应力吸收层用于混凝土桥面铺装结构力学行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以水泥混凝土桥面沥青铺装层的底部加铺高弹性沥青砂应力吸收层结构为研究对象,采用室内小型试验和ABAQUS数值模拟手段,对加铺应力吸收层前后的力学行为进行研究,重点关注沥青铺装层内部、应力吸收层内部和与桥面水泥混凝土粘结界面处。
     对于高弹性沥青砂应力吸收层材料进行了配合比设计和性能检验,采用马歇尔方法对三种级配进行配合比设计、劈裂强度试验、水稳定性试验、车辙试验、小梁弯曲试验和低温冻断试验等路用性能检验,确定最佳级配。并采用小梁弯曲试验和低温冻断试验评价,高弹性沥青砂应力吸收层材料具有良好的变形能力和低温延展性能。并根据材料最大公称粒径仅为4.75mm,依据体积指标对比试验结果,提出采用20mm高度,双面击实50次制作马歇尔试件方法,完全可以进行配合比设计。
     力学行为分为温度应力和荷载应力两部分。温度应力为采用应变片采集方式,对有无应力吸收层(HE-AC5)的复合梁结构,在温度降低条件下(-30℃~30℃)沥青铺装层和层间界面的力学行为进行研究,并通过ABAQUS数值模拟手段和弹性力学理论计算相互验证。得到HE-AC5、SBS-AC16和C50三种混合料的收缩系数,其中HE-AC5最为敏感,C50最为稳定,整体数值小;通过回归得到三种材料在-30℃-30℃区间内的温度与线膨胀系数的数学关系式。组合结构加入应力吸收层后,由于约束拉应力转移到应力吸收层结构层,沥青铺装层的温度拉应力水平下降了40%左右。对双层复合梁结构温度应力进行力学计算,由于高度与长度比很小,可以简化为弹性地基上梁的纯拉状态,结合实测数据,计算出双层结构的层间摩阻力系数Cx为1.1~1.7N/mm3,三层结构的Cx为1.9~2.8N/mm3。
     荷载应力分为静载和重复荷载作用两种方式进行,对双层普通粘结、双层环氧粘结和三层应力吸收层粘结三种复合小梁试件进行加载实验,在沥青铺装层中部以及各界面关键位置的外侧贴应变片,采用静态方式采集应变数据,分析不同粘结方式以及加铺应力吸收层与否的各位置力学行为,得到三种结构的各位置应变大小关系。应变绝对值方面,跨中明显大于L/4和支点处,L/4跨和支点处界面都呈现压缩状态,且压缩量由L/4向支点呈现递减趋势。重复荷载的大小规律与静载相似,并在全过程中,以第50个周期为界分为初期快速增长态和后期稳定态。重复荷载下方出现累积竖向变形和回弹变形,其中,竖向变形随着加载次数增加而增加,而回弹变形全过程较为稳定。
     沥青铺装层厚度和模量、应力吸收层厚度和模量等参数,对沥青铺装层内部和界面力学影响,采用数值模拟方法建立简支T型梁全桥模型分析。根据应力吸收层材料自身受力状态,结合材料特点,提出建议厚度范围;针对大纵坡特殊受力条件,分析了加铺应力吸收层前后的力学变化,并计算了车辙深度;并对冲击荷载作用下加铺应力吸收层结构的振动能量衰减能力水平进行了分析。
     通过论文的研究,得到水泥混凝土沥青桥面铺装加铺应力吸收层后的温度应力行为和荷载应力行为,得出加铺应力吸收层的力学行为特点,为其正确使用提供理论支撑。
The paper spreads the high elasticity asphaltic sands stress absorption level structure take the cement concrete bridge floor asphalt paving level base as the object of study, uses in the room small experimental and the ABAQUS value simulation method, to spreads around the stress absorption level mechanics behavior to conduct the research, the key attention asphalt paving level interior, the stress absorption level interior and with the bridge floor cement concrete caking contact surface place, uses correctly by it to this structure provides the technical basis and the criterion.
     Carried on the mixture ratio design and the performance examination regarding the high elasticity asphaltic sands stress absorption level material, uses three kind of gradations to carry on the Marshall mixture ratio design, the cleavage strength experiment, the water stability test, the wheel rut experiment, the beam bend test,and the low temperature breaks roads and so on experiment to use the performance test frozen, the determination optimum gradation.The young Liang bend test and the low temperature break the test result to indicate frozen that, the high elasticity asphaltic sands stress absorption level material has the good distortion ability and the low temperature delaying performance. And acts according to the material maximum nominal particle size is only4.75mm, proposed uses20mm the Marshall test sample definitely to be possible to carry on the mixture ratio design highly.
