手性分子介质光学非线性的三振子耦合模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了国内外对手性分子及手性分子材料的非线性光学研究的现状,指出其发展趋势和应用前景,重申了用非线性光学方法研究手性的意义。用经典模型方法研究手性分子的非线性光学效应,具有物理图像清晰、与实际分子构型联系紧密等优点,因此目前仍是表征分子手性的有效方法。
     本论文在已有的手性分子经典模型的基础上,发展了新的手性分子非线性微观模型。首次提出适用于三角锥型手性分子的三振子耦合模型,并在此模型的基础上研究了三角锥型手性分子的极化机制,推导出了三角锥型手性分子的微观极化率,包括线性和二阶非线性极化率(即第一超极化率β)。用此模型计算了NPAN分子的第一超极化率β,将这一结果和已有的实验进行了比较,验证了此模型的正确性。
     研究了分子极化与介质极化的关系,给出了考虑局域场效应和非局域场效应时分子极化率与介质极化率的一般表示式。根据统计平均理论计算给出了薄膜介质极化率与手性分子极化率间的关系式。
     理论描述了手性介质薄膜表面二次谐波产生(SHG)过程,分析了产生二次谐波效应(如二次谐波圆二向色性(SHG-CD),二次谐波旋转色散(SHG-ORD)和二次谐波线性二向色性(SHG-LD)效应)的微观机制。给出了研究表面二次谐波的实验方法。推导出反射和透射方向二次谐波光振幅与入射光振幅、偏振态、入射角等量的关系。首次给出了三角锥型手性分子介质薄膜其反射光中二次谐波强度中s-和p-分量的表达式;同时还给出了反射光中基于三振子耦合模型的表面二次谐波SHG-CD效应中s-和p-偏振的表达式。
     数值模拟了三角锥型手性分子微观参量对分子第一超极化率的影响;作为例子研究NPAN分子的|β_(ijk)~(eee)|谱,由此得到的|β_(ijk)~(eee)|的平均值与实验值非常接近;模拟了分子的微观参量对介质二阶极化率的影响;在给定宏观入射场的情况下,模拟了三角锥型手性分子微观参量对SHG和SHG-CD效应的影响。在给定手性分子微观参量的情况下,模拟了入射光偏振态旋转角对手性介质薄膜表面二次谐波中s-偏振态的影响;模拟了NPAN分子介质的吸收
In this dissertation, the research progress of nonlinear optics in chiral molecules and chiral molecular media is reviewed, the development tendency and potential applications are pointed out, and the importance of studying the chirality by means of nonlinear optical techniques is emphasized. The classical molecular models are very effective to explain the nonlinear optical properties of chiral molecular system. The classical theory can give us clear physical picture and bring us instructive information about the link between the molecular configuration and the nonlinear processes.
     In this dissertation, a new nonlinear microscopic model of chiral molecules, the three-coupled-oscillator models is developed from the well known classical models of chiral molecules for the first time to our knowledge. The model is suitable for chiral molecules with the tripod-like structure. The polarization mechanism of chiral molecule with tripod-like structure is presented by using the new three-coupled-oscillator model, and the microscopic polarizabilities, include the linear and the second-order nonlinear polarizabilities (namely hyperpolarizabilityβ) of chiral molecules with tripod-like structure is deduced. The applicability and validity of this new three-coupled-oscillator model is verified by the calculation results of hyperpolarizabilitiesβin NPAN molecules, which are in good agreement with the experimental results in the literatures. The relation between molecular polarization and medium polarization is
     investigated, and general expression of molecular susceptibilities and medium susceptibilities is obtained taking the local-field effect and the nonlocal-field effects into account, respectively. The relative formula between susceptibilities of thin-film media and hyperpolarizabilities of chiral molecules is deduced from the statistical average theory.
