et al. A novel virtual node method for polygonal elements[J]. Applied Mathematics and Mechanics (English Edition),2009,30(10), 1233-1246.
    [137]Ugural A C, Fenster S K. Advanced strength and applied elasticity (4th ed.)[M]. Upper Saddle River, NJ:Prentice Hall,2003.
    [138]XuSG, Wang W Q, Song M D, et al. Modified formulation of layer stresses due to internal pressure of a layered vessel with interlayer gaps[J]. Journal of Pressure Vessel Technology, 2010,132 (5):05120101-05120108.
    [139]Xu S G, Wang W Q. The elastoplastic stress analysis of layered cylinder with gaps based on the modified Pimshetein's Formulae. (Submitted to Journal of Pressure Vessel Technology).
    [140]王立秋,周学圣.双相滞热传导方程[M].济南:山东大学出版社,2000:69-70.
    [141]尹晓春,王良国,余洋.带间隙双层套筒多次内碰撞的若干研究[J].南京理工大学学报,]999,23(4):357-361.
    [142]尹晓春,冯思艳,龚育宁.利用Laplace变换确定双层厚壁长圆筒的轴对称界面碰撞压力[J].爆炸与冲击,1998,18(4):365-374.
    [143]Reid R C. Possible mechanism for pressurized-liquid tank explosions or BLEVE's[J]. Science, 1979,203:1263-1265.
    [144]刘朝,明向军,曾丹苓,等.液体理论极限过热度的确定[J].工程热物理学报,1997,18(3):265-269.
    [145]金仁喜,淮秀兰,刘登瀛.经典理论对超急速爆发沸腾的适用性[J].工程热物理学报, 2003,24(6):1013-1015.
    [146]林文胜,顾安忠.利用涨落理论确定液体均匀核化速率[J].上海交通大学学报,2000,34(9):1167-1170.
    [147]Casal J. Evaluation of the effects and consequences of major accidents in industrial plants [M]. Oxford:Elsvier Science Publishing Company,2007:22.
    [148]Tada H, Paris P C, Irwin G R. The stress analysis of cracks handbook (3rd ed.)[M]. New York:American Society of Mechanical Engineers,2000.
    [149]徐济鋆,贾斗南.沸腾传热和气液两相流[M].北京:原子能出版社,2001:223.
    [150]Scriven L E. On the dynamics of phase growth[J]. Chemical Engineering Science,1959, 10(1-2):1-13.
    [151]Mikic B B, Rohsenow W M, Grifith P. On bubble growth rates[J]. Intenrational Journal of Heat and Mass Transfer,1970,13(4):657-666.
    [152]Mills A F. Heat transfer (2nd Ed.)[M]. New Jersey:Prentice Hall:719-722.
    [153]李庆扬,王能超,易大义.数值分析(第4版)[M].北京:清华大学出版社,2001.
    [154]Reid R C, Prausnitz J M, Sherwood T K. The properties of gases and liquids [M]. New York: McGraw-Hill.
    [155]Yaws C L. Chemical properties handbook [M]. NewYork:McGraw-Hill.
    [156]Inoue S, Kanai K, Otsuka E. Equilibrium of urea synthesis Ⅰ[J]. Bulletin of the Chemical Society of Japan,1972,45(5):1339-1345.
    [157]Inoue S, Kanai K, Otsuka E. Equilibrium of urea synthesis Ⅱ[J]. Bulletin of the Chemical Society of Japan,1972,45(6):1616-1619.
    [158]沈华民.尿素合成条件下NH3-CO2-(NH2)2CO-H20体系相平衡研究[J].化肥工业,1979,(1):62-68.
    [159]Broers J N, Lemkowitz S M, VandenBerg P J. Densities of urea-ammonia-water-carbon dioxide solutions in chemical equilibrium at and above urea synthesis conditions)[J]. Journal of Applied Chemistry and Biotechnology,1975,25(10):769-779.
    [160]Isla M A, Irazoqui H A. Simulation of a urea synthesis reactor 1. thermodynamic framework[J]. Industrial and engineering chemistry research,1993,32(11):2662-2670.
    [161]Irazoqui H A, Isla M A. Simulation of a urea synthesis reactor 2. reactor model[J]. Industrial and engineering chemistry research,1993,32 (11):2671-2680.
    [162]于宏.尿素装置中高压系统热力学研究及合成塔的模拟[D].青岛:青岛科技大学,2006:25-47.
    [163]Gross D, Seelig T. Fracture mechanics with an introduction to micromechanics[J].Berlin: Springer,2006:105.
    [164]中国金属学会《断裂》编辑部.断裂分析与断裂韧性测试研究[M].长沙:湖南科学技术出版社,1980:307-320.
    [165]李志安.压力容器断裂理论与缺陷评定[M].大连:大连理工大学出版社,1994:50-51.
    [166]Cornec R A, Scheider I, Schwalbe K H. On the practical application of the cohesive model[J]. Engineering Fracture Mechanics,2003,70(14):1963-1987.
    [167]郑津洋,邓贵德,陈勇军,等.离散多层厚壁爆炸容器抗爆炸性能试验研究[J].爆炸与冲击,2005,25(6):506-511.
    [168]吕延茂.Φ1.4m尿素合成塔基体的应力腐蚀裂纹[J].特种设备安全技术,2006,(4):1-5.
    [169]李梦丽.层板包扎尿素合成塔爆破和开裂原因及机理研究[D].山东大学机械工程学院,2008.
    [170]范钦珊.压力容器的应力分析与强度设计[M].北京:原子能出版社,1979:59-63.
    [171]奚桂明.高压容器环焊缝错开结构的研究及其应用[J].化工机械,1980(3):9-14.
    [172]宋明大,王威强,陈鹭滨,等.多层包扎尿素合成塔应力腐蚀裂纹成因分析[J].石油化工高等学校学报,2007,20(2):73-76.
    [173]赵斌义.无深环焊缝多层包扎容器的结构特点[J].石油化工设备技术,2008,29(2):9-11.
    [174]ASME BPVC SECTION VIII Division 1:Rules for construction of pressure vessels,2007, American Society of Mechanical Engineers, New York.
    [175]王威强,李梦丽,徐书根,等.一种蒸汽检漏系统及检漏介质参数:中国,200810015256.4[P].2009-12-16.
    [176]王威强,李梦丽,徐书根,等.一种真空检漏系统:中国,200910017335.3[P].2009-07-27.
    [177]魏顺安,薛荣书.H20-NH3-CO2体系汽液平衡计算[J].化学工业与工程,2004,21(3):193-197.
    [178]Nakamura R, Breedveld G, Prausnitz J M. Thermodynamic properties of gas mixtures containing common polar and nonpolar components[J]. Industrial & Engineering Chemistry Process Design and Development.,1976,15(4):557-564.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700