     Mechanics behavior divides into the temperature stress and the load stress two parts.The temperature stress for selects the strain gauge gathering method, whether there is to the stress absorption level (HE-AC5) compound beam structure, the contact surface mechanics behavior conducts the research in the temperature drop condition next (30~-30℃) asphalt paving level and the level, and confirms mutually through the ABAQUS value simulation method and the elasticity theory theoretical calculation.Obtains HE-AC5, SBS-AC16and C50san the kind of blend coefficient of contraction, in which HE-AC5is most sensitive, C50overall value small also basic same; Obtains three materials through the return in-30℃-30℃the sector temperature and the linear expansion coefficient mathematics relationship.The test result indicated that,After joins the stress absorption level, because the restraint tensile stress shifts to the stress absorption level structure level, the asphalt paving level temperature tensile stress level dropped about40%.And carries on mechanics computation to the double-decked compound beam structure temperature stress, because highly and length compared to very small, may simplify for the elastic foundation puts up the main beam pulls the condition purely, the union tentative data, calculates the two-course construction is1.1~1.7N/mm3, three structures are1.9~2.8N/mm3.
     The load stress divides into the progressive load and the repetition load affects two ways to carry on, carries on the load experiment to three kind of compound young Liang test samples, pastes the strain gauge middle the asphalt paving level as well as various contact surfaces key position flank, uses the effusive type gathering strain data, the analysis different caking way as well as spreads the stress absorption level or not various positions mechanics behavior, obtains the double-decked ordinary caking, the double-decked epoxy caking and three ply stress absorption level cakes three kind of structures various positions strain size relations, the strain absolute value aspect, cross is bigger than L/4and the pivot place obviously, L/4cross and the pivot place contact surface all presents the compression condition, also the compression quantity presents the degression by L/4to the pivotTendency.The redundant load size rule and the progressive load are same, and in the entire process, as divides into the initial period fast growth condition take the50th cycle and the later period stable state.Underneath the redundant load appears the accumulation vertical distortion and the snapping back distorts, among, the vertical distortion increases along with the load number of times increases, but the snapping back distorts the entire process to be stable.
     Uses value simulation method establishment simple support T Liang Quanqiao the model, analysis asphalt paving level thickness and the module, stress absorption factors and so on level thickness and module, to the asphalt paving level interior and the contact surface mechanics influence, and according to the stress absorption level material own stressful condition, the bond timber characteristic, proposes the suggestion thickness scope; Also aims at the coarsening lengthwise grade special position, analyzed has spread around the stress absorption level mechanics change, and has carried on the computation to the wheel rut depth; And to attacked under the load function to spread stress absorption level structure vibrational energy weaken ability to carry on the analysis.