     The surface second harmonic generation (SHG) process of chiral thin-film
引文
1 The Nobel Foundation. The Nobel Prizein Chemistry 2001 [EB/OL]. http://www.nobel.se.
    2 D. A. H. Richard, R. M. Anthony, F. G. John, G. Maria-Helena, L. Nelson, A. Inge, V. B. Roel, and A. Personns. Synthesis, structure and nonlinear optical properties of somechiral chromophores derived from L-proline. Tetrahedron Letters. 2002, 43:8375~8378
    3 J. D. White, R. G. Carter, K. F. Sundemann, and M. Wartmann. Total synthesis of epothilone B, epothilone D, and cis- and trans-9,10-dehydroepothilone D. J. Am. Chem. Soc. 2003, 125(10):3190
    4 R. I. Storer, T. Takemoto, P. S. Jackson, and S. V. Ley. A Total Synthesis of Epothilones Using Solid-Supported Reagents and Scavengers. Angew. Chem. Int. Ed. Engl. 2003, 42:2521
    5 林国强. 手性合成—不对称反应及其应用. 第二版. 科学出版社, 2005: 1~13
    6 G. Blaschke, H. P. Kraft, and H. Markgraf. Optical resolution of thalidomide and other glutarimide derivatives. Chem.Ber. 1980,113:2318
    7 A. Abbotto, L. Beverina, G. Chirico, A. Facchetti, P. Ferruti, and G. A. Pagani. Design and synthesis of new functional polymers for nonlinear optical applications. Synthetic Metals. 2003, 139: 629~632.
    8 I. K. Oieg. Asymmetric synthesis of hydroxyphosphonates. Tetrahedron: Asymmetry. 2005, 16: 3295~3340.
    9 H. S. Wang, R. C. Zhang, S. L. Zhao, L. D. Tang, and Y. M. Pan. Synthesis and application of dehydroabietylisothiocyante as a new chiral derivatizing agent for the enantiomeric separation of chiral compounds by capillary electrophoretic. Analytica Chimica Acta. 2006, 560: 64~68
    10 封继康. 非线性光学材料的分子设计研究. 化学学报. 2005, 63(14):1245~1256
    11 吴爱玲,赵显,关大任,易希璋. 取代苯体系的二姐非线性光学性质:动力学李代数方法. 2005, 21(11): 1319~1323
    12 E. W. Meijer, E. E. Having, and G. L. Rikken. Second-Harmonic Generation in Centrosymmetric Crystals of Chiral Molecules. Phy. Rev. Lett. 1990, 65(1):37~39
    13 M. Kauranen, T. Verbiest, J. J. Maki, and A. Personns. Second-harmonic generation from chiral surfaces. J. Chem. Phys. 1994, 101(9): 8193~8199
    14 S. Sioncke, S. V. Elshocht, T. Verbiest, and A. Personns. Optical activity effects in second-harmonic generation from anisotropic chiral thin films. J. Chem. Phys. 2000, 113(17): 7578~7581
    15 M. Kauranen, S. V. Elshocht, T. Verbiest, and A. Personns. Tensor analysis of the second-order nonlinear optical susceptibility of chiral anisotropic thin films. J. Chem. Phys. 2000, 112(3): 1497~1502
    16 D. Daly, K. Sreekumar, and K. P. Swapan. Designing effective nonlinear optical (NLO) materials with chiral substituents. Synthetic Metals. 2005,155: 384~388
    17 A. B. Harris, R. D. Kamine, and T. C. Lubensky. Molecular Chirality and Chiral Parameters. Rev. Mod. Phys. 1999, 71(5):1745~1757
    18 F. Hache, H. Mesnil, and M. C. Schanne-Klein. Nonlinear circular dichroism in a liquid of chiral molecules: A theoretical investigation. Phys. Rev. B. 1999, 60(9): 6405~6411
    19 S. Sioncke, S. V. Elshocht, M. Kaurenen, K. E. S. Phillios, T. J. Katz, and A. Persoons. Circular-difference effects in second-harmonic generation from thin films. Synthetic Metals. 2001, 124: 191~193
    20 J. S. Garth. Structural origins of circular dichroism in surface second harmonic generation. J. Chem. Phys. 2002, 117(7): 3398-3410
    21 X. Li, C. F. Li, J. Q. Li, and Y. D. Zheng. Surface second-harmonic generation circular-difference in helix Molecular films. Chin. Phys. Lett.2001, 18(3): 382~384
    22 叶秀林.立体化学[M]. 北京: 北京大学出版社. 1999: 3~4.
