北方草原生态系统NPP、R_h和SOC对气候变化的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然草原作为陆地生态系统的重要组成部分,在吸收和固定大气CO_2过程中发挥着重要作用,但由于超载放牧、管理不当、气候变化、投入不足等原因已造成我国北方草原生态系统发生不同程度退化、生产力下降、生物多样性减少以及生态功能弱化。探究草原生态系统碳收支分量对气候变化的响应反馈对于科学评估其源汇贡献、减缓与适应气候变化等方面具有重要的现实意义。
     本文以高寒草甸、温性草甸草原、温性草原和温性荒漠为研究对象,利用CENTURY模型模拟分析1961-2010年4类草原生态系统净初级生产力(NPP)、异养呼吸(R_h)和土壤有机碳(SOC)对气候变化的动态响应特征,进一步模拟研究考虑和不考虑大气CO_2浓度增加的直接效益(简称“CO_2增益”)2020s(2011-2040年)、2050s(2041-2070年)、2080s(2071-2100年)时段草原生态系统NPP、R_h和SOC对气温和降水量变化的响应反馈,得到以下主要结论:
     (1)1961-2010年草原生态系统NPP、R_h和SOC的动态特征及其相互关系: NPP具有明显的年际波动特征,NPP的平均值表现为高寒草甸>温性草甸草原>温性草原>温性荒漠,其中高寒草甸NPP呈极显著的波动增加趋势,其余变化趋势不显著。 R_h的波动特征与变化趋势与NPP一致,两者存在同步变化关系。总SOC的年际波动较小,且主要由活性SOC和缓性SOC的波动变化引起,其中温性荒漠总SOC呈极显著的下降变化趋势。草原生态系统中NPP、R_h和SOC之间具有内在的相关性,其中R_h与NPP同步变化关系是通过活性SOC作为载体因子关联起来,总SOC是NPP与R_h动态平衡的综合反映。
     (2)不考虑大气CO_2增益作用,A2和B2情景下2020s、2050s、2080s时段草原生态系统NPP、R_h和SOC对气温和降水量变化的响应反馈结果: NPP的平均增幅(较1961-1990年基准时段,下同)分别为3.6%、9.6%、14.8%和1.6%、4.6%、6.5%,其中温性草原增幅最大,其次是温性荒漠,而温性草甸草原和高寒草甸变幅稍小。 R_h的平均增幅分别为3.4%、9.2%、14.3%和1.9%、4.3%、6.7%,其中温性草原增幅最大,其次是温性荒漠,而温性草甸草原和高寒草甸相对变幅稍小。 SOC的平均减幅分别为-1.0%、-2.4%、-4.4%和-1.3%、-2.6%、-4.1%,其中温性草甸草原减幅最大,其次是高寒草甸和温性荒漠,而温性草原减幅较小。
     (3)考虑大气CO_2增益作用,A2和B2情景下2020s、2050s、2080s时段草原生态系统NPP、R_h和SOC对气温和降水量变化的响应反馈结果: NPP的平均增幅分别为19.0%、29.9%、42.4%和7.7%、12.0%、16.0%,较不考虑大气CO_2增益作用显著增加,其中温性草原增幅最大,其次是高寒草甸和温性荒漠,而温性草甸草原增幅稍小,表明大气CO_2增益能显著提高草原生态系统生产力。 R_h的平均增幅分别为15.3%、21.6%、32.6%和5.9%、9.5%、12.9%,较不考虑大气CO_2增益作用显著增加,其中温性草原增幅最大,其次是温性荒漠和温性草甸草原,而高寒草甸增幅较小,表明大气CO_2增益可以刺激增强草原生态系统的呼吸作用。 SOC的平均减幅分别为-5.4%、-8.5%、-11.9%和-2.2%、-3.7%、-5.5%,较不考虑大气CO_2增益作用减幅更大,其中温性草甸草原减幅最大,其次是温性荒漠和温性荒漠,而温性草原减幅稍小,主要原因在于大气CO_2增益作用能刺激增强草原土壤呼吸作用对土壤有机碳产生负反馈效应。
Natural grassland as an important component of terrestrial ecosystem plays an essential role in theprocess of absorption and fixation atmospheric CO_2. However, as the result of overgrazing,misadministration, climate change and lack of investment, grassland ecosystem has been suffering withgrassland degradation, declining productivity, biodiversity reduction and weakening ecological function.Therefore, understanding the carbon balance of grassland ecosystem responding to climate change ispractically meaningful for scientific evaluation on the contributions to the sources or sinks ofatmospheric CO_2, and its adaptation to the climate change.
