强激光复杂光机组件光学元件激光损伤在线检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为实现聚变反应所需的物理条件,要求辐照到靶面的激光脉冲能量大于1MJ量级,因此激光驱动器必须具备足够的输出能力和负载能力。研究和实践都表明,3ω波段光学元件的激光损伤阈值较低。终端集成光机组件做为ICF激光驱动器的关键单元组件之一,集成了多种大口径光学元件,处于驱动器的末端,三倍频激光通量高达3.0J/cm2,这种复杂的光机组件的光学元件在接近其损伤阈值的情况下运行,昂贵的频率转换晶体、光栅和透镜等元件在如此高的激光通量辐照下,极易损伤,从而限制了装置的输出能力。光学元件的安全使用策略要求激光设计和运行人员不仅重视光学元件的品质,还要对光学元件进行全流的管理。通过在线检测光学元件的损伤状态,在光学元件损伤增长加速之前将光学元件换下,离线对光学元件损伤进行修复使光学元件可以循环利用,就能延长光学元件的使用寿命。光学元件损伤在线检测是光学元件安全使用策略的重要支撑。随着ICF激光驱动器通量水平的进一步提高,终端集成光机组件负载能力提升迫切需要对终端集成光机组件光学元件损伤状态进行检测。本论文对终端集成光机组件光学损伤在线检测系统和关键技术进行了深入的研究,主要研究内容包含以下几个方面:
     1.开展了背光照明损伤成像和全内反射照明损伤成像技术研究,提出了基于全内反射分时照明的终端集成光机组件光学元件损伤在线检测(Final Optics Damage Inspection, FODI)总体技术路线,建立了光学元件分时全内反射照明损伤成像信噪比模型;
     2.研究了高分辨多维空间扫描大口径光学元件损伤成像技术,提出了适合终端集成光机组件光学元件损伤在线检测的成像模块光学方案和结构方案;
     3.研究了终端集成光机组件光学元件照明技术。提出了基于全内反射大口径元件损伤均匀照明的技术方案,开展了阵列LED和光纤边缘照明技术研究,对比了两种技术方案的优劣,优化了照明参数,研制了可用于终端集成光机组件光学元件全口径照明的光源;
     4.开展了损伤图像分析技术研究,提出了一种改进的基于局部信噪比增强的(Local Area Signal -to-Noise Ratio, LASNR)特征提取算法并建立一种新颖的信息表示方法,有效的实现了FODI损伤图像的特征提取和信息表示,为后续信息挖掘和光学元件状态评价与决策奠定了基础;提出了通过像素灰度等级辐射标定估算成像后尺寸小于CCD像素尺寸的损伤点大小的检测思想,解决了成像分辨率受限条件下极其微小的损伤点的跟踪检测难题。将亚像素分析技术应用于光学元件损伤点的尺寸检测,利用该技术对损伤点的尺寸进行了计算。
     5.研制了损伤检测成像模块和照明光源等关键模块,开展了终端集成光机组件光学元件损伤检测综合实验,验证了FODI技术路线,考核了关键技术,实现了对大口径光学元件损伤在线检测,支撑了大口径元件损伤在线检测技术方案的确定。
Experiment in inertial confinement fusion(ICF) required very strict condition on output ability,beam quality,load capacity and controll ability.In order to achieve the condition in fusion,the energy on target must exceed 1MJ.At the 351nm wavelengh,it was believed that the laser-induced damage threshold of optics is lowed,putting the optics in 351nm of the laser at higher risker to laser-induced damage.With the laser fluence up to 3J/cm2,after few high fluence shots,as a key component,Located at the target chamber,the integrated optics module(IOM) is easy to be damaged.Laser-induced damage of large aperture optics would decrease the optics lifetime,such as KDP cristial,fused cilica lens and sampling grating.et.al,and has been the main limter of imprived the load capacity of laser facility.The management stratege of optics requires the worked to put more attention on optics quality,as well as the management of each process. High-powerlaser-induced material damage is a self-accelerating process. With the subsequent laser shots, the initial damage on the optics will gradually growth. In order to aviod the disaste damage in follow-up shots, the surface damage of optics was be inspected by the online optics damage inspection,when the flaw has grown to the maxmum allowed size,the optics will be replaced and sent to the damage mitigation and repaired. FODI is the base of the safe management stategy of optics. As the construction of the SG-III facity, the demand for final optics damage inspection is increasingly urgent. On-line damage inspection system and key technology research are also urgent, which are the problems need to sovle that research faced now. Based on the above requirement this paper research the final optical damage inspection and key technologies in-depth and the following technological advances have made:
     Firstly, Proper illumination of the optic to be imaged is critical for the successful performance of the FODI system, Two imaging methods will be employed to illuminate the optics, bright-field back illumination and edge illumination. The first time systematically studied the online damage inspection problem in large, high-power final optics, a roadmap of total internal reflection illumination dark-field imaging technology is presented to achieve online high-resolution damage image of final optics. In order to solve the problem that it is difficult to distinguish the damage from two adjacents optics due to the shallow depth of imaging field, the method of time- sharing illumination of large aperture optics was developed for damage imaging, and the model of signal noise ratio was developed for dark field imgeing mode.
