基于有限元法的层板包扎容器应力场数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层板包扎结构作为承压设备的一种,是高压容器中常见的和通常被认为是不会破坏的结构形式,但目前已发生多起这类容器的灾难性事故,因此如何对尿塔的剩余寿命作出有效的评估就成为了目前迫切需要解决的问题。为了建立现实可行的层板包扎高压容器的剩余寿命试验评价技术和对其中缺陷进行有效检测的技术,青岛科技大学和其他三个单位联合申报了国家863项目“层板包扎高压容器剩余寿命试验评价技术”并获得批准。本文主要进行层板包扎容器的应力场、温度场等的数值模拟分析,为剩余寿命估算和评价提供数据基础。
     考虑数值模拟时建模多、难度大,尤其是层板间隙时建立接触对手工操作非常困难。本文以ANSYS为平台,开发了层板包扎尿素合成塔有限元参数化分析程序,将建模、划分网格、加载求解等各功能融入系统,通过输入少量参数就能快速完成尿素合成塔有限元数值分析,大大减小了分析的工作量和难度。
     利用开发的分析程序对尿塔进行了详细的有限元分析,并与实验结果进行了对比。结果表明,数值模拟和P.G.Pimshtein计算出的应力呈相同的单调下降的变化趋势,数值吻和较好,而Lame公式的计算结果则偏离较大。随着层板间隙的增大,不承受内压的外部层板不断增多,承受内压的内部层板发生破裂的可能性也越来越大。因为间隙的存在,多层板连接的环焊缝部位应力场最为复杂,越靠近焊缝层板两侧拉、压应力越大,从而在层板间隙与深环焊缝相交的部位产生一个尖角,应力集中最易发生的部位是层板间隙顶端的深环焊缝融合线处。分析也表明坡口角的变化对深环焊缝融合线应力场的分布产生一定的影响。因此,层板间隙、焊缝形式等对多层包扎尿塔应力场的分布有很大影响。尿素合成塔应变测试结果也表明,尿素合成塔层板之间存在间隙对尿素合成塔的应力分布具有较大的影响,实测应变值与理论值基本吻合较好。所以,在进行多层包扎尿素合成塔设计时,应考虑间隙的存在所引起的应力集中对尿素合成塔整体强度的影响。
     在对尿塔结构进行线弹性数值模拟时,发现深环焊缝焊趾部位局部应力已经超出材料的屈服强度,因此对尿素合成塔进行了弹塑性有限元分析,结果表明,盲板层和第一层板两侧焊趾处von Mises应力最大,说明在实际操作条件下,内衬层、盲板层及内筒之间间隙对应的深环焊缝焊趾部位可能会发生局部屈服。
     因为尿塔操作温度较高,最后还进行了热-结构耦合分析,结果表明,在操作温度下,温度载荷对尿素合成塔整体应力场的影响不大。
To high pressure vessel, multi-layer wrapped structure as kind of pressurized equipment is common and supposed can’t be damaged. But now this kind of vessel has induced many disastrous accidents. So how to evaluate the wrapped layer vessel’s remaining life became an urgent problem. In order to establish a feasible test to evaluate wrapped layer vessel’s remaining life and detect the defect efficiently, Qingdao University of Science &Technology with other three units apply for the 863 project named test evaluation for wrapped layer vessel’s remaining life. This article mainly worked on wrapped layer vessel’s numerical simulation in aspects of stress field and temperature field to estimate and evaluate wrapped layer vessel’s remaining life.
     When performing numerical simulation, I had to establish lots models, and it was very difficult especially presented a model of contact through manual operation when considering the layer gap. So based on ANSYS, I developed a finite element parametric analysis program in wrapped layer urea converter, and integrated modeling&division grid&load solution and so on various functions into the system. Then I can complete the urea converter finite element numerical analysis quickly through inputting few parameters. All of these reduced the analysis work load and the difficulty greatly.