    23 S. F. Mason. Molecular Optical Activity and the Chiral Discriminations. Cambridge University Press. 1982, 1~49
    24 L. D. Barron. Molecular Light Scattering and Optical Activity. Cambridge University Press. 1982:1~27; 241~291; 309~356
    25 E. U. Condon. Theories of Optical Rotatory Power. Rev. Mod. Phys. 1937, 9: 432~457
    26 P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich. Generation of Optical Harmonics. Phys. Rev. Lett. 1961, 7:118~121
    27 J. A. Giordmaine. Nonlinear Optical Properties of Liquids. Phys Rev. A. 1965, 138(6A): 1599~1606
    28 D. Barron. Methyl Group as a Probe of Chirality in Raman Optical Activity. Nature. 1975, 255: 458~460
    29 D. L. Jaggard, A. R. Mickelson, and C. H. Papas. On Electromagnetic Waves in Chiral Media. Appl. Phys. 1979, 18: 211~216
    30 Y. T. Lam and T. Thiunamachandran. Direct Current-Induced Second Harmonic Generation by Chiral Molecules. J. Chem. Phys. 1982, 77(7): 3810~3814
    31 G. Wagnière. Optical Activity of Higher Order in a Medium of Randomly Oriented Molecules. J. Chem. Phys. 1982, 76(6): 2786~2792
    32 M. P. Silverman. Reflection and Refraction at the Surface of a Chiral Medium: Comparison of Gyrotropic Constitutive Relations Invariant or Noninvariant under a Duality Transformation. J. Opt. Soc. Am. A. 1986, 3(6): 830~837
    33 S. Bassiri, C. H. Papas, and N. Engheta. Electromagnetic Wave Propagation through a Dielectric-Chiral Interface and through a Chiral Slab. J. Opt. Soc. Am. A. 1988, 5: 1450~1459
    34 A. Lakhtakia, V. V. Varadan, and V. K. Varadan. What Happens to PlaneWaves at the Planar Interfaces of Mirror-Conjugated Chiral Media. J. Opt. Soc. Am. A. 1989, 6(1): 23~26
    35 N. Engheta and P. Pelet. Surface Waves in Chiral Layers. Opt. Lett. 1991, 16(10): 723~725
    36 D. L. Jaggard and X. Sun. Theory of Chiral Multilayers. J. Opt. Soc. Am. A. 1992, 9(5): 804~812
    37 J. Badoz and M. P. Silverman. Differential Reflection of Circular Polarized Light from a Naturally Optical Active Medium. Proc. SPIE. 1992, 1746: 247~258
    38 T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks. Circular dichroism spectroscopy at interfaces: A Surface second harmonic generation. J. Phys. Chem. 1993, 97(3): 1383~1388
    39 M. Kauranen, T. Verbiest and A. Persoons. Second-order nonlinear optical signatures of surface chirality. J. Modern Opt. 1998, 45(2): 403~423
    40 M. C. Schanne-Klein, T. Boulesteix, F. Hache, M. Alexandre, G. Lemerier, and C. Andrand. Strong chiroptical effects in surface second harmonic generation obtained for molecules exhibiting excitonic coupling chirality. Chemical Physics Letters. 2002, 362(13): 103~108
    41 M. C. Schanne-Klein, H. Mesnil, F. Hache, T. Brotin, M. Alexandre, G. Lemerier, and C. Andrand. Application of microscopic models of chirality to second harmonic reflection. Synthetic Metals. 2002, 127 : 63~66
    42 P. Dmitry, S. Jason, B. Lukasz, and H. S. Edward. Stable all-optical limiting in nonlinear periodic structures. I. Analysis J. Opt. Soc. Am. B. 2002, 19(1): 43~53
    43 P. Tran. All-optical switching with a nonlinear chiral photonic bandgap structure. J. Opt. Soc. Am. B. 1999, 16: 70~73
    44 L. Gilles and P. Tran. Optical switching in nonlinear chiral distributed Bragg reflectors with defect layers. J. Opt. Soc. Am. B. 2002, 19(4): 630~639.