     Based on the calibrated and validated CENTURY model, dynamic characteristics of net primaryproduction (NPP), heterotrophic respiration (R_h), soil organic carbon (SOC) in four types of grasslandecosystems, namely alpine meadow (AM), temperate meadow steppe (TM), temperate steppe (TS) andtemperate desert (TD), were simulated and analyzed by using observed climatic data (1961-2010) andprojected climatic data (1961-2100) by PRECIS model with or without considering the enhancedatmospheric CO_2concentration under A2and B2scenarios, respectively. These main research resultsand conclusions achieved as follows:
     (1) In the past50years, dynamic characteristics of NPP, R_hand SOC in four types of grasslandecosystems showed that: NPP in four types of grassland ecosystems showed large inter-annualvariation and the coefficient of variation was in sequence by TD>TS>TM>AM. However, the averageof NPP in four types of grassland ecosystems was AM>TM>TS>TD, and the trend of NPP in AMascended significantly. R_hhas the same characteristics of fluctuation and trend as NPP in four types ofgrassland ecosystems. Actually, they were in the synchronous changing relationship. Total SOC infour types of grassland ecosystems showed a little inter-annual variation and the coefficient of variationwas mainly affected by active and slow SOC. The average of total SOC in four types of grasslandecosystems was AM>TS>TM>TD. The trend of total SOC in TD declined significantly because of thedecrease in slow and passive SOC, and that trend of slow or passive SOC in AM, TM and TS alsodeclined significantly. According to the analysis of partial correlation, NPP, R_hand SOC areinterrelated in four types of grassland ecosystems. The synchronous changing relationship between NPPand R_his reached through the crucial factor of active SOC, while the results of dynamic balancebetween NPP and R_hcan be reflected by total SOC.
     (2) Without considering the effects of elevation of atmospheric CO_2concentration, the dynamicfeedback results of four types of grassland ecosystems responding to the changes of temperature andprecipitation in2020s,2050s and2080s under A2and B2scenarios showed that: The averagechanges of NPP in four types of grassland ecosystems in2020s,2050s and2080s compared to baseline(1961-1990) would increase by3.6%,9.6%,14.8%and1.6%,4.6%,6.5%under A2and B2scenarios,respectively. Among them, the increase rate of NPP would be TS>TD>TM>AM. The averagechanges of R_hin four types of grassland ecosystems in2020s,2050s and2080s would increase by3.4%, 9.2%,14.3%and1.9%,4.3%,6.7%under A2and B2scenarios, respectively. Among them, the increaserate of R_hwould be the same as NPP in sequence by TS>TD>TM>AM. However, the averagechanges of SOC in four types of grassland ecosystems in2020s,2050s and2080s would decrease by-1.0%,-2.4%,-4.4%and-1.3%,-2.6%,-4.1%under A2and B2scenarios, respectively. Among them,the decrease rate of SOC would be TM>AM>TD>TS.
     (3) With considering the effects of elevation of atmospheric CO_2concentration, the dynamicfeedback results of four types of grassland ecosystems responding to the changes of temperature andprecipitation in2020s,2050s and2080s under A2and B2scenarios showed that: Changes of NPP in2020s,2050s and2080s would be19.0%,29.9%,42.4%and7.7%,12.0%,16.0%, which wouldsignificantly increase by15.5%,20.3%,27.6%and6.1%,7.3%,9.4%compared to without CO_2enhanced effect under A2and B2scenarios, respectively. Thus, NPP of grassland ecosystems wouldbenefit from atmospheric CO_2enhancement. Changes of R_hin2020s,2050s and2080s would be15.3%,21.6%,32.6%and5.9%,9.5%,12.9%, which would significantly increase by11.9%,12.4%,18.3%and3.9%,5.1%,6.3%compared to without CO_2enhanced effect under A2and B2scenarios,respectively. Thus, heterotrophic respiration of grassland ecosystem would be stimulated by CO_2enhancement. Changes of SOC in2020s,2050s and2080s would be-5.4%,-8.5%,-11.9%and-2.2%,-3.7%,-5.5%, which would significantly decrease by-4.4%,-6.1%,-7.5%and-0.9%,-1.1%,-1.3%compared to without CO_2enhanced effect under A2and B2scenarios, respectively. The main reasonsfor causing more decrement of SOC would be that R_hof grassland ecosystem would be increased underhigher atmospheric CO_2concentration.
引文
1.《第二次气候变化国家评估报告》编写委员会.第二次气候变化国家评估报告[M].北京:科学出版社,2011.