     Second, the study of techniques for damage imaging to the integrated optics module(IOM),high resolution and many dimensions scanning.The engineering proposal of optics and was develped for IOM damage inspection.
     Third, proper illumination of the optic is critical for the successful performance of the IOM optics damage inspection, based on total internal reflection, the two edge illumination method was proposed to illuminate the optics, linear array LED light source and fiber laser,and studied to verify the implementation of large aperture optics uniform illumination.Final the parameter of illumination was optimized. It was demonstrated the method of optical components illumination from the corners with the fiber laser to achieve total internal reflection uniform illumination within the full-aperture.
     Fourth, studed on the image analysis of damage.A modified Local Area Signal-to-Noise Ratio (LASNR) segmentation algorithm was developed to capture signal in the image at every pixel within an object versus the noise in its local neighborhood.With a character method of information, the character extraction and characterization is efficency achieved for data minning.Based on classify and machine learning, the method of data analysis and damage evaluation is proposed. a radiation calibration method is proposed. By increasing the exposure time, a slight damage point can be detected online. Calibration of radiation can solve the problem of point tracking and inspection of very small damage when the CCD pixel object resolution is more than the size of flaw.
     Fifth, the first time in the country designed and developed a high resolution IOM1 optics damage inspection system (FODI). The integaration experimental was carried out to test the technical proposal and key techniques for FODI. The results show that this technique is feasible for lare aperture optics online damage inspection.
引文
[1]UCRL-50021-81919820,P2-1
    [2]邓锡明,原子能科学与技术,1988,22(1),32
    [3]J. D. Moody, P. Datte, K. Krauter, REVIEW OF SCIENTIFIC INSTRUMENTS 81,10D921 (2010)
    [4]Tobita, K. et al.,2005, Design Stufy of Fusion DEMO Plant at JAERI, Fusion Engineering and Design, V.81, p.1151;
    [5]Feng, K.M., et al., Conceptual Design Study of Fusion DEMO Plant at SWIP, Fusion Engineering and Design, V12, p.2109
    [6]Hiwatari R.et. al., Demonstration Tokamak Fusion Power Plant for Early Realization of Net Electric Power Generation, Nucl. Fusion V45, p.96
    [7]S.Pfalzner著,崔旭东译,惯性约束聚变导论(2011)。原子能出版社,P31
    [8]National Ignition Facility conceptual design report, UCRL-PROP117093,1994.
    [9]Moses E I, Campbell J H,Stolz C J and Wuest C R. The National Ignition Facility:The World's Largest Optics and Laser System. UCRL-JC-151593, SPIE Proc.2003 Photonics West, January 2003.
    [10]Stolz C.J, The National Ignition Facility:The world's largest optical system[C], UCRL-CONF-235653,2007.
    [11]Moses E I. National Ignition Facility:1.8MJ,750TW Ultraviolet Laser[C], Proc of SPIE,2004, 5341:13-24.1
    [12]Arnoul J P, Signol F, The Laser Megajoule Facility:control system status report[C],2007,Proceedings of ICALEPCS07,Knoxville, Tennessee, USA MOAB02.
    [13]Ebrardt J and Chaput JM, J. Phys.:Conf. Ser., these proceedings
    [14]神光-Ⅲ主机装置初步设计报告书[R].内部资料。
    [15]彭翰生,张小民,范滇元,朱健强.高功率固体激光装置的发展与工程科学问题[J].中国工程科学,2001,3(3).
    [16]黄婉晴.大口径熔石英元件表面激光损伤特性研究.硕十学位论文.四川绵阳:中国工程物理研究院,2008.
    [17]Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, "Growth of laser-initiated damage in fused silica at 351 nm",Proc. SPIE 4347,468,2000.
    [18]M. A. Norton, E. E. Donohue, W. G. Hollingsworth, J. N. McElroy, and R. P. Hackel, "Growth of laser-initiated damage in fused silica at 527 nm", Proc. SPIE 5273,236,2003.