    45 Jaap J. D. de Jong, Linda N. Lucas, Richard M. Kellogg, Jan H. Van Esch, and Ben L. Ferihga. Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality. Science. 2004, 304(9): 278~281
    46 J. Q. Li, S. Li, X. O. Wang, Y. D. Zheng, and C. F. Li. Self-Induced Optical Rotation of Solitons in a Chiral Fibre. Chinese Physics Letters. 2004, 21 (4): 675~678
    47 R. W. Boyd. Nonlinear Optics. San Diego: Academic Press, 1992, Chap.1
    48 N. Bloembergen. Nonlinear Optics. Benjamin, N. Y. 1965: 85
    49 E. S. Erik and L. Akhlesh. Theory of second-harmonic-generated radiation from chiral sculptured thin films for bio-sensing. Optics Communications. 2003, 216: 139~150
    50 Y. D. Zheng, J. Q. Li, and C. F. Li. Influence of light polarization states on sum-frequency generzation in chiral medium with two-coupled-oscillator model. Chin. Phys. Lett. 2002, 19(6): 791~794
    51 M. A. Belkin, Y. R. Shen, and C. Flytzanis. Coupled-oscillator model for nonlinear optical activity. Chemical Physics Letters. 2002, 363:479~485
    52 Fischer Peer, D. S. Wiersma, R. Beno?t C. Righini, and A. D. Buckingham. Three-Wave Mixing in Chiral Liquids. Phys. Rev. Lett. 2000, 85(20): 4253~4256
    53 J. D. Byers, H. I. Yee, and J. M. Hicks. A Second Harmonic Generation Analog of Optical Rotatory Dispersion for the Study of Chiral Monolayers. J. Chem. Phys. 1994, 101(7): 6233~6241
    54 J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks. Second-harmonic Generation Circular-dichroism Spectroscopy from Chiral Monolayers. Phys. Rev. B. 1994, 49(20): 14643~14647
    55 J. M. Hicks and T. Petralli-Mallow. Nonlinear Optical of Chiral Surface Systems. Appl. Phys. B. 1999, 68:589~593
    56 M. A. Belkin, Y. R. Shen, and C. Flytzanis. Coupled-oscillator model for nonlinear optical activity. Chemical Physics Letters. 2002, 363: 479~482
    57 F. Hache, M. C. Schanne-Klein, H. Mesnil, M. Alexandre, G. Lemercier, and C. Andraud. Nonlinear optical activity in chiral molecules: surface second harmonic generation and nonlinear circular dichroism. C. R. Physique. 2002, 3: 429~437
    58 S. Sioncke, T. Verbiest, and A. Persoons. Magnetic-dipole susceptibilities in electric-field induced second-harmonic generation. Optical Materials. 2002, 21: 7~10
    59 H. Mesnil. and F. Hache. Experimental Evidence of Third-Order Nonlinear Dichroism in a Liquid of Chiral Molecules. Phys. Rev. Lett. 2000, 85(20): 4257~4260
    60 H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. ndraud. Experimental observation of nonlinear circular dichroism in a pump-probe experiment. Chem. Phys. Lett. 2001, 338: 269~276
    61 M.Kaurenen and A. Persoons. Surface Second-order Generation from Chiral Materials. Phys. Rev. B. 1995, 51(3): 1425~1434
    62 M. Kaurenen, J. J. Maki, and A. Persoons. Determination of Second-order Susceptibility of Chiral Surface. Proc. SPIE. 1995, 2527: 328~336
