1.帕金森病磁共振成像研究 2.术前语言功能磁共振成像技术在神经外科的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的和意义
     1.评估磁敏感加权成像技术在测量帕金森病脑部铁含量的可行性;
     2.探索脑部铁含量与帕金森病病情之间的关系。
     材料与方法
     1.受试者一般资料采集40例帕金森病患者和26例健康对照的脑部磁敏感加权成像数据。采用SPIN软件对相位像进行分析,获得帕金森病组和健康对照组的红核、黑质、尾状核、苍白球、壳核、丘脑和额叶白质相位改变数据,作为这些部位的铁含量值。在两组之间进行比较,并探索帕金森病患者这些感兴趣区铁含量与临床病情之间的相关性。
     2. MRI扫描方法所有MRI数据均采集于配置有八通道相控阵线圈的Siemens Trio 3.0T磁共振成像系统(Siemens Medical Systems, Erlangen, Germany)。扫描时,受试者头部采用泡沫垫固定于头线圈内。所有参与研究的健康志愿者和帕金森病患者均同时采集T1WI、T2WI、T2-weighted FLAIR和磁敏感加权成像图像。经T1WI、T2WI、T2-weighted FLAIR发现异常影像学表现的受试者排除出本研究。
     3.感兴趣区的确定将感兴趣区确定为红核、黑质、尾状核、苍白球、壳核、丘脑和额叶白质。所有的皮层下核团感兴趣区的确定均基于解剖学知识进行,额叶白质感兴趣区为圆形,不低于100个体素。
     4.铁含量的测定方法所有数据的处理均采用SPIN((signal processing in NMR))软件(http://www.mrc.wayne.edu/download.htm)完成。在进行感兴趣区的勾画之前将以感兴趣区为中心的图像部分放大16倍,在放大的磁敏感加权相位像上采用手动的方法勾画感兴趣区。由此得到各感兴趣区内的信号强度值的平均值和标准差。然后,将各个感兴趣区内的强度值转换为弧度值。采用此弧度值作为该感兴趣区的铁含量的推定值。
     5.统计学分析所有统计学分析均采用PASW Statistics 18软件(SPSS Inc., Chicago, Illinois, USA)进行。对于健康对照组不同感兴趣区左右之间铁含量的比较采用配对样本t检验;将健康对照组双侧感兴趣区铁含量左右平均后与以往文献中的数据进行Pearson相关分析;帕金森病受累明显侧与对侧对应感兴趣区之间的比较采用配对样本t检验;帕金森病患者受累明显侧与健康志愿者对应感兴趣区之间的比较采用独立样本t检验;帕金森病患者评价受累明显侧对应黑质区域铁含量分别与病程和UPDRS运动评分值之间的关系采用Pearson相关分析;早发型和晚发型帕金森病之间在黑质部位铁含量的关系和帕金森病不同性别之间黑质部位铁含量差异均采用独立样本t检验。以P<0.05为具有显著统计学差异。
     结果分析
     磁敏感加权成像技术所测得的相位位移值与先前文献中所报道的脑铁含量具有很好的相关性;帕金森病患者受累明显侧对应黑质部位铁含量显著增加,其他感兴趣区铁含量增加不明显。黑质部位铁含量增加量与病程长短之间不存在相关性,但是,与UPDRS运动评分呈显著相关。早发型和晚发型以及不同性别帕金森病黑质部位铁含量不存在显著差异。
     结论
     1.磁敏感加权成像技术所测得的相位位移值与先前文献中所报道的脑铁含量具有很好的相关性,是一种新的可靠的在体研究脑铁代谢异常相关疾病的无创手段。
     2.帕金森病患者受累明显侧对应黑质部位铁含量显著增加,其他感兴趣区铁含量增加不明显。黑质部位铁含量增加量与病程长短之间不存在相关性,但是与UPDRS运动评分呈显著相关。早发型和晚发型以及不同性别帕金森病黑质部位铁含量不存在显著差异。磁敏感加权成像技术能够成功检测帕金森病患者脑部铁含量。帕金森病黑质铁含量与UPDRS运动评分之间相关,表明其可以用来作为一个在体客观判断帕金森病病情的生物学标志。
     研究目的和意义
     采用静息态功能磁共振成像研究帕金森病脑部局部一致性改变及其与相关临床指标之间的相关性。
     材料与方法
     1.受试者一般资料收集于我院就诊的帕金森病患者34例。帕金森病的诊断采用英国脑库标准。采用统一帕金森病评定量表UPDRS对帕金森病患者的病情进行评定。同时,收集34例健康体检者作为健康对照组。
     2.MRI扫描方法所有MRI数据均采集于配置有八通道相控阵线圈的Siemens Trio 3.0T磁共振成像系统。扫描时,被试头部采用泡沫垫固定于头线圈内。所有参与研究的健康志愿者和帕金森病患者均同时采集T1WI、T2WI、FLAIR和静息态脑功能成像数据。经T1WI、T2WI、FLAIR发现异常影像学表现的被试排除出本研究。
     3.数据分析所有数据处理均基于Matlab 7.1 R14 SP3平台的SPM5、静息态功能磁共振数据处理工具包V1.4、Data Processing Assistant for Resting-State fMRI (DPARSF) V1.0等软件进行。
     4.局部一致性分析在REST软件上计算KCC值。因此,从每个人的fMRI数据得到此人的KCC图像,即ReHo图像。
     5.统计学分析首先分别对正常对照组和帕金森病组的ReHo图像分别进行单样本t检验;然后对正常对照组和帕金森病组的ReHo图像进行双样本t检验。以经过多重比较校正后P < 0.05为有统计学差异。多重比较校正采用AFNI的AlphaSim程序,通过Monte Carlo模拟获得。最后,将帕金森病组ReHo图像和临床指标之间进行相关分析,以期发现帕金森病组ReHo和帕金森病病程以及其严重程度之间的相关性。
     结果分析
     1.正常对照组和帕金森病组的单样本t检验
     见在正常对照组和帕金森病组在静息状态下,扣带回后部、楔前叶、前额叶内侧部ReHo值较其他脑区明显增高(P < 0.05,多重比较校正后),说明ReHo能够反映默认神经网络的神经元的自发活动。
     2.正常对照组和帕金森病组ReHo图的双样本t检验
     与正常对照组比较,帕金森病组在以下脑区ReHo值增高:双侧楔前叶、左侧枕中回、左侧距状皮层、右侧中央前回和右侧舌回;在以下脑区ReHo值减低:左侧角回、左侧嗅皮层、右侧额中回、右侧梭状回、右侧距状皮层、右侧小脑、右侧颞中回、右侧海马旁回、左侧辅助运动区和左侧颞下回。
     3.帕金森病组ReHo图与UPDRS之间的相关性
     帕金森病组ReHo值与其严重程度UPDRS在以下区域呈现正相关:右侧梭状回、左侧直回、右侧顶下小叶、右侧海马旁回、右侧额叶眶上皮层、右侧缘上回、左侧额叶下三角区;在以下区域呈现负相关:右侧小脑8区和9区。
     4.帕金森病组ReHo图与病程长短之间的相关性
     帕金森病组ReHo值与其病程长短在以下区域呈现正相关:左侧中央前回、右侧颞下回、左侧小脑脚、左侧额中回、左侧小脑后叶、右侧楔前叶和扣带回后部右侧;在以下区域呈现负相关:左侧脑干和右侧顶下小叶。
     结论
     本研究采用静息态功能磁共振成像手段对帕金森病进行了初步的研究,发现帕金森病患者在静息状态下存在异常的脑部神经活动,这些异常的脑部神经活动可能和帕金森病认知和行为功能障碍相关。对认识帕金森病的脑功能状态和这些改变与其临床病情之间的关系提供了新的思路和手段。
     语言区的病变既要做到全部切除又要同时保留语言功能对神经外科医生来说一直是一种挑战。语言区的准确定位是解决语言功能保留与病变切除程度之间矛盾的最有效的方法。脑功能成像技术是一种无创的脑功能定位方法,将它应用于临床需要解决两方面的问题,首先需要筛选出适用于中国人运动性语言区与感觉性语言区激活的任务模式,其次需要明确语言区功能定位的敏感性与准确性如何。
     研究目的和意义
     评价语言区脑功能成像的敏感性与准确性,了解语言功能区在颅内病变时的变化特点,确定语言激活脑区与病变切除的相对安全距离,并评价语言区功能导航的临床应用价值。
     材料与方法
     本研究选择功能区附近肿瘤患者术前行脑功能成像检查,通过神经导航将结构像、功能像行影像融合定位后,术中在唤醒状态下通过皮层电刺激来判断激活脑区与语言区的吻合度,并分析激活的核心脑区、辅助脑区以及参与脑区在汉语语言中的具体作用;通过比较术前术后脑功能成像特点与语言功能状态的变化,来了解语言区在颅内病变时的变化特点以及语言功能状态与激活脑区变化的关系;初步确定语言激活脑区与病变切除的相对安全距离,并评价语言区功能导航的临床应用价值。
     结果分析
     1.术前语言fMRI结果:本组31例患者共执行47项语言任务,其中20项(42.5%, 20/47)成像效果非常好,激活信号清楚明确;20项(42.5%, 20/47)成像效果清楚; 7项(15%, 7/40)未得到任务相关脑区激活。23项运动性语言任务中,5项(21.7%, 5/23)非常好,13项(56.5%, 13/23)清楚;24项感觉性语言任务中,15项(62.5%, 15/24)非常好,7项(29.2%, 7/24)清楚。