    [19]M. A. Norton, E. E. Donohue, W. G. Hollingsworth, M. D. Feit, A. M. Rubenchik, and R. P. Hackel, Growth of laser-initiated damage in fused silica at 1053 nm", Proc. SPIE 5647,197,2004.
    [20]M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth,"Growth of laser damage in fused SiO2 under multiple wavelength irradiation", Proc. SPIE 5991,08,2005.
    [21]M. A. Norton, J. J. Adams, C. W. Carr, Growth of laser damage in fused silica diameter to depth ratio, UCRL-PROC-236269
    [22]Roger M Wood,著,崔旭东译,光学材料的激光诱导损伤,西南交通大学出版社,p46
    [23]周丽丹,高功率激光装置光学元件“缺陷”分布与光束近场质量统计规律研究硕士学位论文.四川绵阳:中国工程物理研究院,2009.P24
    [24]M.C. Nostrand, C. J. Cerjan, M. A. Johnson, Correlation of Laser-induced Damage to Phase Objects in Bulk Fused Silica, Laser-Induced Damage in Optical Materials:2004, Proc. of SPIE Vol.5647
    [25]M. V. Monticelli, M. C. Nostrand, N. Mehta, L, The HMDS Coating Flaw Removal Tool, LLNL-PROC-408340
    [26]Spaeth M L, Manes K R, Widmayer C C, Williams W H, Whitman P K, Henesian M A, Stowers I F, Honig J. The national ignition facility wavefront requirements and optical architecture[C], Proceedings of SPIE,2004; 5341:25-42.
    [27]胡建平,马平,许乔,光学元件的激光损伤阈值测量[J].红外和激光工程,2006,35(2):187-191
    [28]胡建平,张问辉,段利华,等.K 9玻璃表面的1064n.m激光损伤[J].激光杂志,2006,27(3):59-60
    [29]胡建平,马平,许乔,等.1064nm偏振薄膜的激光损伤特性[J].中国激光,2004,31(3):477-479.
    [30]谈恒英,刘鹏程,施柏煊.激光光热偏转成像法无损检测光学薄膜的激光损伤[J].光子学报,2005,34(1):158-160.
    [31]沈卫星,相干滤波成像系统测量光学元件表面疵病,光学技术,2000(4),361-365
    [32]程晓锋,徐旭,张林,基于高分辨力CCD的大口径光学元件疵病检测,强激光与粒子束,2009,21(11)1677-1680
    [33]王元庆,表面疵病的掠射法检测,应用激光,1998,18(2),55-58
    [34]武勇军,白闻喜,激光衍射图样识别法检验光学零件表面疵病,光学技术,19(4),4-6
    [35]张晓,杨国光,光学表面疵病的激光频谱分析法及其自动检测仪,仪器仪表学报,1994,15(4),396-399
    [36]邓燕,许乔,柴立群等,光学元件亚表面缺陷的全内反射显微检测,强激光于粒子束,2009,21(6),835-839
    [37]G. Guss, I. Bass, R. Hackel, High-resolution 3-D imaging of surface damage sites in fused silica with OpticalCoherence Tomography, UCRL-PROC-236270, SPIE-Boulder Damage Symposium Boulder,
    [38]C E. Thompson, DE Decker, C F. Knopp.Optics Damage Inspection for the NIF,Solid State Lasers for Application to Inertial Confinement Fusion Monterey, CA, June 7-10,1998
    [39]J.T. Salmon, J.M. Brase, et al, Laser Damage Inspection Final Report Laboratory Directed Research and Development Program 00-ERD-067, February 26,2001
    [40]Alan Conder, Jim Chang, Laura Kegelmeyer, et al.Final Optics Damage Inspection (FODI) for the National Ignition Facility,Proc. of SPIE,7797,77970P.
    [41]A. Conder et al., "Final Optics Damage Inspection (FODI) for the National Ignition Facility" in"In Laser-Induced Damage in Optical Materials:2007", G. J. Exarhos, A. H. Guenther, K. L. Lewis,D. Ristav, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 6720,2008,672010-1-12.
    [42]A. Carr, L. Kegelmeyer, Z. M. Liao, Defect Classification Using Machine Learning, LLNL-PROC-408339
    [43]Alan Conder, Jim Chang, Laura Kegelmeyer, et al.Final Optics Damage Inspection (FODI) for the National Ignition Facility. Proc. of SPIE,7797,77970P.