    2.《气候变化国家评估报告》编写委员会.气候变化国家评估报告[M].北京:科学出版社,
    2007.
    3.白永飞.降水量季节分配对克氏针茅草原群落初级生产力的影响[J].植物生态学报,1999,23(2):155-160.
    4.常骏,王忠武,李怡,等.内蒙古三种草地植物群落地上净初级生产力与水热条件的关系[J].内蒙古大学学报(自然科学版),2010,41(6):689-694.
    5.陈全胜,李凌浩,韩兴国,等.水热条件对锡林河流域典型草原退化群落土壤呼吸的影响[J].植物生态学报,2003,27(2):202-209.
    6.陈效逑,李倞.内蒙古草原羊草物候与气象因子的关系[J].生态学报,2009,29(10):5280-5290.
    7.崔骁勇,陈佐忠,陈四清,等.草地土壤呼吸研究进展[J].生态学报,2001,21(2):315-325.
    8.崔骁勇,王艳芬,杜占池.内蒙古典型草原主要植物群落的初步研究[J].草地学报,1999,7(3):245-250.
    9.戴声佩,张勃,王强,等.祁连山草地植被NDVI变化及其对气温降水的旬响应特征[J].资源科学,2010,32(9):1769-1776.
    10.戴雅婷,那日苏,吴洪新,等.我国北方温带草原碳循环研究进展[J].草业科学,2009,26(9):43-48.
    11.段庆伟.家庭牧场草地模拟与生产管理决策研究[硕士学位论文].北京:中国农业科学院,2006.
    12.樊江文,钟华平,梁飚,等.草地生态系统碳储量及其影响因素[J].中国草地,2003,25(6):51-58.
    13.高浩,潘学标,符瑜.气候变化对内蒙古中部草原气候生产潜力的影响[J].中国农业气象,2009,30(3):277-282,288.
    14.高清竹,万运帆,李玉娥,等.藏北高寒草地NPP变化趋势及其对人类活动的响应[J].生态学报,2007,27(11):4612-4619.
    15.高鹏,李震坤.干旱对克氏针茅草原碳循环的影响[J].北方环境,2011,(8):48-56.
    16.耿远波,章申,董云社,等.草原土壤的碳氮含量及其与温室气体能量的相差性[J].地理学报,2001,56(1):44-53.
    17.郭然,王效科,逯非,等.中国草地土壤生态系统固碳现状和潜力[J].生态学杂志,2008,28(2):862-867.
    18.郭连云,赵年武,田辉春.气候变暖对三江源区高寒草地牧草生育期的影响[J].草业科学,2011,28(4):618-625.
    19.郭连云,赵年武,谢卫东.三江源高寒草地针茅牧草黄枯期与气象条件的关系[J].干旱地区农业研究,2012,30(1):253-257.
    20.郭连云,钟存,丁生祥,等.近50年局地气候变化及其对共和盆地贵南县草地退化的影响[J].中国农业气象,2009(2):147-152.
    21.郭然.中国草原生态系统生产力、碳储量与固碳潜力研究[博士学位论文].北京:中国科学院生态环境研究中心,2006.
    22.韩大勇,杨允菲,李建东.1981-2005年松嫩平原羊草草地植被生态对比分析[J].草业学报,2007,16(3):9-14.
    23.韩芳,牛建明,刘朋涛,等.气候变化对内蒙古荒漠草原牧草气候生产力的影响[J].中国草地学报,2010,32(5):57-65.
    24.呼格吉勒图,杨劼,宝音陶格涛,等.不同干扰对典型草原群落物种多样性和生物量的影响[J].草业学报,2009,18(3):6-11.
    25.黄耀,孙文娟,张稳,等.中国草地碳收支研究与展望[J].第四纪研究,2010,30(3):456-465.
    26.黄耀,周广胜,吴金水,等.中国陆地生态系统碳收支模型[M].北京:科学出版社,2008.
    27.李博,雍世鹏,李瑶,等.中国的草原[M].北京:科学出版社,1990.
    28.李东,黄耀,吴琴,等.青藏高原高寒草甸生态系统土壤有机碳动态模拟研究[J].草业学报,2010,19(2):160-168.
    29.李建东,杨允菲.松嫩平原羊草草甸植物的生态及分布区型结构分析[J].草业学报,2002,11(4):10-20.
    30.李凌浩,王其兵,白永飞,等.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究[J].植物生态学报,2000,24(6):680-686.