     2.术中电刺激结果:本组神经导航的系统误差小于2mm,病人唤醒时间10- 50min,平均19 min,23例患者在清醒状态完成语言任务。由于开颅骨窗限制或唤醒不理想,共进行了26项激活功能区与皮层电刺激结果的相关性比较,结果如下:12例(46.2%, 12/26)为重叠关系,差距在1cm之内;14例(53.8%, 14/26)为邻近关系,差距在2cm之内;未发现距离大于2cm的矛盾关系者。
     3.手术效果及神经功能障碍:本组31例患者,术前20例(64.5%, 20/31)语言功能正常,11例(35.5%, 11/31)有不同程度语言功能障碍。手术切除程度:全切12例(38.7%, 12/31),次全切除8例(25.8%, 8/31),大部切除11例(35.5%, 11/31)。术后语言功能变化:7例(22.6%, 7/31)较术前好转,19例(61.3%, 19/31)无变化,5例(16.1%, 5/31)出现短暂性运动性失语,未出现永久性语言功能损害者。
     4.皮层切除边界与fMRI功能脑区之间的关系:激活脑区与皮层切除边界距离大于10 mm者均未造成语言功能恶化;5例(16.1%, 5/31)出现运动性失语者,激活脑区与皮层切除的距离均小于10 mm(2例在5-10 mm之间,3例小于5mm),手术后即出现失语,在1周左右语言功能基本恢复正常,未遗留永久语言功能损害。
     结论
     1.脑部语言功能区病变对fMRI结果影响较小;无论是在1.5T还是3.0T的磁共振扫描仪上,术前语言功能区成像均具有较高的成功率;对功能区附近病变语言脑功能成像;术前语言功能区成像与术中电刺激具有良好的一致性,能够有效的降低语言区附近病变术后语言功能损害的发生率。
     2.fMRI导航条件下,若皮层激活脑区与皮层切除边界距离大于10 mm者,可以不必实施术中唤醒电刺激;皮层激活脑区与皮层切除边界距离在5~10 mm之间者,应该在术中实施唤醒电刺激;对于皮层激活脑区与皮层切除边界距离小于5mm者,应该在非常谨慎地实施术中唤醒电刺激。但是,此时暂时性的语言功能损害常常无法避免。
Objectives
     1. To evaluate the feasibility of characterizing iron deposition in PD using susceptibility-weighted imaging (SWI).
     2. To investigate the correlation of brain iron accumulation with the clinical status in patients with PD.
     Subjects and Methods
     Forty patients with PD without dementia and 26 age- and sex-matched healthy controls underwent high-resolution susceptibility-weighted magnetic resonance (MR) imaging. The phase shift values of the bilateral red nucleus (RN), substantia nigra (SN), caudate nucleus (CA), globus pallidus (GP), putamen (PU) thalamus (TH) and frontal white matter (FWM) were examined for their relationship with the clinical status.
     Results
     1. Previously published regional iron concentrations vs. we observed SWI phase shift values
     In healthy controls, we observed a positive correlation (r = 0.903, P = 0.005) between SWI phase shift values and previously published regional iron concentrations. (Hallgren and Sourander, 1958) This validates our application of SWI as a viable MRI method for the noninvasive estimation of regional brain iron content.
     2. Hemispheric differences in the healthy controls
     There were no significant hemispheric differences with regards to phase shift values in the healthy human brain.
     3. The most affected vs. the least affected brain side in PD
     The most affected body side of symptoms is assessed with Unified Parkinson's Disease Rating Scale (UPDRS) motor score. The contralateral brain side is referred as“the most affected brain side”; the ipsilateral brain side referred as“the least affected brain side”. The paired-sample t test showed a difference between the controls and the patients in the SN (P = 0.000), but not in the other regions studied.
     4. The most affected brain side in PD vs. the healthy controls
     Independent t-tests showed that there were no significant phase shift value differences in other regions of interest (ROIs) except for the SN (P = 0.001).
     5. The least affect brain side in PD vs. the healthy controls
     Independent t-tests showed that there were no significant phase shift value differences in the regions of interest (ROIs).
     6. Correlations between the phase shift values in the SN of the most affected and least affected brain side in PD and its duration
     No relationship was found between the phase shift values and the disease duration in the SN of the clinically most affected side or the least side (the most affected side, r = 0.142, P = 0.381; the least affected side, r= 0.287, P = 0.073).
     7. Correlations between the phase shift values in the SN of the most affected and least affected brain side in PD and the UPDRS motor score
     Pearson’s correlation analysis showed that there was a positive correlation between the phase shift values in the SN of the clinically most affected and least affected brain side in PD and the UPDRS motor score (the most affected side, r = 0.412, P = 0.008; the least affected side, r= 0.361, P = 0.022).