     Through the paper research, after obtains the cement coagulation mineral pitch flooring to spread the stress absorption level temperature stress behavior and the load stress behavior, obtains spreads the stress absorption level mechanics behavior characteristic, provides the theory support for its correct use.
引文
[1]季节,徐世法,罗晓辉.桥面铺装病害调查及成因分析[J].北京建筑工程学院学报,2000,16(3):33-37
    [2]姜从盛,姚永永,丁庆军等.白沙洲大桥钢桥面铺装层修复方案受力分析与材料设计[J].公路工程,2007,32(4):87-91
    [3]徐伟,张肖宁,涂常卫.虎门大桥钢桥面铺装维修方案研究与工程实施[J].公路,2010,(5):367-70
    [4]Cheng Gang, Chen Xianhua, Wang Xiao. Analysis on cracking of deck pavement on Jiangyin Bridge[J]. Journal of Southeast University (English Edition),200 5,21(4):490-494
    [5]张磊.江阴大桥钢桥面铺装病害研究[D].东南大学,2004
    [6]平树江,张燕军,申爱琴等.纤维加筋沥青混凝土在桥面铺装中的应用研究[J].新型建筑材料,2009,36(2):53-57
    [7]钱振东,刘云,黄卫.考虑不平度的桥面铺装动响应分析[J].土木工程学报,2007,40(4):49-53
    [8]Yang Yeong-bin, Lin Bing-houng. Vehicle-Bridge Interaction by Dynamic Con densation Method [C]. J. Stuct Engng, ASCE,2002,123(9):1636-1642
    [9]罗立峰,钟鸣,黄成造.桥面铺装设计理论的研究[J].华南理工大学学报(自然科学版),2002,30(4):91-96
    [10]逯彦秋,陈宜言,孙占琦.改善钢桥面铺装层高温作用的有效措施[J].哈尔滨工业大学学报,2009,41(7):115-120
    [11]徐勤武,胡长顺,王虎.混凝士桥面复合式铺装层受力分析和设计[J].长安大学学报(自然科学版),2007,27(4):28-32
    [12]张占军,胡长顺,王秉纲.水泥混凝土桥面沥青混凝土铺装结构设计方法研究[J].中国公路学报,2001,(1):56-59
    [13]Hughes J J, Somers E. Geogrid Mesh for Reflective Crack Control inBitu minous Concrete Overlays[R]. Pennsylvania Dept of Transportation, Harrisburg. Bureau of Construction and Materials. Report,2000
    [14]丁庆军,王发洲,黄绍龙等.桥面铺装层材料设计[J].武汉理工大学学报,2002,24 (4):55-59
    [15]黄卫,钱振东,程刚.环氧沥青混凝土在大跨径钢桥面铺装中的应用[J].东南大学学报(自然科学版),2002,32(5):38-43
    [16]徐世法,张新天,龙佩恒.SBS改性沥青及SMA的桥面铺装技术[J].北京建筑工程学院学报,2000,16(2):69-72
    [17]郝增恒,张肖宁,盛兴跃.高弹改性沥青在钢桥面铺装中的应用研究[J].公路交通科技,2009,26(4):22-25
    [18]许庆.环氧沥青桥面铺装施工技术[J].市政技术,2006,24(5):299-302
    [19]孟祥昌,郭小宏,林国琼.浇筑式沥青混凝土在桥面铺装工程中的应用[J].山西建筑,2009,35(35):310-314
    [20]Schiehlen W, Hu B. Spectral simulation and shock absorber indentification [J]. International Journal of NonLinear Mechanics,2003,38:161-171
    [21]刘黎萍,彭一川,邵静.混凝土桥面铺装粘结防水层材料关键性能研究[J].建筑材料学报,2010,13(1):48-51
    [22]张占军,王虎,胡长顺等.水泥混凝土桥面沥青铺装及防水层荷载弯曲应力分析[J].中国公路学报,2004,17(4):37-40
    [23]霍凯成,郝东强.不同半刚性基层参数对沥青路面的影响分析[J].武汉理工大学学报,2005,27(6):34-37
    [24]马新,郭忠印.基层模量对沥青混合料路面性能影响的力学分析[J].中外公路,2008,28(4):46-50
    [25]王威.浇筑式沥青混凝土施工关键工艺[J].黑龙江交通科技,2006,77-77
    [26]李志波,刘绍云,杨化奎,冯德成.寒冷地区沥青混凝土桥面铺装技术探讨[R].中国公路学会2003年学术年会论文集桥梁工程篇,2003,237-241
    [27]肖楼.水泥混凝土桥面铺装关键技术研究[D].哈尔滨工业大学,2011
    [28]杨海燕,姜利,王丕祥.改性沥青砂应用于桥面防水层的施工[J].森林工程,2007,23(5):60-64
    [29]李玉龙,陈辉强.沥青胶砂缓冲层在双层SMA钢桥面铺装体系中的应用研究[J].公路交通技术,2005,(5):78-81
    [30]黄卫,刘振清.大跨径钢桥面铺装设计理论与方法研究[J].土木工程学报,2005,38(1):51-59
    [31]YU JM, ZHANG X N. Evaluation of environ mental factors to fatigue perfor mance of asphalt mixes[J]. Journal of Southeast University,2005,21(4):486-489
    [32]高雪池.滨州黄河公路大桥桥面铺装研究[D].东南大学,2006
    [33]徐勋倩,黄卫.钢桥面铺装层结构设计指标近似计算新方法[J].土木工程学报,2000,40(4):54-60
    [34]Zhang Lei, Qian Zhendong, Cheng Gang. Axle-equivalent method of steel-dec k pavement[J]. Journal of Southeast University(English Edition),2006,22 (1):9 6-100
    [35]Pfeil, Michele S., Battista, Ronaldo C., Mergulhao, Aluisio J. R.. Stres s concentrationin steel bridge orthotropic decks [J]. Journal of Construction al Steel Research,2005,61 (8):1172-1184