    63 M. Kaurenen, T. Verbiest, S. E. W. Meijier, E. E. Havinga, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons. Chiral Effects in the Second-Order Optical Nonlinearity of a Poly(isocyanide) Monolayer. Adv. Mater. 1995, 7(7): 461~644
    64 S. Van Elshocht, T. Verbiest, M. Kauranen, L. Ma, H. Chen, K. Y. Musick, L. Pu, and A. Persoons. Chiral 1,1’-binaphthyl-based helical polymers as nonlinear optical materials. J. Chem. Phys. 1999, 20(8): 315~320
    65 T. Verbiest, M. Kaurenen, and A. Persoons. Second-order Nonlinear Optical Properties of Chiral Thin Films. J. Mater. Chem. 1999, 9(9): 2005~2012
    66 S. Van Elshocht, B. Busson, M. Kaurenen, J. Snauwaert, L. Hellemans, A. Persoons, C. Nuckolls, K. E. S. Phillips, and T. J. Katz. Nonlinear Optical Study of Helicenebisquinones. Synthetic Metals. 2000, 115:201~205
    67 B. Busson, M. Kaurenen, C. Nuckolls, T. J. Katz, and A. Persoons. Quasi-phase-matching in Chiral Materials. Phys. Rev. Lett. 2000, 84(1):79~82
    68 A. P. Shkurinov, A. V. Dubrovskii, and N. I. Koroteev. Second Harmonic Generation in an Optically Active Liquid: Experimental Observation of a Fourth-Order Optical Nonlinearity Due to Molecular Chirality. Phys. Rev. Lett. 1993, 70(8):1085~1088
    69 N. I. Koroteev, V. A. Makarov, and S. N. Volkov. Second Harmonic Generation by Reflection of a Two-Dimensional Laser Beam from the Surface of a Chiral Medium. Opt. Comm. 1997, 138:113~117
    70 N. I. Koroteev, V. A. Makarov, and S. N. Volkov. Sum-Frequency Generation in the Bulk of an Isotropic Gyrotropic Medium with Two Collinear Pump Beams. Laser Physics. 1999, 9(3),655~664
    71 N. I. Koroteev, V. A. Makarov, and S. N. Volkov. Second-Harmonic Generation in the Bulk of a Chiral Liquid by a Focused Laser Beam. Opt. Comm. 1998, 157:111~114
    72 N. I. Koroteev, V. A. Makarov, and S. N. Volkov. Second-Harmonic Generation by a Gaussian Beam on a Fourth-order Optical Nonlinearity in the Interior of an Isotropic and Gyrotropic. Quantum Electronics. 1998, 25(9): 799~803
    73 V. Ostroverkhov, O. Ostroverkhova, R. G. Pestchek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S. X. Wang, and L. C. Chien. Optimization of the Molecular Hyperpolarizability for Second Harmonic Generation in Chiral Media. Chem. Phys. 2000, 257: 263~274
    74 P. Fischer and A. D. Buckingham. Surface Second-Order Nonlinear Optical Activity. J. Opt. Soc. Am. B. 1998, 15(12):2951~2956
    75 T. M.Ⅱ′inova, N. I. Koroteev, and N. O. Urakova. Optical Rectification and Electrooptical and Photogalvanic Effect: Noncollinear Interaction of Wave in an Isotropic Noncentrosymmetric Medium. Laser. Phys. 1996, 6(6): 1018~1033
    76 R. Zawodny, S. Wo?niak, and G. Wagnière. On Optical Rectification in Chiral Liquids near Optical Resonance. Opt. Comm. 1996, 130: 163~171
    77 郑仰东,李俊庆,李淳飞. 双振子模型手性分子介质的二次谐波理论. 物理学报. 2003, 52(2): 372~376
    78 郑仰东,李俊庆,李淳飞. 耦合双振子模型手性分子的微观参量对和频过程的影响. 物理学报. 2002, 51(6): 1279~1285
    79 H. Mesnil, M. C. Schanne-Klein, and F. Hache. Wavelength dependence of nonlinear circular dichroism in a chiral ruthenium-tris(bipyridyl) solution. Phys. Rev. A. 2002, 66: 013802-1~013802-9