    [44]A. Conder et. al., "Final Optics Damage Inspection (FODI) for the National Ignition Facility" in"In Laser-Induced Damage in Optical Materials:2007", G. J. Exarhos, A. H. Guenther, K. L. Lewis,D. Ristav, M. J. Soileau, and C. J. Stolz, eds., Proc. SPIE 6720,2008,672010-1-12.
    [45]任冰强 黄惠杰 张维新等.光学元件损伤在线检测装置及实验研究[J].强激光与粒子束.2004,16(4):465-468.
    [46]时霖,李大海等,光学元件损伤的暗场检测方法研究,激光杂志,2008,29(6).,29-30
    [47]张际,李大海, 光学元件损伤暗场成像检测算法.中国激光,2006,8(33):1109-1112.
    [48]解亚平,孙志红,成泽等,光学元件损伤在线检测中的图像处理[J].强激光与粒子束,2006,18(7):25-30.
    [49]张际,强激光系统光学元件损伤暗场成像检测可行性研究,四川大学硕士学位论文,2007
    [50]王雪,谢志江,大口径精密光学元件表面疵病检测系统研究,仪器仪表学报,2007,27(10),1262-1265
    [51]汪风全,可用于大口径精密表面缺陷检测的数字化评价系统,浙江大学硕士毕业论文,2006
    [52]谢亚平,高功率固体激光光学元件损伤在线检测装置的研究,华中科技大学硕士学位论文,2006
    [54]马科斯.波恩,埃米尔.沃尔夫著,杨葭荪译,光学原理,电子工业出版社,2009,387
    [55]苏显渝李继陶,信息光学,科学出版社,1999,p216
    [55]C. M. G. Heffels, D. Heitzmann, E. D. Hirleman, B. Scarlett, "The Use of Azimuthal Intensity Variations in Diffraction Patterns for Particle Shape Characterization," Part. Part. Syst. Charact.1994, 11,194-199.
    [56]H. Wang, R. Valdivia-Hernandez, "Laser Scanner and Diffraction Pattern Detection: A Novel Concept forDynamic Guaging of Fine Wires," Meas. Sci. Technol.1995,6,452-457.
    [57]邓艳,许乔等,光学元件亚表面缺陷的全内反射显微检测,强激光与离子束,2009,21(6),835-840
    [58]胡玉禧 安连生编著,应用光学,中国科技大学出版社,2003,p125
    [59]谢亚平,高功率固体激光光学元件损伤在线检测装置的研究,硕十学位论文,2006,华中科技大学,p48
    [60]神光Ⅲ主机装置概念设计,内部资料.
    [61]Alan Conder, Jim Chang, Laura Kegelmeyer, Final Optics Damage Inspection (FODI) for the National Ignition Facility, Proc. of SPIE Vol.7797 77970P-4
    [62]李晓彤等,几何光学·像差·光学设计,杭州:浙江大学出版社,2007第二版
    [63]董卫斌张敏达争尚等,强激光装置中玻璃疵病在线检测的光学系统设计,2009,38(3),685-688
    [64]Lewis Collier:显示器检测中光学器件、照明和图像处理三者间的权衡,现代显示(Advanced Display, July 2006),29-34(译自SID 2006 《Information Display》 1/2006)
    [65]Alan Conder, Jim Chang, Laura Kegelmeyer, Final Optics Damage Inspection (FODI) for the National Ignition Facility, Proc. of SPIE Vol.7797 77970P-7
    [66]Alan Conder, Jim Chang, Laura Kegelmeyer, Final Optics Damage Inspection (FODI) for the National Ignition Facility, Proc. of SPIE Vol.7797 77970P-8
    [67]张芸,刘铁根,张学敏等,L ED路灯光强模拟分布及实验验证,光学仪器,2008,30(1)45-49
    [68]HUO Yan ming, WU Shu mei, The Research and Simulation of LED Arrays in Lighting,发光学 报,2009,30 (4),435-440
    [69]张耀明,徐明泉,朱云青等,新型光纤背光照明装置,《玻璃纤维》,2001年第3期,25-27。
    [70]Tyan,C.Y.,Wang,P.P.,"Image Processing-Enhancement,Filtering and Edge Detection Using the Fuzzy Logic Approach", IEEE 0-7803-0614-7/93
    [71]Gonzalez,R.C.,"Digital Image Processing", Printice Hall,2002
    [72]V.Torre,T.A.Poggio,On edged detection, IEEE Trans.Pattern Anal. MaCh Intell,1986,8(2),147-163.