     8. Difference in the phase shift values of the SN between earlier-onset and later-onset PD
     There were 15 cases of earlier-onset PD (the mean phase shift value in the SN = 0.14401±0.06205) and 25 cases of later-onset PD (the mean phase shift value in the SN = 0.16430±0.04776). No significant difference was detected between earlier- and later-onset PD (P = 0.253).
     Conclusions
     Brain iron concentration can be evaluated by SWI. Also, the brain iron concentration in the SN correlated with UPDRS motor score, indicating that iron concentration can function as an in vivo biomarker to objectively evaluate the status of PD.
     Objectives
     To explore the Regional Homogeneity alterations in patients with Parkinson’s disease and to investigate the correlation between these changes and clinical index. Subjects and Methods
     Thirty-four patients with PD without dementia and 34 healthy controls underwent resting-state functional magnetic resonance (MR) imaging. After the data preprocessing, the Regional Homogeneity alterations were calculated with the DPARSF and REST software package.
     Results
     1. The ReHo maps of the healthy controls and the patients with Parkinson’s disease( one-sample t test)
     The default mode network including the posterior cingulate cortex (PCC)/precuneus, medial prefrontal cortex (MPFC), and bilateral inferior parietal lobe (IPL) exhibited significant higher ReHo than other brain areas, which indicates that the ReHo method could reflect the spontaneous neuronal activity of the default mode network.
     2. Comparison of the ReHos between the healthy controls and the patients with Parkinson’s disease (two-sample t test)
     Compared with the healthy controls, the patients with PD at off state showed significant ReHo increases in the bilateral precuneus, left occipital middle gyrus, left calcarine cortex, right precentral gyrus and right lingual gyrus and significant ReHo decrease in the left angular gyrus, left olfactory cortex, right frontal middle gyrus, right fusiform area, right calcarine, right cerebellum, right temporal middle gyrus and left temporal inferior gyrus, right parahippcampal gyrus and left supplemental motor area.
     3. Correlations between ReHo and UPDRS in patients with PD
     Correlation analysis of ReHo at each voxel in the whole brain against the UPDRS in the patients with PD at off state revealed significantly positive correlation in the right fusiform area,left rectus gurus, right parietal inferior lobe, right parahippocampla gyrus, right frontal superior orbital gyrus, right supramarginal gyrus and right frontal inferior triangular area and revealed significant negative correlation in the right cerebelun 8 and 9 area.
     4. Correlations between ReHo and disease duration in patients with PD
     Correlation analysis of ReHo at each voxel in the whole brain against the disease duration in the patients with PD at off state revealed significantly positive correlation in the left precentral gyrus, right temporal middle gyrus, left cerebellum crus, left frontal middle gyrus, left cerebellum posterior lobe, right precuneus and right cungulum posterior part; and revealed significant negative correlation in the left brainstem and right inferior parietal lobe.
     Conclusions
     The current study demonstrates that neural activity in the resting state is changed in patients with PD. This change is related to the severity and the duration of the disease, which provided new perspective and tool to explore the pathophysiology of the Parkinson’s disease.
     Objective
     1. To evaluate the sensitivity and accuracy of preoperative language cortex functional MRI localization.
     2. To characterize the alteration of language function under the circumstances of intracranial lesion around the language area.
     3. To determine the safety distance between the core activation of language functional region and the lesion during the resection.
     4. To assess the clinical value of functional neuronavigation during the resection of language area around lesions.
     Methods
     Thirty-one patients who had lesions in or around the language cortex were recruited in the study. As the help of neuronavigation we integrated the conventional MRI and fMRI images together and localized the position of the language cortex and lesion. In the course of operation the patients were awaked, the technique of direct cortical stimulation was performed to assess the sensitivity and accuracy of preoperative language cortex functional MRI localization. We compared the results of preoperative and postoperative fMRI in patients, and compared the language status before and after operation.
     Results
     1. The results of each fMRI paradigm in patients: The outcome of each fMRI paradigm was rated by‘very good’,‘fair’and‘unsuccessful’. Forty-seven language tasks were implemented in 31 patients, 20 tasks were rated‘very good’, 20 tasks rated were‘fair’, 4 tasks were rated‘unsuccessful’. In total 23 Broca’s area activations, 5 tasks were rated‘very good’, 13 tasks were rated‘fair’. In total 24 Wernicke’s area activations, 15 tasks were rated‘very good’, 7 tasks were rated‘fair’.
     2. The consistence of fMRI activation area and direct cortical stimulation: The distance between the fMRI core activation and direct cortical stimulation was rated as overlapping (<1cm distance), adjacent (<2cm distance), discrepancy (>2cm distance). We performed 26 cases measurement, 12 cases were rated overlapping, 14 cases were rated adjacent, no cases showed discrepancy.
     3. The outcome of the fMRI neuronavigation assisted operation: Total lesion resection was achieved in 12 cases, subtotal resection in 8 cases, partial resection in 11 cases. Postoperatively the neurologic functions were improved in 7 cases, unchanged in 19 cases, temporary worsen in 5 cases, no persisting deficits.
     4. Correlation between the distance of resection border-to-language cortex and outcome: Resection border more than 10mm from the functional areas is safe. All the patients the neurologic functions were improved or unchanged. Three cases caught the temporary worsen, the distances were less than 10mm, and resumed in a week.
     Conclusions
     1. The influence of the language cortex around lesion on the outcome of the fMRI is limited; the successes rate of preoperative language cortex localization fMRI is high either on 1.5T or 3.0T MRI scanner; the outcome of preoperative language cortex localization fMRI is consistent well with that of intra-operative electrical stimulation, which could effectively decrease the incidence rate of language function damage during the resection the lesion around the language cortex.
     2. Under the circumstances of fMRI neuronavigation, if the distance between the core activation and the lesion is more than 10mm, it is unnecessary to implement intra-operative awaked electrical stimulation; if the distance between the core activation and the lesion is between 5mm and 10mm, intra-operative awaked electrical stimulation should been applied; if the distance between the core activation and the lesion is less than 5mm, intra-operative awaked electrical stimulation should been implemented very cautiously. But temporary language function damage is often unavoidable at this moment.
引文
1. Dexter DT, Wells FR, Agid F, et al. Increased nigral iron content in postmortem parkinsonian brain[J]. Lancet, 1987,2(8569):1219-20.
    2. Chen JC, Hardy PA, Kucharczyk W, et al. MR of human postmortem brain tissue: correlative study between T2 and assays of iron and ferritin in Parkinson and Huntington disease[J]. AJNR Am J Neuroradiol, 1993,14(2):275-81.
    3. Dexter DT, Carayon A, Javoy-Agid F, et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia[J]. Brain, 1991,114 ( Pt 4):1953-75.
    4. Haacke EM, Xu YB, Cheng YN. Susceptibility weighted imaging (SWI)[J]. Z Med Phys, 2006,16(4):237.
    5. Bartzokis G, Cummings JL, Markham CH, et al. MRI evaluation of brain iron in earlier- and later-onset Parkinson's disease and normal subjects[J]. Magn Reson Imaging, 1999,17(2):213-22.
    6. Sohmiya M, Tanaka M, Aihara Y, et al. Structural changes in the midbrain with aging and Parkinson's disease: an MRI study[J]. Neurobiol Aging, 2004,25(4):449-53.