    31.李琪,薛红喜,王云龙,等.土壤温度和水分对克氏针茅草原生态系统碳通量的影响初探[J].农业环境科学学报,2011,30(3):605-610.
    32.李士美,谢高地,张彩霞.典型草地地上现存生物量资产动态[J].草业学报,2009,18(4):1-8.
    33.李晓兵.气候变化对内蒙古温带草原的影响及其响应[M].北京:科学出版社,2011.
    34.李兴华,武文杰,张存厚,等.气候变化对内蒙古东北部森林草原火灾的影响[J].干旱区资源与环境,2011,25(11):114-119.
    35.李英年,赵新全,曹广民,赵亮,王勤学.海北高寒草甸生态系统定位站气候、植被生产力背景的分析[J].高原气象,2004,23(4):558-567.
    36.李月梅,曹广民,王跃思.开垦对海北高寒草甸土壤有机碳的影响[J].生态学杂志,2006,25(8):911-915.
    37.李月梅,王跃思,曹广民,等.开垦对高寒草甸土壤有机碳影响的初步研究[J].地理科学进展,2005,24(6):59-64.
    38.刘立新,董云社,齐玉春,等.草地生态系统土壤呼吸研究进展[J].地理科学进展,2004,23(4):35-42.
    39.孟庆杰,许艳丽,李春杰,等.不同植被覆盖对黑土微生物功能多样性的影响[J].生态学杂志,2008,27(7):1134-1140.
    40.莫志鸿,冯利平,邹海平,等.水稻模型ORYZA2000在湖南双季稻区的验证与适应性评价[J].生态学报,2011,31(16):4628-4637.
    41.内蒙古自治区土壤普查办公室编.中国内蒙古土种志[M].北京:中国农业出版社,1994.
    42.齐玉春,董云社,杨小红,等.放牧对温带典型草原含碳温室气体CO2、CH4通量特征的影响[J].资源科学,2005,27(2):103-109.
    43.曲国辉,温明章,郭继勋.松嫩平原羊草草甸草原主要植物种群能量积累和分配[J].应用生态学报,2003,14(5):685-689.
    44.戎郁萍,韩建国,王培,等.放牧强度对草地土壤理化性质的影响[J].中国草地,2001,23(4):41-47.
    45.师尚礼主编.草地工作技术指南[M].北京:金盾出版社,2009.
    46.孙鸿烈.中国资源科学百科全书[M].北京:中国大百科全书出版社,2000.
    47.田玉强,欧阳华,宋明华,等.青藏高原样带高寒生态系统土壤有机碳分布及其影响因子[J].浙江大学学报(农业与生命科学版),2007,33(4):443-449.
    48.王百群,苏以荣,吴金水.开垦草地对土壤有机碳库构成与来源的效应[J].核农学报,2007,21(6):618-622.
    49.王丹丹,史学正,于东升,等.东北地区旱地土壤有机碳密度的主控自然因素研究[J].生态环境学报,2009,18(3):1049-1053.
    50.王世航,史学正,赵永存,等.推荐管理措施情景下黄淮海地区旱地土壤固碳潜力模拟研究——以河南省获嘉县为例[J].生态环境学报,2011,20(3):403-408.
    51.王淑平,周广胜,高素华,等.中国东北样带土壤活性有机碳的分布及其对气候变化的响应[J].植物生态学报,2003,27(6):780-785.
    52.王晓宇,赵萌莉,韩国栋,等.开垦天然草地对土壤轻组有机质的影响[J].内蒙古农业大学学报,2009,30(2):122-124.
    53.王玉辉,周广胜.内蒙古羊草草原植物群落地上初级生产力时间动态对降水变化的响应[J].生态学报,2004,24(6):1140-1145.
    54.王长庭,龙瑞军,王启兰,等.放牧扰动下高寒草甸植物多样性、生产力对土壤养分条件变化的响应[J].生态学报,2008,28(9):4144-4152.
    55.肖向明,王义凤,陈佐忠.内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应[J].植物学报,1996,38(1):45-52.
    56.许文强,陈曦,罗格平,等.基于CENTURY模型研究干旱区人工绿洲开发与管理模式变化对土壤碳动态的影响[J].生态学报,2010,30(14):3707-3716.
    57.许吟隆, Richard J.利用ECMWF再分析数据验证PRECIS对中国区域气候的模拟能力[J].中国农业气象,2004,25(1):5-9.
    58.闫巍,张宪洲,石培礼,等.青藏高原高寒草甸生态系统CO2通量及其水分利用效率特征[J].自然资源学报,2006,21(5):756-767.