    [36]Tatsuo Nishizawa, Kenji Himeno, Kenichiro Nomura etc. Development of a new structural model with prism and strip elements for pavement On steel bridge decks[J]. The International Journal of Geomechanics,2001,1(3): 351-369
    [37]黄卫,钱振东,张磊.钢桥面铺装局部修复方案实验研究[J].土木工程学报,2006,39(8):87-91
    [38]徐伟.大跨径混凝土桥梁沥青桥面铺装技术试验研究[D].华南理工大学,2002
    [39]王良艳.降低钢桥面铺装层的使用温度技术研究[D].重庆交通大学,2009
    [40]刘忠林.水泥混凝土桥面铺装结构与层间界面力学特性研究[D].重庆交通大学,2009
    [41]成峰.大跨径钢桥面铺装力学分析深入研究[D].东南大学,2004
    [42]Liu Yun, Qian Zhendong. Dynamic analysis of pavement on long span steel b ridgedecks[J]. Journal of Southeast University(English Edition),2008,24(2):21 2-215
    [43]余叔藩,陈仕周,陈献南.大跨径悬索桥钢桥面沥青铺装技术[J].中国公路学报,1998,11(3):32-40
    [44]陈仕周,邓学钧,陈辉强.上海卢浦大桥钢桥面铺装防水体系的研究[J].东南大学学报,2004,34(3):393-397
    [45]Sousa J B, Pais J C. Stubstad R N Comparison of laboratory test perfor mance between asphalt-rubber hot mix and dense graded asphalt concrete[R].4 th International RILEMC Conferenceon Reflective Cracking in Pavements Re searchin Practice in Practice. Ottawa, Ontario, Canada:2000
    [46]Martinellip. Bridge deck waterproof membrane evaluation[R]. A Laska:Stat e of A laska Department of Transportation and Public Facilities,1996
    [47]Report on the 1995 scanning review of European bridge structures[R]. NCH RP Report 381,1996
    [48]Medani T.O., Scarpas A., et al. Design aspects for wearing courses on or thotropic steel bridge decks[J]. Netherlands, Delft University of Technology, 2003
    [49]张占军,曹东伟,胡长顺.水泥混凝土桥面沥青铺装层厚度的研究[J].西安公路交通大学学报,2000,20(2):16-20
    [50]罗立峰,钟鸣,黄成造.水泥混凝土桥面铺装设计方法的研究[J].华南理工大学学报(自然科学版),2002,30(3):61-67
    [51]谭国金,刘寒冰,程永春等.基于车-桥耦合振动的简支梁桥冲击效应[J].吉林大学学报(工学版),2011,41(1):62-69
    [52]张占军,胡长顺,王秉纲.水泥混凝土桥面沥青铺装层结构设计方法研究[J].中国公路学报,2001,14(1):56-60
    [53]李闯民,李宇峙.钢桥桥面沥青铺装层应变变化规律研究[J].公路交通科技,2000,17(6):1-5
    [54]许涛,黄晓明.桥面铺装材料设计参数对铺装层受力影响[J].公路交通科技,2007,24(9):32-36
    [55]钱振东,刘云,黄卫.考虑不平度的桥面铺装动响应分析[J].土木工程学报,2007,40(4):49-53
    [56]张磊,张占军,黄卫等.基于车轮-桥面接触耦合特性的铺装层受力分析方法[J].中国公路学报,2009,22(4):50-56
    [57]刘云,钱振东.钢桥面铺装层动力响应分析[J].交通运输工程与信息学报,2007,5(3):52-56
    [58]徐勋倩,黄卫,吴国庆.基于损伤一断裂力学的钢桥面铺装体系疲劳特性研究[J].公路交通科技,2006,23(4):71-75
    [59]陈仕周,倪小军.桥面铺装与路面温度差异研究[J].中国公路学报,2005,18(2):56-60
    [60]逯彦秋,张肖宁,唐伟霞.桥面铺装层温度场的ANSYS模拟[J].华南理工大学学报(自然科学版),2007,35(2):59-62
    [61]逯彦秋,张肖宁,王圣保.钢箱梁桥沥青混凝土铺装层温度场的模拟分析[J].沈阳建筑大学学报(自然科学版),2006,22(5):750-755
    [62]王良艳.降低钢桥面铺装层的使用温度技术研究[D].重庆交通大学,2009
    [63]刘忠林.水泥混凝土桥面铺装结构与层间界面力学特性研究[D].重庆交通大学,2009
    [64]徐欧明,韩森,于静涛.层间界面对混凝土桥面铺装结构性能的影响[J].长安大学学报(自然科学版),2009,29(5):17-21
    [65]徐伟.大跨径混凝土桥梁沥青桥面铺装技术试验研究[D].华南理工大学,2002
    [66]李潜.基于防水粘结应力吸收的桥面铺装技术研究[D].武汉理工大学,2010
    [67]陆新征,叶列平,滕锦光等.FRP-混凝土界面粘结滑移本构模型[J].建筑结构学报,2005,(4):10-18
    [68]胡伟平,张行,孟庆春.复合材料层合板接触损伤问题的分析[J].复合材料学报,2007,24(1):151-157
    [69]傅衣铭,李升.考虑界面损伤层合梁板的层间应力分析[J].力学学报,2007,39(6):822-827
    [70]LI L, SHAO Y X, W Z S. Druability of wet bond of hybrid laminates to cas t in place concrete[J].Journal of Composites for Construction,2001,14 (2):20 9-216
    [71]Frandsen JB. Numerical bridge deck studies using finite elements[J]. Jou rnal of Fluids and Structures,2001,19(2):171-191
    [72]Ake Hermansson.Mathematical model for paved surface summer and wi nter temperature:Comparison of Calculated and Measured Temperatures[J]. Col d Regions Science and Technology,2004:1-17
    [73]Waterproofing of Concrete Bridge Decks. Organization for economic cooper ation and development [R],1972