    7. Kosta P, Argyropoulou MI, Markoula S, et al. MRI evaluation of the basal ganglia size and iron content in patients with Parkinson's disease[J]. J Neurol, 2006,253(1):26-32.
    8. Michaeli S, Oz G, Sorce DJ, et al. Assessment of brain iron and neuronal integrity in patients with Parkinson's disease using novel MRI contrasts[J]. Mov Disord, 2007,22(3):334-40.
    9. Bartzokis G, Tishler TA, Lu PH, et al. Brain ferritin iron may influence age- and gender-related risks of neurodegeneration[J]. Neurobiol Aging, 2007,28(3):414-23.
    10. Brar S, Henderson D, Schenck J, et al. Iron accumulation in the substantia nigra of patients with Alzheimer disease and parkinsonism[J]. Arch Neurol, 2009,66(3):371-4.
    11. Martin WR, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status[J]. Neurology, 2008,70(16 Pt 2):1411-7.
    12. Wallis LI, Paley MN, Graham JM, et al. MRI assessment of basal ganglia irondeposition in Parkinson's disease[J]. J Magn Reson Imaging, 2008,28(5):1061-7.
    13. Sitburana O, Ondo WG. Brain magnetic resonance imaging (MRI) in parkinsonian disorders[J]. Parkinsonism Relat Disord, 2009,15(3):165-74.
    14. Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging[J]. Magn Reson Imaging, 2005,23(1):1-25.
    1 Chu J, Wagle-Shukla A, Gunraj C, Lang AE, Chen R. Impaired presynaptic inhibition in the motor cortex in Parkinson disease. Neurology. 2009. 72(9): 842-9.
    2 Esselink RA, de Bie RM, de Haan RJ, et al. Long-term superiority of subthalamic nucleus stimulation over pallidotomy in Parkinson disease. Neurology. 2009. 73(2): 151-3.
    3 Ford B. Parkinson disease: Pain in Parkinson disease: the hidden epidemic. Nat Rev Neurol. 2009. 5(5): 242-3.
    4 Lees AJ, Hardy J, Revesz T. Parkinson's disease. Lancet. 2009. 373(9680): 2055-66.
    5 Youdim MB. Rasagiline in Parkinson's disease. N Engl J Med. 2010. 362(7): 657-8; author reply 658-9.
    6 Ketcham CJ, Hodgson TL, Kennard C, Stelmach GE. Memory-motor transformations are impaired in Parkinson's disease. Exp Brain Res. 2003. 149(1): 30-9.
    7 Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM. Cognitive impairments in early Parkinson's disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci. 2003. 23(15): 6351-6.
    8 Monchi O, Petrides M, Doyon J, Postuma RB, Worsley K, Dagher A. Neural bases of set-shifting deficits in Parkinson's disease. J Neurosci. 2004. 24(3): 702-10.
    9 Moody TD, Bookheimer SY, Vanek Z, Knowlton BJ. An implicit learning task activates medial temporal lobe in patients with Parkinson's disease. Behav Neurosci. 2004. 118(2): 438-42.
    10 Wu T, Hallett M. A functional MRI study of automatic movements in patients with Parkinson's disease. Brain. 2005. 128(Pt 10): 2250-9.
    11 Holroyd S, Wooten GF. Preliminary FMRI evidence of visual system dysfunction in Parkinson's disease patients with visual hallucinations. J Neuropsychiatry Clin Neurosci. 2006. 18(3): 402-4.
    12 Lewis MM, Slagle CG, Smith AB, et al. Task specific influences of Parkinson's disease on the striato-thalamo-cortical and cerebello-thalamo-cortical motor circuitries. Neuroscience. 2007. 147(1): 224-35.
    13 Cameron IG, Watanabe M, Pari G, Munoz DP. Executive impairment in Parkinson'sdisease: Response automaticity and task switching. Neuropsychologia. 2010 .
    14 Leh SE, Petrides M, Strafella AP. The neural circuitry of executive functions in healthy subjects and Parkinson's disease. Neuropsychopharmacology. 2010. 35(1): 70-85.
    15 Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001. 98(2): 676-82.
    1. Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection[J]. N Engl J Med, 2008,358(1):18-27.
    2. Mayer L. Outcome after language mapping for glioma resection[J]. N Engl J Med, 2008,358(16):1750; author reply 1751.
    3. Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation[J]. Brain, 1937,60:389-443.
    4. Bello L, Acerbi F, Giussani C, et al. Intraoperative language localization in multilingual patients with gliomas[J]. Neurosurgery, 2006,59(1):115-25; discussion 115-25.
    5. Xue G, Dong Q, Jin Z, et al. Mapping of verbal working memory in nonfluent Chinese-English bilinguals with functional MRI[J]. Neuroimage, 2004,22(1):1-10.
    6. Roux FE, Ibarrola D, Tremoulet M, et al. Methodological and technical issues for integrating functional magnetic resonance imaging data in a neuronavigational system[J]. Neurosurgery, 2001,49(5):1145-56; discussion 1156-7.
    7. Krishnan R, Raabe A, Hattingen E, et al. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome[J]. Neurosurgery, 2004,55(4):904-14; discusssion 914-5.
    8. Krishnan R, Raabe A, Hattingen E, et al. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome[J]. Neurosurgery, 2004,55(4):904-14; discusssion 914-5.
    1. Gaasch JA, Lockman PR, Geldenhuys WJ, et al. Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells[J]. Neurochem Res, 2007,32(7):1196-208.
    2. Youdim MB. Brain iron deficiency and excess; cognitive impairment and neurodegeneration with involvement of striatum and hippocampus[J]. Neurotox Res, 2008,14(1):45-56.
    3. Ke Y, Qian ZM. Brain iron metabolism: neurobiology and neurochemistry[J]. Prog Neurobiol, 2007,83(3):149-73.
    4. Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging[J]. Magn Reson Imaging, 2005,23(1):1-25.
    5. Thomas M, Jankovic J. Neurodegenerative disease and iron storage in the brain[J]. Curr Opin Neurol, 2004,17(4):437-42.
    6. Gregory A, Polster BJ, Hayflick SJ. Clinical and genetic delineation of neurodegeneration with brain iron accumulation[J]. J Med Genet, 2009,46(2):73-80.
    7. Benarroch EE. Brain iron homeostasis and neurodegenerative disease[J]. Neurology, 2009,72(16):1436-40.
    8. Vymazal J, Urgosik D, Bulte JW. Differentiation between hemosiderin- and ferritin-bound brain iron using nuclear magnetic resonance and magnetic resonance imaging[J]. Cell Mol Biol (Noisy-le-grand), 2000,46(4):835-42.
    9. Connor JR, Snyder BS, Beard JL, et al. Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer's disease[J]. J Neurosci Res, 1992,31(2):327-35.
    10. Bizzi A, Brooks RA, Brunetti A, et al. Role of iron and ferritin in MR imaging of the brain: a study in primates at different field strengths[J]. Radiology, 1990,177(1):59-65.