    59.闫玉春,唐海萍,常瑞英,等.典型草原群落不同围封时间下植被、土壤差异研究[J].干旱区资源与环境,2008,22(2):145-151.
    60.严作良,周华坤,刘伟,等.江河源区草地退化状况及成因[J].中国草地,2003,25(1):73-78.
    61.殷立娟,王萍.中国东北草原植物中的C3和C4光合作用途径[J].生态学报,1997,17(2):113-122.
    62.杨殿林.呼伦贝尔草原群落植物多样性与生产力关系的研究[博士学位论文].内蒙古农业大学,2005.
    63.杨沈斌,申双和,赵小艳,等.气候变化对长江中下游稻区水稻产量的影响[J].作物学报,2010,36(9):1519-1528.
    64.杨泽龙,杜文旭,侯琼,等.内蒙古东部气候变化及其草地生产潜力的区域性分析[J].中国草地学报,2008,30(6):62-66.
    65.姚玉璧,王润元,尹东,等.气候变化对黄河首曲地区草地生态退化的影响[J].资源科学,2007,29(4):127-133.
    66.姚玉璧,张秀云,段永良.亚高山草甸类草地牧草生长发育与气象条件的关系研究[J].草业科学,2009,26(3):43-47.
    67.尹萍,李小刚,李银科,等.开垦年限对亚高山草地土壤有机碳、氮和土壤团聚体稳定性的影响[J].甘肃农业大学学报,2008,43(4):97-102.
    68.于贵瑞主编.全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社,2003.
    69.于贵瑞,王秋凤,朱先进.区域尺度陆地生态系统碳收支评估方法及其不确定性[J].地理科学进展,2011,30(1):103-113.
    70.袁飞,韩兴国,葛剑平,等.内蒙古锡林河流域羊草草原净初级生产力及其对全球气候变化的响应[J].应用生态学报,2008,19(10):2168-2176.
    71.张稳,黄耀,郑循华,等.稻田甲烷排放模型研究—模型灵敏度分析[J].生态学报,2006,26(5):1359-1366.
    72.张永强,唐艳鸿,姜杰.青藏高原草地生态系统土壤有机碳动态特征[J].中国科学(D辑:地球科学),2006,36(12):1140-1147.
    73.钟华平,樊江文,于贵瑞,等.草地生态系统碳蓄积的研究进展[J].草业科学,2005,22(1):4-11.
    74.周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
    75.周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳储量的影响[J].地理学报,2003,58(5):727-734.
    76.周广胜,王玉辉,许振柱,等.中国东北样带碳循环研究进展[J].自然科学进展,2003,13(9):917-922.
    77.周华坤,赵新全,赵亮,等.青藏高原高寒草甸生态系统的恢复能力[J].生态学杂志,2008,27(5):697-704.
    78.周晓梅,郭继勋,赵匠.松嫩平原羊草草地土壤—植物间铁的动态研究[J].应用生态学报,2004,15(12):2250-2254.
    79. Alister K M, Laura A H, C V Cole, et al. CENTURY Soil Organic Matter Model EnvironmentTechnical Documentation Agroecosystem Version4.0(Great Plains System Research UnitTechnical Report No.4). Fort Collins Colorado: United States Department of AgricultureAgricultrual Research Service Great Plains Systems Research Unit,1993.
    80. Atkin O, Edwards E, Loveys B. Response of root respiration to changes in temperature and itsrelevance to global warming[J]. New Phytologist.2000,147:141-154.
    81. Ben B L and Allison T. Temperature-associated increases in the global soil respirationrecord[J]. Nature,2010,464:579-582.
    82. Bouwmann A F and Germon J C. Soils and climate change: Introduction[J]. Biology andFertility of Soils (Special issue),1998,27(3):219-228.
    83. Carrillo Y, Pendall E, Dijkstra F A, et al. Response of soil organic matter pools to elevatedCO2and warming in a semi-arid grassland[J]. Plant Soil,2011,347:339-350.
    84. Chen H, Tian H, Liu M, et al. Effect of land-cover change on terrestrial carbon dynamics inthe southern USA[J]. Journal of Environmental Quality,2006,35:1533-1547.
    85. Chen S L, Fang H J, Zhu T H, et al. Effects of soil erosion and deposition on soil organiccarbon dynamics at a sloping field in Black Soil region, Northeast China[J]. Soil Science&Plant Nutrition,2010,56(4):521-529
    86. Chertov O G and Komarov A S. SOMM a model of soil organic matter dynamics[J].Ecological Modelling,1997,94:177-189.
    87. Chiti T, Papale D, Smith P, et al. Predicting changes in soil organic carbon in mediterraneanand alpine forests during the Kyoto Protocol commitment periods using the CENTURYmodel[J]. Soil Use and Management,2010,26(4):475-484
    88. Coleman K and Jenkinson D S. RothC-26.3-A Model for the turnover of carbon in soil:Model description and windows users guide: November1999issue. Lawes Agricultural TrustHarpenden,1999.