     I carried out a detailed finite element analysis for urea reactor by using parametric program, and analyzed with the experimental results. The results showed that the calculation stress of numerical simulation and P.G.Pimshtein Formula have the same trend, the data are in good agreement with each other, but the result of Lame Formula has a greater deviation. With the Laminate’s gap increasing, the external laminates number that doesn’t bear pressure is growing and Laminates rupture possibility occurred more easily. Multilayer girth weld connecting is the most complex parts of Stress distribution since the existence of laminate’s gap. The more around the both sides of welding seam, the more pull stress and the compression. Shelf space and deep girth weld parts intersect produce a cusp, the most vulnerable stress parts is the top laminates gap and deep girth weld fusion line. Analysis also shows that change in the Slope angle has a certain impact to the distribution of stress field of deep girth weld fusion line.
     Therefore, the layer gap and the welded joint form and so on have the very tremendous influence to the multi-layer wrapped urea converter stress field's distribution. The urea converter strain test result also indicated that gaps between the urea converter layers have the tremendous influence to the urea converter stress distribution. And there is a basically good agreement between the actual strain value and the theoretical value. So, when carrying on the multi-layer wrapped urea converter design, should consider the stress concentration’s influence which caused by gaps to urea converter overall intensity.
     I found that the Local Stress at deep seam weld toe ring site has already exceeded the yield strength while I was doing structure linear elastic numerical simulation of urea reactor, Therefore I did a elastic-plastic finite element analysis for urea reactor. The results showed that it has the largest von Mises stress at Blind and both sides of the first layer. It can prove that lining layer, blind lamellar gap between the inner core and the corresponding deep seam weld toe Central location may be a limited yield under actual operating pressure.
     Because urea reactor’s operating temperature is high, I got thermal- structure coupling analysis at last. The result showed that temperature load on urea reactor has little affection on stress field under the operating temperature.
引文
[1]范钦珊.压力容器的应力分析与强度设计[M].北京:原子能出版社, 1979: 59-63.
    [2] [日]宗野九十九等.多层容器的特性及应用实例[J].化工炼油机械. 1979(3): 71-76.
    [3]唐本光.多层热套尿素合成塔环焊缝超声波检测[J].压力容器. 1992, 9(3): 36-40.
    [4]吴隽.φ3200 mm氨合成塔多层包扎筒体制造特点[J].化学工业与工程技术. 2005, 26(5): 55-57.
    [5]池树增.国外某厂尿素合成塔爆破事故原因初探[J].中氮肥. 2006(2): 11-1347.
    [6] OSHRC Docket No. 93-0628. SECRETARY OF LABOR,Complainant,v.ARCADIAN CORPORATION,Respondent.[M]. United States of America: Occupational Safety And Health Review Commission, 1997: 10.
    [7]王关宝.尿素合成塔上封头环焊缝大面积缺陷修复,尿素合成塔检修资料汇编[M].广州石油化工总厂, 1995: 9.
    [8] Yang J., Dumont G. A. Classification of mixed acoustic emission signals via neural networks[C]. Orlando, FL, USA: 1992.
    [9] Rauschenplat H. C.多层压力容器的设计与制造[J].石油化工设备. 1986, 15(3): 60-62 .
    [10]邓明智,欧阳勇强,尹谢平.不锈钢内筒多层高压容器焊接工艺[J].焊接. 2000(1): 23-25.
    [11]奚桂明.高压容器环焊缝错开结构的研究及其应用[J].化工机械. 1980(3): 9-14.
    [12]上海锅炉厂.低合金高强度钢多层容器环焊缝缺陷分析[J].化工与通用机械. 1976(2): 18-22.
    [13]陈国理,王瑜.内压消除多层容器层间间隙的试验研究[J].压力容器. 1986, 3(2): 9-11.
    [14]阮鑫,张英,葛爱菊.层板包扎式高压设备焊接工艺[J].石油化工设备. 2005, 34(6): 62-64.