    11. Gelman BB. Iron in CNS disease[J]. J Neuropathol Exp Neurol, 1995,54(4):477-86.
    12. Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain[J]. J Neurochem, 1958,3(1):41-51.
    13. Hill JM, 3rd SRC. The regional distribution and cellular localization of iron in the rat brain[J]. Neuroscience, 1984,11(3):595-603.
    14. Connor JR, Menzies SL. Cellular management of iron in the brain[J]. J Neurol Sci, 1995,134 Suppl:33-44.
    15. Connor JR, Pavlick G, Karli D, et al. A histochemical study of iron-positive cells in the developing rat brain[J]. J Comp Neurol, 1995,355(1):111-23.
    16. Beard JL, Connor JR, Jones BC. Iron in the brain[J]. Nutr Rev, 1993,51(6):157-70.
    17. Benkovic SA, Connor JR. Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain[J]. J Comp Neurol, 1993,338(1):97-113.
    18. Hill JM, Ruff MR, Weber RJ, et al. Transferrin receptors in rat brain: neuropeptide-like pattern and relationship to iron distribution[J]. Proc Natl Acad Sci U S A, 1985,82(13):4553-7.
    19. Jellinger KA. Pathology of Parkinson's disease. Changes other than the nigrostriatal pathway[J]. Mol Chem Neuropathol, 1991,14(3):153-97.
    20. Jellinger KA. Morphological substrates of mental dysfunction in Lewy body disease: an update[J]. J Neural Transm Suppl, 2000,59:185-212.
    21. Jellinger KA. The morphological basis of mental dysfunction in Parkinson's disease[J]. J Neurol Sci, 2006,248(1-2):167-72.
    22. Halliwell B, Gutteridge JM. Lipid peroxidation in brain homogenates: the role of iron and hydroxyl radicals[J]. J Neurochem, 1997,69(3):1330-1.
    23. Zuccarello M, Anderson DK. Interaction between free radicals and excitatory amino acids in the blood-brain barrier disruption after iron injury in the rat[J]. J Neurotrauma, 1993,10(4):397-403.
    24. Sofic E, Riederer P, Heinsen H, et al. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain[J]. J Neural Transm, 1988,74(3): 199-205.
    25. Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson's disease: evidence supporting it[J]. Ann Neurol, 1992,32(6):804-12.
    26. Youdim MB, Ben-Shachar D, Riederer P. Iron in brain function and dysfunction withemphasis on Parkinson's disease[J]. Eur Neurol, 1991,31 Suppl 1:34-40.
    27. Youdim MB, Ben-Shachar D, Ashkenazi R, et al. Brain iron and dopamine receptor function[J]. Adv Biochem Psychopharmacol, 1983,37:309-21.
    28. Youdim MB. Iron in the brain: implications for Parkinson's and Alzheimer's diseases[J]. Mt Sinai J Med, 1988,55(1):97-101.
    29. Jellinger K, Paulus W, Grundke-Iqbal I, et al. Brain iron and ferritin in Parkinson's and Alzheimer's diseases[J]. J Neural Transm Park Dis Dement Sect, 1990,2(4):327-40.
    1. Lees AJ, Hardy J, Revesz T. Parkinson's disease[J]. Lancet, 2009,373(9680):2055-66.
    2. Burch D, Sheerin F. Parkinson's disease[J]. Lancet, 2005,365(9459):622-7.
    3. Dexter DT, Wells FR, Agid F, et al. Increased nigral iron content in postmortem parkinsonian brain[J]. Lancet, 1987,2(8569):1219-20.
    4. Chen JC, Hardy PA, Kucharczyk W, et al. MR of human postmortem brain tissue: correlative study between T2 and assays of iron and ferritin in Parkinson and Huntington disease[J]. AJNR Am J Neuroradiol, 1993,14(2):275-81.
    5. Dexter DT, Carayon A, Javoy-Agid F, et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia[J]. Brain, 1991,114 ( Pt 4):1953-75.
    6. Bartzokis G, Cummings JL, Markham CH, et al. MRI evaluation of brain iron in earlier- and later-onset Parkinson's disease and normal subjects[J]. Magn Reson Imaging, 1999,17(2):213-22.
    7. Sohmiya M, Tanaka M, Aihara Y, et al. Structural changes in the midbrain with aging and Parkinson's disease: an MRI study[J]. Neurobiol Aging, 2004,25(4):449-53.
    8. Kosta P, Argyropoulou MI, Markoula S, et al. MRI evaluation of the basal ganglia size and iron content in patients with Parkinson's disease[J]. J Neurol, 2006,253(1):26-32.
    9. Michaeli S, Oz G, Sorce DJ, et al. Assessment of brain iron and neuronal integrity in patients with Parkinson's disease using novel MRI contrasts[J]. Mov Disord, 2007,22(3):334-40.
    10. Bartzokis G, Tishler TA, Lu PH, et al. Brain ferritin iron may influence age- and gender-related risks of neurodegeneration[J]. Neurobiol Aging, 2007,28(3):414-23.
    11. Brar S, Henderson D, Schenck J, et al. Iron accumulation in the substantia nigra of patients with Alzheimer disease and parkinsonism[J]. Arch Neurol, 2009,66(3):371-4.
    12. Martin WR, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status[J]. Neurology, 2008,70(16 Pt 2):1411-7.
    13. Wallis LI, Paley MN, Graham JM, et al. MRI assessment of basal ganglia irondeposition in Parkinson's disease[J]. J Magn Reson Imaging, 2008,28(5):1061-7.
    14. Sitburana O, Ondo WG. Brain magnetic resonance imaging (MRI) in parkinsonian disorders[J]. Parkinsonism Relat Disord, 2009,15(3):165-74.
    15. Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging[J]. Magn Reson Imaging, 2005,23(1):1-25.
    16. Ogg RJ, Langston JW, Haacke EM, et al. The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration[J]. Magn Reson Imaging, 1999,17(8):1141-8.
    17. Haacke EM, Xu Y, Cheng YC, et al. Susceptibility weighted imaging (SWI)[J]. Magn Reson Med, 2004,52(3):612-8.
    18. Hughes AJ, Daniel SE, Kilford L, et al. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases[J]. J Neurol Neurosurg Psychiatry, 1992,55(3):181-4.
    19. Fahn S, Elton RL. Unified Parkinson’s Disease Rating Scale. In: Fahn S, Marsden CD, Goldstein M, Calne DB, eds. Recent developments in Parkinson’s disease, vol. 2. Florham Park, NJ: Macmillan Healthcare, 1987;153–163[J] .
    20. Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain[J]. J Neurochem, 1958,3(1):41-51.
    21. Haacke EM, Xu YB, Cheng YN. Susceptibility weighted imaging (SWI)[J]. Z Med Phys, 2006,16(4):237.
    22. Xu X, Wang Q, Zhang M. Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study[J]. Neuroimage, 2008,40(1):35-42.
    23. Oakley AE, Collingwood JF, Dobson J, et al. Individual dopaminergic neurons show raised iron levels in Parkinson disease[J]. Neurology, 2007,68(21):1820-5.
    24. Yantiri F, Andersen JK. The role of iron in Parkinson disease and 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine toxicity[J]. IUBMB Life, 1999,48(2):139-41.