    80 S. H. Han, N. Ji, M. A. Belkin, and Y. R. Shen. Sum-frequency spectroscopy of electronic resonances on a chiral surface monolayer of bi-naphthol. Phys. Rev. B. 2002, 66: 165415-1~165415-6
    81 L. Rodríguez and C. Simos. Picosecond measurement of the nonlinear refractive index of new salts of carboxylate anions with chiral ammonium cations. Optical Materials. 2004, 27 641~646
    82 F. Hache, H. Mesnil, and M. C. Schanne-Klein. Application of classical models of chirality to surface second harmonic generation. J. Chem. Phys. 2001, 115: 6707~6715
    83 R. D. A. Hudson, A. R. Manning, J. F. Gallagher, M. H. Garcia, N. Lopes, I. Asselberghs, R. V. Boxel, and A. Persoons. Synthesis, structure and nonlinear optical properties of some chiral chromophores derived from L-proline. Tetrahedron Letters. 2002, 46(11): 8375~8378
    84 A. Abbotto, L. Beverina, G. Chirico, A. Facchetti, P. Ferruti, and G. A. Pagani. Design and synthesis of new functional polymers for nonlinear optical applications. Synthetic Metals. 2003, 139: 629~632
    85 G. Koeckelberghs, S. Sioncke, T. Verbiest, A. Persoons, and C. Samyn. Synthesis and properties of chiral helical chromophore-functionalised polybinaphthalenes for second-order nonlinear optical applications. Polymer. 2003, 44: 3785~3794
    86 Shang-Shing P. Chou and Chiung-Yi Yu. Synthesis and second-order optical nonlinearities of chiral nonracemic “Y-shaped” chromophores. Synthetic Metals. 2004, 142: 259~262
    87 M. Giffarda, N. Merciera, G. Mabon, X. N. Phu, M. Sylla, P. Delhaès, H. Soscún, O. Castellano, J. Hernández, L. Rodríguez, A. Marcano, and V. Yartsev. Chiral salts for nonlinear optics: Prospects and achievements. Microelectronics Journal. 2005, 36: 933~938
    88 J. J. Maki and A. Persoons. One-electron second-order optical activity of a helix. J. Chem. Phys. 1996, 104(23): 9340~9348
    89 P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht. Coherent Optical Mixing in Optically Active Liquids. Phys. Rev. Lett. 1966, 16(18):762~794
    90 M. Kaurenen, J. J. Maki, T. Verbiest, S. V. Elshocht, and A. Persoons. Quantitative Determination of Electric and Magnetic Second-order Susceptibility Tensors. Phys. Rev. B. 1997, 55(4): R1985~R1988
    91 N. I. Koroteev. BioCARS—A Novel Nonlinear Optical Technique to Study Vibrational Spectra of Chiral Biological Molecules in Solution. Biospectroscopy. 1995, 1: 341~350
    92 H. Mesnil and F. Hache. Experimental evidence of Third-Order Nonlinear Dichroism in a Liquid of Chiral Molecules. Phys. Rev. Lett. 2000, 85(20): 4257~4260
    93 Y. P. Svirko and N. I. Zheludev. Polarization of Light in Nonlinear Optics. Wiley, New York, 1998: 21~47
    94 李俊庆,李淳飞,辛丽,刘树田,塔. 米. 伊丽依诺娃,尼. 伊. 科罗迪耶夫. 非导电型各向同性手性介质中非线性旋光的宏观理论. 物理学报. 1999, 48(6): 1052~1057
    95 李俊庆,李淳飞,辛丽,刘树田,塔. 米. 伊丽依诺娃,尼. 伊. 科罗迪耶夫. 手性介质中的自诱导非线性旋光. 光学学报. 2000, 20(6): 762~767
    96 李俊庆,辛丽,张学如,刘树田,李淳飞. 用 Z-扫描技术研究手性介质的圆双折射. 中国激光. 2000, A 27(7): 606~610