    [74]ZHISHEN WU, WENXIAO BI, NAOKI SAKUMA. Innovative externally bonded FRP-c oncrete hybrid flexureal members[J]. Composite Structures,2006,72 (3):289-300
    [75]邓江东,宗周红,黄培彦.FRP-混凝土界面疲劳性能分析[J].复合材料学报,2010,27(1):155-159
    [76]邓江东,黄培彦,郭馨艳.受弯CFL加固RC梁界面疲劳裂缝扩展行为研究[J].工程力学,2008,25(11):37-41
    [77]韩学群.复合材料层合板分层损伤数值模拟[D].武汉理工大学,2010
    [78]韩强.CFRP-混凝土界面粘结滑移机理研究[D].华南理工大学,2010
    [79]刘新权,丁庆军,姚永永等.高粘度改性沥青配制钢箱梁桥面SMA铺装层的研究[J].公路,2007,(9):97-100
    [80]李玉龙,陈辉强等.沥青砂胶缓冲层在双层SMA钢桥面铺装体系中的应用研究[J].公路交通技术,2005,(5):78-84
    [81]唐智伦,禹淙,杨宏.橡胶沥青砂胶在混凝土桥面铺装中的应用[J].公路交通技术,2006,(4):45-48
    [82]李志军,程国香.桥面铺装技术及沥青铺装材料的现状与发展[J].石油沥青;2006,20(3):1-7
    [83]樊叶华,杨军.国外浇筑式沥青混凝土钢桥面铺装综述[J].中外公路,2003,23(6):1-4
    [84]王民,张华.浇筑式沥青混凝土铺装技术应用与发展[J].交通企业管理,2009,(10):42-44
    [85]余梁蜀,王春燕.浇筑式沥青混凝土施工流动性试验研究[J].水资源与水工程学报,2010,21(3):145-147
    [86]薛昕,王民,高博等.复合改性沥青浇筑式混凝土性能研究[J].重庆交通大学学报(自然科学版),2010,29(3):387-392
    [87]秦海兰,朱方之,吴剑.环氧树脂混凝土的研究现状和工程应用[J].焦作工学院学报(自然科学版),2003,22(2):109-114
    [88]刘松,邹云华,文俊.桥面铺装用环氧沥青制备技术的现状与展望[J].石油沥青,2009,23(6):1-5
    [89]刘大梁,刘小燕.环氧沥青混凝土性能试验研究[J].公路交通科技,2005,22(4)13-16
    [90]黄卫,钱振东,程刚.环氧沥青混凝土在大跨径钢桥面铺装中的应用[J].东南大学学报(自然科学版),2002,32(5):783-788
    [91]闵召辉,张翔,詹炳根.环氧沥青与石料的粘附性能研究[J].合肥工业大学学报(自然科学版),2005,28(11):1452-1457
    [92]王晓,程刚,黄卫.环氧沥青混凝土性能研究[J].东南大学学报(自然科学版),2 001,31(6):21-25
    [93]裴建中.桥面柔性防水材料技术性能研究[D].长安大学,2001
    [94]焦亚萌,张捷.混凝土桥面沥青铺装层对防水层剪应力影响分析[J].公路交通技术,2005,(6):22-25
    [95]徐伟,王绍怀,张肖宁.桥面铺装沥青混凝土级配对粘结层性能影响试验研究[J].中南公路工程,2002,27(4):62-65
    [96]季节,罗晓辉,徐世法.SBS改性沥青桥面粘结防水层材料与工艺研究[J].北京建筑工程学院学报,2003,19(4):9-13
    [97]张兰军,牟建波.厦门海沧大桥钢桥面铺装的结构形式和使用条件研究[J].公路,2001,(1):28-32
    [98]蓝仁华,陈立军,陈焕钦.建筑防水涂料现状和发展趋势[J].国外建材科技,2004,25(3):51-55
    [99]郭鑫淼.水泥混凝土桥铺装层防水粘结材料性能研究[D].长安大学,2009
    [100]乔立华.橡胶集料混凝土桥面铺装粘结性能研究[J].天津大学,2008
    [101]ZHU X Q, LAW S S. Identif icationg of vehicle axle loads from bridge dyn amic responses [J]. Journal of Sound and Vibration,2000,236 (4):705-724
    [102]PRIC. A.R. Waterproofing of concrete bridge decks site practice and fai lures[R].TRRL Report No.RR317.1991
    [103]Waterproofing Membranes for Concrete Bridge Decks[R]. NCHRP Synthesis o f Highway Practice.1995
    [104]Martinelli P. Bridge DecksWaterproof Membrane Evaluationg.1996
    [105]PRICE. A. Laboratory Tests on Waterproofing Systems for Concrete BridgeDecks. TRRL,1990
    [106]Haramis. Investigation of bond strength and waterightness of waterproo f concrete wearing surfaces for timber bridge decks. Virginia Polytechnic Ins itutc and State University. Blacksburg.1997
    [107]Waterproofing of Concrete Bridge Decks. Organization for economic coope ration and development [R],1972
    [108]谢产庭,卢铁瑞,张家升等.北京市立交桥防水层性能改善途径[J].中国建筑防水材料,1995,(3):32-35
    [109]Kennedy T W. Practical use of the indirect tensile test for the charact erization of pavement materials. Proc 9th ARRb Conference. Australia.1978
    [110]Johnson. Bridge deck waterproofing membrane evaluation. Proceedings of the International Conference on Cold Regions Engineering.1998
    [111]Bjegvic D, Stehly R D. Test protocols for migrating corrosion inhibitors in enforced conctete[J]. Materials and Corrosion,2000,51(6):444-451
    [112]Koichi M. Adhesion of bituminous waterproofing membranes for bridge app lications. Swiss Federal Lab for Materials Testing and Research,1999
    [113]Waterproofing Membranes for Concrete Bridge Decks[R]. NCHRP Synthesis o f Highway Practice220.1995