    25. Rouault TA. Iron on the brain[J]. Nat Genet, 2001,28(4):299-300.
    26. Salazar J, Mena N, Hunot S, et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson's disease[J]. Proc Natl Acad Sci U SA, 2008,105(47):18578-83.
    27. Zecca L, Youdim MB, Riederer P, et al. Iron, brain ageing and neurodegenerative disorders[J]. Nat Rev Neurosci, 2004,5(11):863-73.
    28. Jenner P. Oxidative stress in Parkinson's disease[J]. Ann Neurol, 2003,53 Suppl 3:S26-36; discussion S36-8.
    29. Calne DB. The free radical hypothesis in idiopathic parkinsonism: evidence against it[J]. Ann Neurol, 1992,32(6):799-803.
    30. Ke Y, Qian ZM. Iron misregulation in the brain: a primary cause of neurodegenerative disorders[J]. Lancet Neurol, 2003,2(4):246-53.
    31. Qian ZM, Shen X. Brain iron transport and neurodegeneration[J]. Trends Mol Med, 2001,7(3):103-8.
    32. Benarroch EE. Brain iron homeostasis and neurodegenerative disease[J]. Neurology, 2009,72(16):1436-40.
    33. Ke Y, Qian ZM. Brain iron metabolism: neurobiology and neurochemistry[J]. Prog Neurobiol, 2007,83(3):149-73.
    1 Chu J, Wagle-Shukla A, Gunraj C, Lang AE, Chen R. Impaired presynaptic inhibition in the motor cortex in Parkinson disease. Neurology. 2009. 72(9): 842-9.
    2 Esselink RA, de Bie RM, de Haan RJ, et al. Long-term superiority of subthalamic nucleus stimulation over pallidotomy in Parkinson disease. Neurology. 2009. 73(2): 151-3.
    3 Ford B. Parkinson disease: Pain in Parkinson disease: the hidden epidemic. Nat Rev Neurol. 2009. 5(5): 242-3.
    4 Lees AJ, Hardy J, Revesz T. Parkinson's disease. Lancet. 2009. 373(9680): 2055-66.
    5 Youdim MB. Rasagiline in Parkinson's disease. N Engl J Med. 2010. 362(7): 657-8; author reply 658-9.
    6 Ketcham CJ, Hodgson TL, Kennard C, Stelmach GE. Memory-motor transformations are impaired in Parkinson's disease. Exp Brain Res. 2003. 149(1): 30-9.
    7 Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM. Cognitive impairments in early Parkinson's disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci. 2003. 23(15): 6351-6.
    8 Monchi O, Petrides M, Doyon J, Postuma RB, Worsley K, Dagher A. Neural bases of set-shifting deficits in Parkinson's disease. J Neurosci. 2004. 24(3): 702-10.
    9 Moody TD, Bookheimer SY, Vanek Z, Knowlton BJ. An implicit learning task activates medial temporal lobe in patients with Parkinson's disease. Behav Neurosci. 2004. 118(2): 438-42.
    10 Wu T, Hallett M. A functional MRI study of automatic movements in patients with Parkinson's disease. Brain. 2005. 128(Pt 10): 2250-9.
    11 Holroyd S, Wooten GF. Preliminary FMRI evidence of visual system dysfunction in Parkinson's disease patients with visual hallucinations. J Neuropsychiatry Clin Neurosci. 2006. 18(3): 402-4.
    12 Lewis MM, Slagle CG, Smith AB, et al. Task specific influences of Parkinson's disease on the striato-thalamo-cortical and cerebello-thalamo-cortical motor circuitries. Neuroscience. 2007. 147(1): 224-35.
    13 Cameron IG, Watanabe M, Pari G, Munoz DP. Executive impairment in Parkinson'sdisease: Response automaticity and task switching. Neuropsychologia. 2010 .
    14 Leh SE, Petrides M, Strafella AP. The neural circuitry of executive functions in healthy subjects and Parkinson's disease. Neuropsychopharmacology. 2010. 35(1): 70-85.
    15 Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001. 98(2): 676-82.
    16 Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992. 55(3): 181-4.
    17 Fahn S, Elton RL. Unified Parkinson’s Disease Rating Scale. In: Fahn S MCD, Goldstein M CDB eds. Recent developments in Parkinson’s disease. 1987. Florham Park, NJ. Macmillan Healthcare. 153–163.
    18 Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage. 2004. 22(1): 394-400.
    19 Baumgartner R, Somorjai R, Summers R, Richter W. Assessment of cluster homogeneity in fMRI data using Kendall's coefficient of concordance. Magn Reson Imaging. 1999. 17(10): 1525-32.
    20 Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995. 34(4): 537-41.
    21 Fransson P. How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia. 2006. 44(14): 2836-45.
    22 Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003. 100(1): 253-8.
    23 Shulman RG, Rothman DL, Hyder F. A BOLD search for baseline. Neuroimage. 2007. 36(2): 277-81.
    24 Margulies DS, Vincent JL, Kelly C, et al. Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci U S A. 2009. 106(47): 20069-74.
    25 Yonelinas AP, Hopfinger JB, Buonocore MH, Kroll NE, Baynes K. Hippocampal, parahippocampal and occipital-temporal contributions to associative and itemrecognition memory: an fMRI study. Neuroreport. 2001. 12(2): 359-63.
    26 Klein I, Paradis AL, Poline JB, Kosslyn SM, Le BD. Transient activity in the human calcarine cortex during visual-mental imagery: an event-related fMRI study. J Cogn Neurosci. 2000. 12 Suppl 2: 15-23.
    27 Haslinger B, Erhard P, Kampfe N, et al. Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa. Brain. 2001. 124(Pt 3): 558-70.
    28 Sabatini U, Boulanouar K, Fabre N, et al. Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study. Brain. 2000. 123 ( Pt 2): 394-403.
    29 Boller F, Passafiume D, Keefe NC, Rogers K, Morrow L, Kim Y. Visuospatial impairment in Parkinson's disease. Role of perceptual and motor factors. Arch Neurol. 1984. 41(5): 485-90.
    30 Levin BE, Llabre MM, Reisman S, et al. Visuospatial impairment in Parkinson's disease. Neurology. 1991. 41(3): 365-9.
    31 Pereira JB, Junque C, Marti MJ, Ramirez-Ruiz B, Bargallo N, Tolosa E. Neuroanatomical substrate of visuospatial and visuoperceptual impairment in Parkinson's disease. Mov Disord. 2009 .
    32 Westermann B, Wattendorf E, Schwerdtfeger U, et al. Functional imaging of the cerebral olfactory system in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. 2008. 79(1): 19-24.
    33 Ponsen MM, Stoffers D, Twisk JW, ECh W, Berendse HW. Hyposmia and executive dysfunction as predictors of future Parkinson's disease: a prospective study. Mov Disord. 2009. 24(7): 1060-5.
    34 Nagano-Saito A, Washimi Y, Arahata Y, et al. Cerebral atrophy and its relation to cognitive impairment in Parkinson disease. Neurology. 2005. 64(2): 224-9.
    1. Haglund MM, Berger MS, Shamseldin M, et al. Cortical localization of temporal lobe language sites in patients with gliomas[J]. Neurosurgery, 1994, 34(4):567-76; discussion 576.