    97 T. Verbiest, S. Van Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. J. Katz, and A. Persoons. Strong enhancement of nonlinear optical properties through supramolecular chirality. Science. 1998, 282(30): 913~915
    98 V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, and K. D. Singer. Prospects for chiral nonlinear optical media. IEEE Journal of selected topics in quantum electronics. 2001, 7: 781~801
    99 T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. persoons. Second-order nonlinear optical materials: recent advances in chromophore design. J. Mater. Chem. 1997, 7(11): 2175~2181
    100 A. R. Bungay, Yu P. Svirko, and N. I. Zheludev. Experimental Observation of Specular Optical Activity. Phys. Rev. Lett. 1993, 70(20): 3039~3042
    101 N. P. M. Huck, W. F. Jager, B. Lange, and B. L. Feringa. Dynamic Control and Amplification of Molecular Chirality by Circular Polarized Light. Science. 1996, 273(5282): 1686~1688
    102 W. J. Lovgh and I. Wainer. Chirality in natural and applied science. Boca Raton: CRC Press/Blackwell Pub. 2002: 87~107
    103 E. W. Meijer, E. E. Havinga, and G. L. J. A. Rikken. Second-harmonic generation in centrosymmetric crystals of chiral molecules. Phys. Rev. Lett. 1990, 65: 37~41
    104 M. Barzoukas, D. Josse, P. Fremaux, and J. Zyss. Quadratic nonlinear properties of N-(4-nitrophenyl)-L-prolinol and of a newly engineered molecular compound N-(4-nitrophenyl)-N-methylaminoacetonitrile: a comparative study. J. Opt. Soc. Am. B. 1987, 4(6): 977~986
    105 Janice M Hick. Chirality physical chemistry. Washington D.C. American. 2002: 2~13; 50~63
    106 M. A. Jalil, S. Fujinami, T. Honjo, and H. Nishikawa. A new tripod PPN bridging ligand and its copper, silver and palladium complexes: syntheses, characterizations and X-ray structures. Polyhedron. 2001, 20: 1071~1078
    107 M. Lecouvey, I. Mallard, T. Bailly, R. Burgada, and Y. Leroux. A mild and efficient one-pot synthesis of 1-hydroxymethylene-1,1-bisphosphonic acids. Preparation of new tripod ligands. Tetrahedron Letters. 2001, 42: 8475~8478
    108 X. B. Deng and C. Z. Cai. Synthesis of tripod-shaped oligo(phenylene)s with multiple ethenyl groups at the bases for chemisorption on hydrogen-terminated silicon surfaces. Tetrahedron Letters. 2003, 44: 815~817
    109 Qian Wei and Elena Galoppini. Tripodal Ru(II) complexes with conjugated and non-conjugated rigid-rod bridges for semiconductor nanoparticles sensitization. Tetrahedron. 2004, 60: 8497~8508
    110 P. Mogilevsky. Preparation of thin ceramic monofilaments for characterization by TEM. Ultramicroscopy. 2002, 92: 159~164
    111 赵小菁,阮文娟,张炎,王树军,南晶,朱志昂. 手性锌卟啉对咪唑类客体的分子识别及圆二色光谱的研究. 化学学报. 2002, 60(12): 2178~2184
    112 I. Ratera, D. Ruiz-Molina, C. Sporer, S. Marcen, S. Montant, J. F. Létard, E. Freysz, C. Rovira, and Veciana. Nonlinear optical properties of open-shell polychlorotriphenylmethyl radicals. J. Polyhedron. 2003, 22: 1851~1856.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700