    [73]王争艳,复杂背景下的弱小目标检测,西安电子科技大学硕十论文,2009,p8
    [74]徐英,红外图像序列中运动弱小目标检测的方法研究,红外技术,2002,11,24(6),27-30
    [75]P.W. Verbeek et al., "Low-level image processing by max- min filters," Signal Processing 1988,15(3), 249-258
    [76]彭丰平,鲍苏苏.一种基于区域生民的CT序列图像分割算法[J].计算机数字工程.2007,5(35)
    [77]王佳男,采用基于区域的自动种子区域生长法的彩色图像分割方法,东北师范大学硕士学位论文,2007
    [78]金升鹏,天空背景下多尺度红外目标检测,华中科技大学学硕士论文,2008,p2-28
    [79]雷志辉,于起峰,亚像素图像处理技术及其在网格中的应用,国防科技大学学报,1996,18(4), 17-20
    [80]West G, A, a survey and examination of subpixel measurement techniques SPIE,1990
    [81]袁峰,CCD亚像素分辨技术及其在自准直仪中的应用研究[D],哈尔滨:哈尔滨工业大学博士学位论文,1994
    [82]Lyvers EP.Mitchell OR.Subpixel measurements using a moment-based edhe soperator[J].IEEE Trans.Pattern Anal.Machine Itell,1989,11 (12):1293-1308
    [83]于起峰,孙祥一,权铁汉,雷志辉,用标定和亚像素技术实现三维运动目标的高精度测量,宇航学报,1999.20(3),38-42
    [84]屈玉福,浦昭邦等,视觉检测系统中亚像素边缘检测技术的对比研究[J].仪器仪表学报.2003,24(4):460-462
    [85]冈萨雷斯等著;阮秋琦等译,数字图像处理(matlab版),北京:电子工业出版社,2005.9
    [86]薛年喜Matlab在数字信号处理中的应用[M].北京:清华大学出版社
    [87]刘曙光,刘明远等,基于canny准则的基数样条小波边缘检测,信号处理,V17(5),418-423
    [88]Adra Carr, L. Kegelmeyer, Z. M. Liao, Defect Classification Using Machine Learning, Laser-Induced Damage in Optical Materials:2008, Proc. of SPIE Vol.7132 713210-1
    [89]Ghaleb M.Abdulla,Laura Mascio Kegel Meyer,Zhi M.Liao et.al.,Effective and Efficient Optics Inspection Approach Using Machine Algorithms,Proc.of SPIE 78421D-1
    [90]Kegel Meyer,LM,Machine Learning to Reduced Flase Alarms in Shotcycle Inspection,Presented at LLNL.CASIS Workshop (Nov.16,2007)
    [91]Philip Kegelmeyer The Counter-Intuitive Properties of Ensembles for Machine Learning or emocracy Defeats Meritocracy, "Ensembles for Machine Learning", www.ca.sandia.gov/avatar
    [92]黄诗华,陈一民,陆意骏,基于机器学习的自然特征匹配方法,计算机工程,Vol.36 No.20,2010,181-184
    [93]杨长盛,陶亮几种机器学习方法在人脸识别中的性能比较,计算机工程及应用,2009,45(4),169-172
    [94]Witten.Ian H.,and Eibe Frank,2000,Dta Mining:Practical Machine Learning Tools and Techniques with Java Implementation, San.Diego CA:margan Kaufmann.
    [95]Yoav Freund, Boosting a weak learning algorithm by majority, Information and Computation,1995, 121(2),256-285
    [96]Yoav Freund and Robert E.Schapire, Experiments with a new boosting algorithm, In Machine Learning:Proceedings of the Thirteenth International Conference,1996,148-156,
    [97]涂承胜,刁力力,鲁明羽,Boosting家族AdaBoost系列代表算法,计算机科学,2003.30(3):30-35
    [98]刘文静,基于ADABOOST算法的人体检测系统,吉林大学硕士学位论文,2009.4
    [99]李强,基于ADABOOST算法的人脸实时检测研究,吉林大学硕士学位论文,2009.5
    [100]武勃,黄畅,艾海舟,基于连续Adaboost算法的多视角人脸检测,计算机研究与发展,2005,42(9):1612-1621,
    [101]Moses E I Campbell J.H, Stolz C J and Wuest C R,The National Ignition Facility:The World's Largest Optics and Laser System. UCRL-JC-151593, SPIE Proc.2003 Photonics West, January 2003.
    [102]蔡文贵,李永远等,CCD技术及应用,电子工业出版社,1992
    [103]赵玉环,闫 丰,周跃等,紫外ICCD的辐射定标,光学精密工程,2008,16(9),1572-1576

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700