    89. Craine J M and Gelderman T M. Soil moisture controls on temperature sensitivity of soilorganic carbon decomposition for a mesic grassland[J]. Soil Biology and Biochemistry,2010,43(2):455-457.
    90. Davidson E A and Janssens I A. Temperature sensitivity of soil carbon decomposition andfeedbacks to climate change[J]. Nature,2006,440:165-173
    91. Davidson E A, Trumbore S E and Amundson R. Soil wanning and organic carbon content[J].Nature,2000,408(14):789-790.
    92. Davidson E A and Ivan A. Janssens. Temperature sensitivity of soil carbon decomposition andfeedbacks to climate change[J]. Nature,2006,440:165-173.
    93. Derner J D, Beriske D D, Boutton T W. Does grazing mediate soil carbon and nitrogenaccumulation beneath C4, perennial grasses along an environmental gradient?[J]. Plant andSoil,1997,191:147-156.
    94. Desjardins T, Andreux F, Volkoff B, et al. Organic carbon and13C contents in soil and soilsize-fractions, and their changes due to deforestation and pasture installation in easternAmazonia[J]. Geoderma,1994,61:103-118.
    95. Drennan P M and Nobel P S. Responses of CAM species to increasing atmospheric CO2concentrations[J]. Plant, Cell&Environment,2000,23(8):767-781.
    96. Goodin D G, Fay P A and McHugh M M. Climate variability and ecosystem response atlong-term ecological research (LTER) sites[M]. Oxford University Press, New York,2002.
    97. Falloon P, Smith P, Bradley R I, et al. RothC–a dynamic modelling system for estimatingchanges in soil C from mineral soils at1km resolution in the UK[J]. Soil Use Management,2006,22:274-288.
    98. FAO. Grasslands: enabling their potential to contribute to greenhouse gas mitigation.2010.http://www.fao.org/fileadmin/templates/agphome/documents/climate/FinalUNFCCCgrassland.pdf
    99. Farrar J F and Williams M L. The effects of increased atmospheric carbon dioxide andtemperature on carbon partitioning, source-sink relations and respiration[J]. Plant, Cell andEnvironment,1991,14(8):819-830.
    100. Fay P A, Blair J M, Smith M D, et al. Relative effects of precipitation variability and warmingon grassland ecosystem function[J]. Biogeosciences Discussions,2011,8:6859-6900.
    101. Feng Q, Liu W, Zhang Y, et al. Effect of climatic changes and human activity on soil carbon indesertified regions of China[J]. Tellus,2006,58B:117-128.
    102. Frank H, Melissa M, Christian R, et al. Short-term responses of ecosystem carbon fluxes toexperimental soil warming at the Swiss alpine treeline[J]. Biogeochemistry,2010,97(1):7-19.
    103. Friend A D.Terrestrial plant production and climate change[J]. Journal of ExperimentalBotany,2010,61(5):1293-1309.
    104. Houghton R A and Hackler J L. Sources and sinks of carbon from land-use change in China[J],Global Biogeochemical Cycles,2003,17(2):1034-1045.
    105. IPCC. Climate Change2001: The Scientific Basis[M]. New York: Cambridge UniversityPress,2001,183-237.
    106. IPCC. Climate Change2007: The Physical Science Basis. Contribution of Working Group I tothe Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge: Cambridge University Press,2007.
    107. IPCC. Climate change2007: impacts, adaptation and vulnerability[M]. Cambridge:Cambridge University Press,2007.
    108. Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation toclimate and vegetation[J]. Ecological Applications,2000,10:423-436.
    109. Kimball B A. Carbon Dioxide and Agricultural Yield: An Assemblage and Analysis of430Prior Observations[J]. Agronomy Journal,1982,75(5):779-788.
    110. Kisslinga W D, Eiserhardta W L, Bakerb W J, et al. Cenozoic imprints on the phylogeneticstructure of palm species assemblages worldwide[J]. Proceedings of the National Academy ofSciences,2012,109(19):7379-7384.
    111. Klein D A. Seasonal carbon flow and decomposer parameter relationships in a semiaridgrassland soil[J]. Ecology,1977,59:184-192.