    2. Ojemann G, Ojemann J, Lettich E, et al. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients[J]. J Neurosurg, 1989,71(3):316-26.
    3. Ojemann G, Ojemann J, Lettich E, et al. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. 1989[J]. J Neurosurg, 2008,108(2):411-21.
    4. Haberg A, Kvistad KA, Unsgard G, et al. Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome[J]. Neurosurgery, 2004,54(4):902-14; discussion 914-5.
    5.吴南,谢兵,王健,等.正常国人汉语语言Broca区的fMRI刺激模式筛选[J].中国神经精神疾病杂志, 2008,34(3):174-176.
    6.吴南,王健,谢兵,等. 10例中国正常汉族人不同的汉语听觉任务时fMRI中Wernicke区激活的特点[J].第三军医大学学报, 2007,29(10):985-987.
    7. Perrine K. Future directions for functional mapping[J]. Epilepsia, 1994,35 Suppl 6:S90-102.
    8. Black PM, Ronner SF. Cortical mapping for defining the limits of tumor resection[J]. Neurosurgery, 1987,20(6):914-9.
    9. Bernier GP, Richer F, Giard N, et al. Electrical stimulation of the human brain in epilepsy[J]. Epilepsia, 1990,31(5):513-20.
    10. Luders H, Lesser RP, Hahn J, et al. Basal temporal language area demonstrated by electrical stimulation[J]. Neurology, 1986,36(4):505-10.
    11. Bittar RG, Olivier A, Sadikot AF, et al. Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography[J]. J Neurosurg, 1999,91(6):915-21.
    12. Papke K, Reimer P, Renger B, et al. Optimized activation of the primary sensorimotor cortex for clinical functional MR imaging[J]. AJNR Am J Neuroradiol, 2000,21(2): 395-401.
    13. Belin P, Zatorre RJ, Lafaille P, et al. Voice-selective areas in human auditory cortex[J]. Nature, 2000,403(6767):309-12.
    14. Pouratian N, Cannestra AF, Bookheimer SY, et al. Variability of intraoperative electrocortical stimulation mapping parameters across and within individuals[J]. J Neurosurg, 2004,101(3):458-66.
    15. Roux FE, Ibarrola D, Tremoulet M, et al. Methodological and technical issues for integrating functional magnetic resonance imaging data in a neuronavigational system[J]. Neurosurgery, 2001,49(5):1145-56; discussion 1156-7.
    16. Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proc Natl Acad Sci U S A, 1990,87(24):9868-72.
    17. Lehericy S, Duffau H, Cornu P, et al. Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors[J]. J Neurosurg, 2000,92(4):589-98.
    18. Bittar RG, Olivier A, Sadikot AF, et al. Cortical motor and somatosensory representation: effect of cerebral lesions[J]. J Neurosurg, 2000,92(2):242-8.
    19. Krishnan R, Raabe A, Hattingen E, et al. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome[J]. Neurosurgery, 2004,55(4):904-14; discusssion 914-5.
    20. Ojemann JG, Neil JM, MacLeod AM, et al. Increased functional vascular response in the region of a glioma[J]. J Cereb Blood Flow Metab, 1998,18(2):148-53.
    21. Whittle IR, Borthwick S, Haq N. Brain dysfunction following 'awake' craniotomy, brain mapping and resection of glioma[J]. Br J Neurosurg, 2003,17(2):130-7.
    22. Peraud A, Meschede M, Eisner W, et al. Surgical resection of grade II astrocytomas in the superior frontal gyrus[J]. Neurosurgery, 2002,50(5):966-75; discussion 975-7.
    23. Duffau H, Denvil D, Capelle L. Long term reshaping of language, sensory, and motormaps after glioma resection: a new parameter to integrate in the surgical strategy[J]. J Neurol Neurosurg Psychiatry, 2002,72(4):511-6.
    24. Spetzger U, Laborde G, Gilsbach JM. Frameless neuronavigation in modern neurosurgery[J]. Minim Invasive Neurosurg, 1995,38(4):163-6.
    25. Hall WA, Liu H, Truwit CL. Functional magnetic resonance imaging-guided resection of low-grade gliomas[J]. Surg Neurol, 2005,64(1):20-7; discussion 27.
    26. Krishnan R, Raabe A, Hattingen E, et al. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome[J]. Neurosurgery, 2004,55(4):904-14; discusssion 914-5.
    27. Gumprecht H, Ebel GK, Auer DP, et al. Neuronavigation and functional MRI for surgery in patients with lesion in eloquent brain areas[J]. Minim Invasive Neurosurg, 2002,45(3):151-3.
    1. Simos PG, Sarkari S, Castillo EM, et al. Reproducibility of measures of neurophysiological activity in Wernicke's area: a magnetic source imaging study[J]. Clin Neurophysiol, 2005,116(10):2381-91.
    2. Breier JI, Papanicolaou AC. Spatiotemporal patterns of brain activation during an action naming task using magnetoencephalography[J]. J Clin Neurophysiol, 2008, 25(1):7-12.
    3. Sun J, Wu J, Li S, et al. Localization of the human language cortex by magnetic source imaging[J]. Chin Med J (Engl), 2003,116(7):1039-42.
    4.赵磊,吕佩源,孙吉林,等.急性脑梗死患者图片命名脑磁图特征研究[J].脑与神经疾病杂志, 2008,(04):437-439.
    5.孙吉林,吴杰,李素敏,等.磁源性影像对母语为汉语者语言皮质定位的研究[J].中华放射学杂志, 2003,(04):75-79.
    6.张华宁,孙吉林,吴杰,等.磁源成像对中、英文语言功能区的研究[J].中国医学影像技术, 2003,(02):161-163.
    7.张玉梅,王拥军,张宁,等.母语为汉语正常人听觉性语言中枢的定位[J].中国卒中杂志, 2006,(06):404-406.
    8.张玉梅,乔惠,孙波,等.母语为汉语的正常人运动性语言功能区定位[J].中国康复医学杂志, 2006,(04):293-295.
    9.张玉梅,文永霞,张宁,等.母语为汉语者听觉性语言中枢的定位[J].首都医科大学学报, 2006,(05):666-668.
    10.乔慧,孙波,向敬,等.磁源成像在母语为汉语正常人的语言功能定位中的应用[J].中华神经外科杂志, 2006,(12):729-731.
    11. Billingsley-Marshall RL, Clear T, Mencl WE, et al. A comparison of functional MRI and magnetoencephalography for receptive language mapping[J]. J Neurosci Methods, 2007,161(2):306-13.
    12. Ressel V, Wilke M, Lidzba K, et al. Language lateralization in magnetoencephalography: two tasks to investigate hemispheric dominance[J]. Neuroreport, 2006,17(11):1209-13.
    13. Merrifield WS, Simos PG, Papanicolaou AC, et al. Hemispheric language dominance in magnetoencephalography: sensitivity, specificity, and data reduction techniques[J]. Epilepsy Behav, 2007,10(1):120-8.
    14. McNab F, Rippon G, Hillebrand A, et al. Semantic and phonological task-set priming and stimulus processing investigated using magnetoencephalography (MEG)[J]. Neuropsychologia, 2007,45(5):1041-54.