    [114]Martinelli P. Bridge Decks Waterproof embrane Evaluation. Sep.1996
    [115]PRIC. A. R. Waterproofing of concrete bridge decks site practice and fail ures[R].TRRL Report No. RR317.1991
    [116]陈仕周,邓学钧,陈辉强.上海卢浦大桥钢桥面铺装防水体系的研究[J].东南大学学报(自然科学版),2004,34(3)395-400
    [117]杨朋,张肖宁,吴少鹏.桥面铺装粘结材料的制备与性能研究[J].科学技术与工程,2008,8(10):2601-2605
    [118]姜华贵.聚酯玻纤复合材料在水泥砼桥桥面防水粘结层中的应用研究[D].重庆交通大学,2009
    [119]陈拴发,张占军,周庆华等.混凝土桥面防水层施工损伤性能研究[J].西安建筑科技大学学报(自然科学版),2005,37(1):95-100
    [120]杨育生,李振霞,王选仓等.桥面铺装同步碎石防水粘结层的路用性能[J].长安大学学报(自然科学版),2009,29(6):19-26
    [121]刘国杰,黄晓明.特大桥梁沥青铺装层层间稳定性试验研究[J].公路交通科技,2007,24(6):29-35
    [122]蒋甫海,周冰,张崇高.防水粘结层对桥面铺装受力的影响[J].结构工程师,2008,24(5):54-58
    [123]杨育生,陈渊召,汪日灯.沥青混凝料桥面铺装层间工作状态确定及新型防水粘结材料研究[J].公路,2009,(4):119-124
    [124]Lorenz, V. M.1987. New Mexico Study of Interlayers Used in Reflective Crack Control. Transportation Research Record, Transportation Research Boar d of the National Academics, Washington, D. C., Vol.1117, pp.94-103.
    [125]Coetzee, N. F., and C. L. Monismith.1979. Analytical Study of Minimiz ation of Reflection Cracking in Asphalt Concrete Overlays by Use of a Rubbe r- Asphalt Interlayer. Transportation Research Record, TRB, National Researc h Council, Washington, D. C., Vol.700, pp.100-108.
    [126]Buttlar, W. G., D. Bozkurt, and B. J. Dempsey.2000. Cost-Effectivenes s of Paving Fabrics Used to Control Reflective Cracking. Transportation Rese arch Record:Journal of the Transportation Research Board, National Research Council, Washington, D. C., Vol.1730, pp.139-149.
    [127]Al-Qadi, I. L., M. Elseifi, and D. Leonard.2003. Steel Reinforcing Ne ttings Mechanism to Delay Reflective Cracking in Asphalt Concrete Overlays. Journal of the Association of Asphalt Paving Technologists, Vol.82, pp.38 8-423.
    [128]Blomberg, J. M. Superpave Overlay of Sand Anti-Fracture over Portland Cement Concrete Pavement. Publication RDT 00-001. Missouri Department of Tra nsportation, Jefferson City,2003.
    [129]Vespa, J. W. An Evaluation of Interlayer Stress Absorbing Composite Re flective Crack Relief System. Publication FHW A-IL-PRR 150. FHW A, U.S. Depa rtment of Transportation,2005.
    [130]Blankenship, P., N. Iker, and J. Drbohlav. Interlayer and Design Considerat ions to Retard Reflective Cracking.2004. Transportation Research Record:Jo urnal of the Transportation Research Board, Transportation Research Board of the National Academies, Washington, D. C., Vol.1896, pp.177-186.
    [131]Scullion, T., and C. VonHoldt. Performance Report on Jointed Concrete P avement Repair Strategies in Texas. Publication FHWA/TX/04-4517-1. Texas Tra nsportation Institute, College Station,2004.
    [132]Bischoff, D. Evaluation of Strata(?) Reflective Crack Relief System. Pub lication FEP-01-07. Wisconsin Department of Transportation, Madison,2007.
    [133]Al-Qadi, I. L., W. G. Buttlar, J. Baek, and M. Kim. Cost Effectiveness and Performance of Overlay Systems in Illinois-Volume 1:Effectiveness Ass essment of HMA Overlay Interlayer Systems Used to Retard Reflective Cracking. Publication FHWA-ICT-09-44. Illinois Center for Transportation, Urbana,200 9.
    [134]Baek, J. and Al-Qadi, I.L.2011. Sand Mix Interlayer to Control Reflec tive Cracking in Hot-Mix Asphalt Overlay. Transportation Research Record, TR B, National Research Council, Washington, D. C., Vol.2227, pp.53-60.