    112. Kobayashi K and Salam M U. Comparing simulated and measured values using mean squareddeviation and its components[J]. Agronomy Journal,2000,92(2):345-352.
    113. Koutika J S, Andreux F, Hassink J, et al. Characterization of organic matter in the topsoilsunder rain forest and pastures in the eastern Brazilian Amazon basin[J]. Biology and Fertilityof Soils,1999,29:309-313.
    114. Liebig M A, Doran J W and Gardner J C. Evaluation of a field test kit for measuring selectedsoil quality indicators[J]. Agronomy Journal,1996,88(04):683-686.
    115. Liebig M A, Gross J R, Kronberg S L, et al. Grazing management contributions to net globalwarming potential: a long-term evaluation in the Northern Great Plains[J]. Journal ofEnvironmental Quality,2010,39(3):799-809
    116. Lipson D A, Wilson R F and Oechel W C. Effects of elevated atmospheric CO2on soilmicrobial biomass, activity, and diversity in a Chaparral Ecosystem[J]. Applied andEnvironmental Microbiology,2005,71(12):8573-8580.
    117. Long S P, Ainsworth E A, Rogers A, et al. Rising atmospheric carbon dioxide: plants FACEthe Future[J]. Annual Review of Plant Biology,2004,55:591-628.
    118. Masayuki Y, Yasuhito S, Toshihiro S, et al. Use of the RothC model to estimate the carbonsequestration potential of organic matter application in Japanese arable soils[J]. Soil Science&Plant Nutrition,2010,56(1):168-176.
    119. Mikan C, Schimel J, Doyle A. Temperature controls of microbial respiration in Arctic tundrasoils above and below freezing[J]. Soil Biology and Biochemistry,2002,34:1785-1795.
    120. Moraes J F L, Volkoff B, Cerri C, et al. Soil properties under the Amazon forest and changedue to pasture installation in Rondonia[J]. Brazil. Geoderma,1996,70:63-81.
    121. Nakicenovic N and Swart R (Eds.). Emission scenarios: a special report of theIntergovernmental Panel on Climate Change[M]. Cambridge, UK: Cambridge UniversityPress,2000.
    122. Ni J. Carbon storage in terrestrial ecosystems of China: Estimates at different spatialresolutions and their responses to climate change[J]. Climatic Change,2001,49:339-358.
    123. Obrien S L, Jastrow J D, Grimley D A, et al. Moisture and vegetation controls ondecadal-scale accrual of soil organic carbon and total nitrogen in restored grasslands[J].Global Change Biology,2010,16(9):2573-2588
    124. Owensby C E, Auen L M and Coyne P I. Biomass production in a nitrogen-fertilized, tallgrasspririe ecosystem exposed to ambient and elevated levels of CO2[J]. Plant Soil,1994,165:105-114.
    125. Parton W J, D S Schimel, C V Cole, et al. Analysis of factors controlling soil organic matterlevels in Great Plains grasslands[J]. Soil Science Society of America Journal,1987,51:1173-1179.
    126. Parton W J, Scurlock J M O, Ojima D S, et al. Impact of climate change on grasslandproduction and soil carbon worldwide[J]. Global Change Biology,1995,1:13-22.
    127. Parton W J, Morgan J A, Wang G, et al. Projected ecosystem impact of the Prairie Heating andCO2Enrichment experiment[J]. New Phytologist,2007,174:823-834.
    128. Pineiro G, Paruelo M J and Oesterheld M. Potential long-term impacts of livestockintroduction on carbon and nitrogen cycling in grasslands of Southern South America[J].Global Change Biology,2006,12:1267-1284.
    129. Poorter H, Gifford R M, Kriedemann P E, et al. A Quantitative-Analysis of Dark Respirationand Carbon Content as Factors in the Growth-Response of Plants to Elevated CO2[J].Australian Journal of Botany,1992,40:501-513.
    130. Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature,1982,298(8):156-159.
    131. Post W M, King A M and Wullschleger S D. Soil organic matter models and global estimatesof soil organic carbon[J]. Berlin, Heidelberg: Springer-Verlag,1996,201-224.
    132. Raich J and Potter C. Global patterns of carbon dioxide emissions from soils[J]. GlobalBiogeochemical Cycles.1995,9:23-36.
    133. Raich J W and Schlesinger W H. The global carbon dioxide flux in soil respiration and itsrelationship to vegetation and climate[J]. Tellus,1992,44B:81-89.
    134. Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration in semi-grassand short-grass rangelands[J]. Environmental Pollution,2000,116:457-463.