    15.陈璇,金梅.正常人汉语句子事件相关电位N_(400)的研究[J].第一军医大学学报, 2003,(08):812-815.
    16. Service E, Helenius P, Maury S, et al. Localization of syntactic and semantic brain responses using magnetoencephalography[J]. J Cogn Neurosci, 2007,19(7):1193-205.
    17. Imada T, Zhang Y, Cheour M, et al. Infant speech perception activates Broca's area: a developmental magnetoencephalography study[J]. Neuroreport, 2006,17(10):957-62.
    18. Wehner DT, Ahlfors SP, Mody M. The influence of semantic processing on phonological decisions in children and adults: a magnetoencephalography (MEG) study[J]. J Speech Lang Hear Res, 2007,50(3):716-31.
    19. Tiihonen J, Katila H, Pekkonen E, et al. Reversal of cerebral asymmetry in schizophrenia measured with magnetoencephalography[J]. Schizophr Res, 1998,30(3): 209-19.
    20. Hirano S, Hirano Y, Maekawa T, et al. Abnormal neural oscillatory activity to speech sounds in schizophrenia: a magnetoencephalography study[J]. J Neurosci, 2008,28(19):4897-903.
    21. Oram CJE, Flagg EJ, Roberts W, et al. Magnetoencephalography identifies rapid temporal processing deficit in autism and language impairment[J]. Neuroreport, 2005,16(4):329-32.
    22. Breier JI, Castillo EM, Boake C, et al. Spatiotemporal patterns of language-specific brain activity in patients with chronic aphasia after stroke using magnetoencephalography[J]. Neuroimage, 2004,23(4):1308-16.
    23. Breier JI, Maher LM, Schmadeke S, et al. Changes in language-specific brain activation after therapy for aphasia using magnetoencephalography: a case study[J].Neurocase, 2007,13(3):169-77.
    24. Wehner DT, Ahlfors SP, Mody M. Effects of phonological contrast on auditory word discrimination in children with and without reading disability: a magnetoencephalography (MEG) study[J]. Neuropsychologia, 2007,45(14):3251-62.
    25. Lajiness-O'Neill R, Akamine Y, Bowyer SM. Treatment effects of Fast ForWord demonstrated by magnetoencephalography (MEG) in a child with developmental dyslexia[J]. Neurocase, 2007,13(5):390-401.
    26. Ganslandt O, Buchfelder M, Hastreiter P, et al. Magnetic source imaging supports clinical decision making in glioma patients[J]. Clin Neurol Neurosurg, 2004,107 (1):20-6.
    27. Lee D, Sawrie SM, Simos PG, et al. Reliability of language mapping with magnetic source imaging in epilepsy surgery candidates[J]. Epilepsy Behav, 2006,8(4):742-9.
    28. Kamada K, Todo T, Masutani Y, et al. Visualization of the frontotemporal language fibers by tractography combined with functional magnetic resonance imaging and magnetoencephalography[J]. J Neurosurg, 2007,106(1):90-8.
    1. Rorden C, Karnath HO. Using human brain lesions to infer function: a relic from a past era in the fMRI age?[J]. Nat Rev Neurosci, 2004,5(10):813-9.
    2. Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proc Natl Acad Sci U S A, 1990,87(24):9868-72.
    3. Ogawa S, Menon RS, Tank DW, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model[J]. Biophys J, 1993,64(3):803-12.
    4. Sunaert S, Yousry TA. Clinical applications of functional magnetic resonance imaging[J]. Neuroimaging Clin N Am, 2001,11(2):221-36, viii.
    5. Yetkin FZ, Mueller WM, Morris GL, et al. Functional MR activation correlated with intraoperative cortical mapping[J]. AJNR Am J Neuroradiol, 1997,18(7):1311-5.
    6. Rutten GJ, Ramsey NF, van RPC, et al. Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas[J]. Ann Neurol, 2002,51(3):350-60.
    7. Roux FE, Boulanouar K, Lotterie JA, et al. Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation[J]. Neurosurgery, 2003,52(6):1335-45; discussion 1345-7.
    8. Fernandez G, Specht K, Weis S, et al. Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI[J]. Neurology, 2003,60(6):969-75.
    9. Suarez RO, Whalen S, Nelson AP, et al. Threshold-independent functional MRI determination of language dominance: A validation study against clinical gold standards[J]. Epilepsy Behav, 2009.
    10. Smits M, Visch-Brink E, Schraa-Tam CK, et al. Functional MR imaging of language processing: an overview of easy-to-implement paradigms for patient care and clinical research[J]. Radiographics, 2006,26 Suppl 1:S145-58.
    11. Giussani C, Roux FE, Ojemann J, et al. Is Preoperative Functional Magnetic Resonance Imaging Reliable for Language Areas Mapping in Brain Tumor Surgery? Review of Language Functional Magnetic Resonance Imaging and Direct Cortical StimulationCorrelation Studies[J]. Neurosurgery, 2009.
    12. Schreiber A, Hubbe U, Ziyeh S, et al. The influence of gliomas and nonglial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement[J]. AJNR Am J Neuroradiol, 2000,21(6):1055-63.
    13. Holodny AI, Schulder M, Liu WC, et al. The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery[J]. AJNR Am J Neuroradiol, 2000,21(8):1415-22.
    14. Wellmer J, Weber B, Urbach H, et al. Cerebral lesions can impair fMRI-based language lateralization[J]. Epilepsia, 2009.
    15. Zarahn E, Aguirre G, D'Esposito M. A trial-based experimental design for fMRI[J]. Neuroimage, 1997,6(2):122-38.
    16. Price CJ, Friston KJ. Cognitive conjunction: a new approach to brain activation experiments[J]. Neuroimage, 1997,5(4 Pt 1):261-70.
    17. Buckner RL, Bandettini PA, O'Craven KM, et al. Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging[J]. Proc Natl Acad Sci U S A, 1996,93(25):14878-83.
    18. Liu TT, Frank LR, Wong EC, et al. Detection power, estimation efficiency, and predictability in event-related fMRI[J]. Neuroimage, 2001,13(4):759-73.
    19.吴南,谢兵,王健,等.正常国人汉语语言Broca区的fMRI刺激模式筛选[J].中国神经精神疾病杂志, 2008,34(3):174-176.
    20.吴南,王健,谢兵,等. 10例中国正常汉族人不同的汉语听觉任务时fMRI中Wernicke区激活的特点[J].第三军医大学学报, 2007,29(10):985-987.
    21. Sanjuan A, Bustamante JC, Forn C, et al. Comparison of two fMRI tasks for the evaluation of the expressive language function[J]. Neuroradiology, 2010.
    22. Gartus A, Foki T, Geissler A, et al. Improvement of Clinical Language Localization with an Overt Semantic and Syntactic Language Functional MR Imaging Paradigm[J]. AJNR Am J Neuroradiol, 2009.
    23. Pillai JJ. The Evolution of Clinical Functional Imaging during the Past 2 Decades and Its Current Impact on Neurosurgical Planning[J]. AJNR Am J Neuroradiol, 2010,31(2):219-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700