    [15]张立权.整体包扎多层式高压容器的设计与制造-西德克虏伯公司多层高压容器专利综述[J].化工与通用机械. 1982(1): 27-40.
    [16]王志文,李培宁,雷月葆,潘缉梯,李琳.我国压力容器缺陷评定的通用失效评定曲线[C].江苏无锡: 1997.
    [17] Qi D. M. Recommendations on the treatment of residual stresses in PD6493 for the assessment of the significance of weld defects[J]. Engineering Fracture Mechanics. 1992, 41(2): 257-270.
    [18]马学荣.在役压力容器检验的优化方案研究[J].无损检测. 2005, 27(2): 57-61.
    [19]钟群鹏,傅国如,张峥,骆红云.机电装备失效研究的内涵及其科学问题探讨[J].机械工程学报. 2003, 39(10): 13-20.
    [20]Shen Gongtian, Wan Yaoguang, Liu Shifeng, Duan Qingru, Li Bangxian, Zhang Jiajun. Acoustic emission test and safety evaluation of multilayer-wrapped pressure vessels[J]. Wusun Jiance/Nondestructive Testing. 1997, 19(3): 67-70.
    [21] Gorban S. F. Analysis of sound radiation by multilayer cylindrical shells[J]. Prikladnaya Mekhanika. 1992, 28(11): 55-60.
    [22] Nicolas R. W. Developments In Pressure Vessel Technology- 2 Inspection And Testing[M]. Applied Science Published Ltd, 1979: 25.
    [23]陈建存.多层包扎式高压容器的强度计算[J].化工炼油机械通讯. 1978(5): 1-22.
    [24] Pimshtein P. G. Strength of multilayer high pressure vessels[J]. Chemical and Petroleum Engineering. 1968, 4(7): 574-578.
    [25]刘纪炎.层板包扎式高压容器层板间存在的间隙对应力的影响[J].青岛化工学院学报. 1995, 6(2): 184-186.
    [26]黄炎.多层容器的应力分析[J].化工炼油机械通讯. 1980(3): 20-27.
    [27]任德亮王云程.多层包扎式筒体焊接缺陷区的裂纹分析[J].机械工程学报. 2000, 36(4): 109-112.
    [28] Courant R. Variational method for solutions of problems of equilibrium and vibrations[J]. Bullitine of American mathematics society. 1943(49): 1-28.
    [29] Moaveni S.有限元分析--Ansys理论与应用[M].北京:电子工业出版社, 2003: 212-230.
    [30]倪栋,段进,徐久成.通用有限元分析ANSYS7.0实例精解[M].北京:电子工业出版社, 2003: 380-412.
    [31] Terada Yukihiro. Nondestructive examination of circumferential welds in thick wall layered pressure vessels[C]. 1977.
    [32] L. B. Berezovskii A. A. Dmitriev. Ultrasonic inspection of weld seams in multilayer strip-wound pressure vessels[J]. Chemical and Petroleum Engineering. 1966, 2(7): 457-458.
    [33]李志安.压力容器断裂理论与缺陷评定[M].大连:大连理工大学出版社, 1994.
    [34] Barga Roger S., Friesel Mark A., Melton Ronald B. Classification of acoustic emission waveforms for nondestructive evaluation using neural networks[C]. Orlando, FL, USA: 1990.
    [36]董力宏,黄飞.压力容器的事故故障树分析[J].锅炉制造. 2000(4): 48-49.
    [37] Institute American Petroleum. Risk-based Inspection[S]. FIRST EDITION, MAY 2002 ed. 2002.
    [38] Schaffer James. Ashok Saxena . The science and design of engineering materials[M]. McGraw-Hill Companies, 2003: 759-765.
    [39]李润方,龚剑霞.接触问题数值方法及其在机械设计中的应用[M].重庆:重庆大学出版社, 1991: 114-117.