    [135]秦禄生,许志鸿.一种高弹沥青面层抗反射裂缝能力试验研究[J].同济大学学报(自然科学版),2008,36(12):1647-1651
    [136]谭忆秋,石昆磊等.高粘性沥青应力吸收层防治反射裂缝研究[J].哈尔滨工业大学学报,2008,40(2):241-245
    [137]叶志刚.Strata反射裂缝应力吸收层混合料配合比设计及施工技术[J].辽宁交通科技,2006,(2):12-15
    [138]谭忆秋,石昆磊,朱峰等.级配对应力吸收层沥青混合料性能的影响[J].长安大学学报(自然科学版),2009,29(2):33-37
    [139]许睦晖.钢桥面铺装沥青砂胶缓冲层的开发及应用研究[J].公路交通技术,2007,(3):43-477
    [140]廖卫东,陈拴发,刘绍宇.应力吸收层沥青混合料路用性能试验研究[J].公路交通科技,2006,26(3):13-18
    [141]汤文,孙立军,陈继松.应力吸收层防治沥青加铺层反射裂缝的力学分析[J].公路工程,2008,33(4):1-5
    [142]汤文,盛晓军,孙立军.应力吸收层沥青混合料性能研究[J].建筑材料学报,2009,12(2):173-178
    [143]叶永,杨新华,陈传尧.沥青砂粘弹性模型参数的试验研究[J].中外公路,2009,29(4):192-196
    [144]叶永,邵瑾,陈传尧.沥青砂粘弹塑本构模型及其验证[J].武汉理工大学学报,2009,31(17):46-52
    [145]杨大田,黄涛,夏文军等.纤维沥青胶砂的抗剪试验研究[J].重庆交通大学学报,2008,27(4):589-593
    [146]叶永,杨新华,陈传尧.不同应力水平下沥青砂蠕变模型实验对比[J].华中科技大学学报(自然科学版),2009,37(3):116-119
    [147]蔡宜洲,叶永.沥青砂粘弹特性实验研究[J].工程力学,2010,27(s1):201-204
    [148]YE Yong,Yang Xinhua, Chen chuanyao. Viscoelastoplastic constitutive mod el forcreep deformation behavior of asphalt sand[J]. J. Cent. South Univ. Techno 1,2008,15(s13):13-16
    [149]Shalaby, A., ABD ELHALIM A.O., and Easa, S. M..2007. Low-Temperature St resses and Fracture Analysis of Asphalt Overlays. Transportation Research Re cord, TRB, National Research Council, Washington, D. C., Vol.1539, pp.132-13 9.
    [150]程毅.设置应力吸收层的水泥混凝土路面沥青加铺层结构研究[D].长安大学,2006
    [151]廖卫东,刘洪海,张昌波.STRATA应力吸收层的级配特征与施工控制技术[J].公路,2005,(5):13-18
    [152]刘小滔.基于路用性能的应力吸收层沥青混合料设计方法研究[D].重庆交通大学,2011
    [153]刘丹.应力吸收层材料组成及特性研究[D].长安大学,2008
    [154]张东,许益东,赵永利.基于TSRST的沥青路面温度应力计算参数的反算方法[J].石油沥青,2009,23(5):30-33
    [155]R. Dongre, Sharma, M. G., D. A. Anderson. Development of Fracture Criterion fo r Asphalt Mixes at Low Temperatures,68th Annual Meeting of TRB[J]. Transport ation Research Board. Washingtong D C,1989,:94-105
    [156]D. Little, K. Mahmoub.Engineering Properties of First Generation Plastici zed Sulfur Binders and Low Temperature Fracture Evaluation of Plasticized Su lfur Pving Mixtures. [J].64th Annual Meeting of TRB. Washingtong DC,1985:103-1 11
    [157]Peter E, Sebaaly, Andrew Lake. Evaluationg of low temperature properties of HMA mixtures. ASCE Journal of Transportation Engineering[J].2011,4
    [158]R. A. Burgess,O. Kopwillem. Anne Test Road Relationships Between Fracture Temperature and Low Temperature Field Performance,Proceedings of AAPT,Vol 40, 1971
    [159]张磊.沥青混合料低温开裂及松弛特性的研究[D].哈尔滨工业大学,2010
    [160]李遇春.弹性力学[M].北京:中国建筑工业出版社,2009
    [161]吴赣昌.层状路面结构温度应力分析[J].中国公路学报,1993,6(4):1-8
    [162]杨懋杰.弹性地基水平约束力的分析计算[J].工程力学,1998,12(2):203-208
    [163]Yang, J., Dai, P., Yu, B., Yang, Y..2008. Asphalt Sand Stress Absorbing Interlayer Used in Asphalt Pavement with Semi-rigid Base. Pavement Cracking:Mechanisms, Modeling, Detection, Testing and Case Histories, pp. 229-238
    [164]Carpenter, S. H., and R. L. Lytton.1978. Procedure for Predicting Occurr ence and Spacing of Thermal-Susceptibility Cracking in Flexible Pavements. T ransportation Research Record, TRB, National Research Council, Washington, D. C., Vol.671, pp.39-46.
    [165]Hiltunen, D. and R. Roque. A Mechanics-Based Prediction Model for Ther mal Cracking of Asphalt Concrete Pavements.1994. Association of Asphalt Pav ing Technologists, Vol.63, pp.81-113.
    [166]Christison, J. T., D. W. Murray, and K.O. Anderson.1972. Stress Pred iction and Low Temperature Fracture Susceptibility of Asphaltic Concrete Pav ements. Association of Asphalt Paving Technologists, Vol.41, pp.494-523.