    135. Richard H M, Edmonds J A, Hibbard K A, et al. The next generation of scenarios for climatechange research and assessment[J]. Nature,2010,463:747-756
    136. Rustad L E, Campbell J L, Marion G M, et al. A meta-analysis of the response of soilrespiration, net nitrogen mineralization, and aboveground plant growth to experimentalecosystem warming[J]. Oecologia,2001,126:543-562.
    137. Idso C D, Robert M C, Singer S F, et al. Climate Change Reconsidered:2011Interim Reportof the Nongovernmental Panel on Climate Change (NIPCC)[J]. Chicago, IL: The HeartlandInstitute,2011.
    138. Sarah L O, Julie D J, David A G, et al. Moisture and vegetation controls on decadal-scaleaccrual of soil organic carbon and total nitrogen in restored grasslands[J]. Global ChangeBiology,2010,16(9):2573-2588.
    139. Sayer J E, Heard S M, Grant K H, et al. Soil carbon release enhanced by increased tropicalforest litterfall[J]. Nature Climate Change,2011,1(6):304-307.
    140. Schimel D S, Braswell B H, Holland E A, et al. Climatic, edaphic, and biotic controls overstorage and turnover of carbon in soils[J]. Global Biogeochemical Cycle,1994,8:279-293.
    141. Schlesinger M E and Mitchell J F B. Climate model simulations of the equilibrium climaticresponse to increased carbon dioxide[J]. Reviews of Geophysics,1987,25(4):760-798.
    142. Schuman G E, Reeder J D, Manley J T, et al. Impact of grazing management on the carbonand nitrogen balance of a mixed-grass rangeland[J]. Ecological Applications,1999,9:65-71.
    143. Schwarz M and Gale J. Growth Response to Salinity at High Levels of Carbon Dioxide[J].Journal of Experimental Botany,1984,35(2):193-196.
    144. Singh J S and Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems[J].The Botanical Review,1977,43(4):449-528.
    145. Smith J, Smith P, Wattenbach M, et al. Projected changes in mineral soil carbon of Europeancroplands and grasslands,1990-2080[J]. Globle Change Biology,2005,11:2141-2152.
    146. Tian Y Q, Xu X L, Song M H, et al. Carbon Sequestration in Two Alpine Soils on the TibetanPlateau[J]. Journal of Integrative Plant Biology,2009,51(9):900-905
    147. Tornquist C G, Gassman P W, Mielniczuk J, et al. Spatially explicit simulations of soil Cdynamics in Southern Brazil: Integrating century and GIS with i_Century[J]. Geoderma,2009,150:404-414.
    148. Wang Z P, Han X G and Li L H. Effects of grassland conversion to croplands on soil organiccarbon in the temperate Inner Mongolia[J]. Journal of Environmental Management,2008,86(3):529-534.
    149. Wilby R L, Dawson C W, Barrow E M. SDSM-a decision support tool for the assessment ofregional climate change impacts[J]. Environmental Modelling and Software,2002,17(2):145-157.
    150. Wittmer M H O M, Auerswald K, Yongfei B, et al. Changes in the abundance of C3/C4species of Inner Mongolia grassland: evidence from isotopic composition of soil andvegetation[J]. Global Change Biology,2010,16(2):605-616
    151. Xie Z B, Zhu J G, Liu G, et al. Soil organic carbon stocks in China and changes from1980s to2000s[J]. Global Change Biology,2007,13(9):1989-2007
    152. Xu X L, Liu W and Kiely G. Modeling the change in soil organic carbon of grassland inresponse to climate change: Effects of measured versus modelled carbon pools for initializingthe Rothamsted Carbon model[J]. Agriculture, Ecosystems&Environment,2011,140:372-381
    153. Yang Y H, Fang J Y, Tang Y H, et al. Storage, patterns and controls of soil organic carbon inthe Tibetan grasslands[J]. Global Change Biology,2008,14(7):1592-1599
    154. Yin C J and Huang D H. A model of litter decomposition and accumulation in grasslandecosystems[J]. Ecological Modelling,1996,84:75-80.
    155. Yi X F, Yang Y Q, Zhang X A, et al. No C4Plants found at the Haibei alpine meadowecosystem research station in Qinghai, China: evidence from stable carbon isotope studies[J].Acta Botanica Sinica,2003,45(11):1291-1296.
    156. Zhang Y J and Zhou G S. Exploring the effects of water on vegetation change and net primaryproductivity along the IGBP Northeast China Transect[J]. Environmental Earth Sciences,2011,62(7):1481-1490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700