    [40] Theory[M]. Release 5.7 ed. : 14-450.
    [41]刘东学.用有限元法对多层高压容器筒体的弹塑性分析[J].机械强度. 1983(4): 1-13.
    [42] Turner M J Clough R. W. Stiffness and deflection analysis of complex structures[J]. Journal of aeroplane society. 1956(23): 805-824.
    [43] Heegaard J H Curnier A. An augmented lagrangian method for discreet large-slip contact problems[J]. International Journal for Numerical Methods In Engineering. 1993, 36(4): 569~593.
    [44]李润方.关于有摩擦的弹塑性接触问题有限元分析[J].重庆大学学报. 1987(3): 47-53.
    [45]陈如欣,胡忠民.塑性有限元法及其在金属成型中的应用[M].重庆:重庆大学出版社, 1989: 83-102.
    [46]崔俊芝.关于有间隙的弹性接触问题[J].力学学报. 1980(3): 261-268.
    [47]陈万吉.用有限元混合法分析弹性接触问题[J].大连工学院学报. 1979(2): 16-28.
    [48]陈万吉.弹性接触问题有限元分析的一个新方法[J].机械工程学报. 1981, 17(4): 42-54.
    [49] N. D. Tarabasov A. V. Gribanov. Strength calculations of multilayer cylindrical sections of high pressure vessels[J]. Chemical and Petroleum Engineering. 1972, 8(7): 608-611.
    [50] Simo J C Laursen T. A. An augmented lagrangian treatment of contact problems involving friction[J]. Computers and Structures. 1992, 42(1): 97-116.
    [51]李润方,李健,林腾蛟.瞬态耦合热弹塑性接触有限元分析方法[J].计算结构力学及其应用. 1993, 10(3): 254-263.
    [52] Milne I., Ainsworth R. A., Dowling A. R., Stewart A. T. Assessment of the integrity of structures containing defects[J]. International Journal of Pressure Vessels and Piping. 1988, 32(1-4): 3-104.
    [53] Wanga W. Q., Liub C. J., Zhoua S. J. On the probabilistic failure assessment diagram[J]. International Journal of Pressure Vessels and Piping. 1999, 76: 653–662.
    [54] Wu H. S., Zhong Q. P. Assessment for integrity of structures containing defects[J]. International Journal of Pressure Vessels and Piping. 1998, 75: 343-346.
    [55] Takeshi Maruyama,Hiroshi Togawa Seiji Kimura. Analysis of transient thermal stress and thermal fatigue strength on multiwall vessel and nonintegral reinforcing struture[J]. 1976: 67-76.
    [56]刘东学.用有限元法对多层高压容器筒体的弹塑性分析[J].机械强度. 1983(4): 1-13.
    [57]郭乙木,陶明伟,庄茁.线形及非线性有限元及其应用[M].北京:机械工业出版社, 2004: 247~262.
    [58]徐铭宇,林腾蛟,李润方,杜雪松,李水安,杨宇.反应堆压力容器密封系统瞬态热弹塑性接触的高效解法[J].核动力工程. 2005, 26(1): 40-4369.
    [59] Komura I., Hirasawa T., Nagai S., Takabayashi J. -I, Naruse K. Crack detection and sizing technique by ultrasonic and electromagnetic methods[J]. Nuclear Engineering and Design. 2001, 206(2-3): 351-362.
    [60]森脇良一,清水泰洋,井村章夫等.实际运转下的多层容器的热传导[J].化工与通用机械. 1983(7): 51-55.
    [61]张朝晖,范群波,贵大勇. ANSYS8.0热分析教程与实例解析[M].北京:中国铁道出版社, 2005: 89-95.
    [62] Liang Jiang, Miinshiou Huang, Brooks C. R., Liaw P. K., Klarstrom D. L., Seeley R. Acoustic emission detection of fatigue damage[C]. San Diego, CA, USA: 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700