    [167]郝培文,张登良.沥青混合料应力松弛性能研究[J].西安公路交通大学学报,1996,13(4):26-30
    [168]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999
    [169]Manuel J C, Minhoto J, Pereira A, et al.The influence of temperature vari ation in the prediction of the pavement overlay life[J]. Road Materials and Pavement Design,2005,6(3):360-365
    [170]Ruhl J L, Daniel D E. Geosynthetic clay liners permeated with chemical s olutions and leachates[J]. Journal of Geotechnical and Geoenvironmental Engin eering.20(4),1997:353-361
    [171]谈至明,熊军,姜艺,周玉民.沥青加铺层温度应力研究(Ⅱ)内力及层间反力近似解[J].同济大学学报(自然科学版),2009,37(2):197-202
    [172]杨斌,陈拴发,廖卫东等.STRATA应力吸收层对加铺层荷载及温度应力的影响分析[J].公路交通科技,2005,22(9):27-31
    [173]郭华筝.地基约束下大体积混凝土底板的温度裂缝研究[DJ].长安大学,2010
    [174]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,2003
    [175]朱伯芳.地基上混凝土梁的温度应力[J].土木工程学报,2006,39(8):96-101
    [176]叶碧泉,周焕文.层状复合材料结构的破坏形式—脱层[J].武汉大学学报(自然科学版),2004,(4):17-24
    [177]李乐,何录武,闵国林.复合材料层合梁的横向剪应力分析[J].兰州大学学报,2001,37(5):15-23
    [178]Chen A T, Yang T Y. Static and dynamic formaulation of a symmetrically laminated beam finite element for a microcomputer[J]. Journal of Composite Ma teriales,1985, (5):459-475
    [179]息志臣,陈浩然.复合材料层合梁理论[J].复合材料学报,1994,11(2):1-6
    [180]高金良,吴莜峰.双层组合梁应力分析与试验研究[J].嘉兴学院学报,2007,19(6):8-12
    [181]唐晓雯,尚新春.层合梁弯曲正应力的测试与计算[J].力学与实践,2010,32(4):77-8
    [182]张锡祥.复合材料层合梁层间挤压应力的简化分析计算[J].重庆交通学院学报,1992,11(1):53-59
    [183]任永臻,陈茶花.复合梁的应力分析与试验研究[J].重庆科技学院学报(自然科学版),2009,34(3):91-95
    [184]谢丽君.简支双层叠合梁的变形计算[J].机械强度,2012,34(5):777-780
    [185]张起森,郑健龙.弹性层状体系考虑层间接触非线性的有限单元分析法[J].土木工程学报,1989,22(3):63-76
    [186]王奇志,孟庆春,张行.复合材料层合梁分层问题解析解法[J].北京航空航天大学学报,1998,24(3):319-323
    [187]孔凡峰,曹志远,唐寿高.复合材料/混凝土复合梁的力学分析[J].工程力学,2001,(S1):317-323
    [188]谈至明.弹性地基上双层叠合梁的解[J].力学学报,1997,29(6):751-755
    [189]李秀莲.等效截面法求解异质双材料组合梁[J].青海大学学报(自然科学版),2008,26(6):93-97
    [190]闫志刚,季文玉,战家旺.钢筋混凝土及预应力混凝土简支梁桥结构设计[M]北京:机械工业出版社,2008:129-142
    [191]梁涛.动载作用下沥青路面三维有限元分析[J].北方交通,2009,(11):35-37
    [192]李晓甫,赵克刚,黄向东等.汽车行驶阻力模型参数的确定[J].汽车工程,2011,21(8):645-648
    [193]何兆益,雷婷,陈洪兴等.沥青路面车辙变形的三维粘弹性动力有限元分析[J].重庆建筑大学学报,2008,22(6):32-36
    [194]于玲,钟右鹏,包龙生.交叉口沥青路面变形病害机理分析[J].沈阳建筑大学学报(自然科学版),2010,33(4):709-715
    [195]张占军,胡长顺.设防水层的混凝土桥桥面铺装结构剪应力计算与分析[J].西安公路交通大学学报,2001,17(2):146-149
    [196]詹晓丽,张肖宁,王端宜.基于动态蠕变性能的沥青延迟时间谱研究[J].中国公路学报,2008,31(2):34-38
    [197]郭成超,肖丽霞,乐金朝.基于蠕变模型的轴载作用下沥青路面车辙分析[A].第十四届北方七省市区力学学术会议,2012,8:1118-1122
    [198]徐鸿飞.基于重复蠕变恢复试验的沥青高温性能评价指标研究[D].山东建筑大学,2012
    [199]黄菲.沥青路面永久变形数值模拟及车辙预估[D].东南大学,2006
    [200]金德印,蔡之瑞.计算结构动力反应的非振型叠加法[J].世界地震工程,1992,37(2):53-57
    [201]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2010
    [202]郑大为.桥梁检测中的整栋分析及应用[D].辽宁工程技术大学,2007
    [203]樊伏云,庞捷.关于简谐振动的能量问题[J].中山大学学报,1994,28(4):58-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700