具有非线性边界条件的发展型p-Laplace方程(组)解的存在性和爆破性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先讨论了如下具有非线性源项的发展型p-Laplace方程组的初边值问题其中T > 0, q11,q12,q21,q22 0,a,λ> 0, p1,p2 > 1.所讨论问题包括局部源,非局部源,非线性扩散项以及非线性边界条件对上述方程组解爆破的临界指标的影响.
     对于f(u,v),g(u,v)为非线性局部源(形如um11vm12, um21vm22)的情况,作者讨论了上述方程组弱解的性质.通过抛物正则化方法和弱比较原理,得到了该问题弱解的局部存在性,整体存在性和爆破的条件.
     对于f(u,v),g(u,v)为非线性非局部源(形如的情况,作者也讨论了该方程组弱解的局部存在性与整体性质.
     本文还讨论了如下同时具有局部化源和非局部源的双重退化抛物方程的初边值问题其中T > 0, a,b,λ,k,m,p,r,q > 0, x0∈[0,1].作者获得了该问题弱解的局部存在性,并且讨论了各种非线性项对解整体性质的影响.
In the real world, di?usion phenomena exists widely. The mathemat-ical models are partly reduced to the study of some parabolic equationsor systems. In chemistry, ?uid mechanics, theory of phase transitions, im-age processing, biological populations, as well as areas such as percolationtheory, have raised a number of parabolic equations with appropriate ini-tial and boundary conditions to describe the di?usion phenomena, In therecent decades, many scholars have made significant progress in studyingsuch models.
     Usually, people use some linear equations to describe some di?usionmodels, but most of the real models should be described with nonlinearequations. Therefore, the parabolic equations used to describe these mod-els may have nonlinear terms, and also may be degenerate or singular. Al-though the nonlinear problems may accurately re?ect some actual phenom-ena, but they also cause some di?culties in studying these problems. Forexample, the nonlinear terms (di?usion term, source term, boundary term)will play a role in promoting or hindering in blowing-up of the solutions.
     This paper mainly studies some problems on some systems of evolu-tional p-Laplacian equations and systems of doubly degenerate parabolic equation. The topics include the e?ect of the nonlinear boundary condi-tion, nonlinear local sources, nonlinear localized sources, nonlinear nonlocalsources and coupling among them in the critical exponents of solutions.This thesis consist of three chapters.
     In the Introduction, we recall the background of the related topics andsummarize the main results of the present thesis.
     In Chapter 1, we have studied two systems of evolutional p-Laplacianequations with local sources and the nonlinear boundary conditions. Thereare di?erent degrees of the complexity of the nonlinear properties in twotypes of local sources. We have overcome the di?culties caused by thenonlinear terms. With the use of the method of parabolic regularizationand comparison principle, we prove a necessary and su?cient condition onblow-up of the solutions. We may notice that from the final results, thepromoting role in blow-up of the solutions, caused by di?erent nonlinearterms, is also di?erent.
     In the first part of Chapter 1, we consider the following evolutionalp-Laplacian system with nonlinear local sources and nonlinear boundaryconditions:
     where T > 0, m1,m2,q1,q2 > 0, p1,p2 > 1. Since the system has non-linear local sources vm1,um2 and nonlinear boundary conditions vq1,uq2,it is in general di?cult to study the system. We regularize the problem (1), prove some estimates for the solutions of the regularized problem, andhence obtain the local existence of solutions. Then, we prove a weak com-parison principle and obtain some necessary and su-cient conditions on theglobal existence of all positive(weak) solutions by constructing a supersolu-tion(subsolution) of the system. Our main results are the following:
     Theorem 2 All positive weak solutions of the system (1) exist globallyif and only if m1m2 1, q1q2p1p2 1, m1p2q2 1 and m2p1q1 1.
     Theorem 3 All positive weak solutions of the system (1) blow up infinite time if and only if m1m2 > 1, q1q2p1p2 > 1, m1p2q2 > 1 or m2p1q1 > 1.
     In the second part of Chapter 1, we study the evolutional p-Laplaciansystem with more complicated local sources:where T > 0, m11,m12,m21,m22,q1,q2 > 0, p1,p2 > 1. We also prove thelocal existence of the weak solution of the problem. And then, we discussthe global existence and blow-up of weak solutions. The main results arethe following:
     Theorem 4 All positive weak solutions of the system (2) exist globallyif and only if m11m22 1, p1p2q1q2 1, m12m21 (1 - m11)(1 - m22),m21p1q1 1 - m22 and m12p2q2 1 - m11.
     Theorem 5 All positive weak solutions of the system (2) blow up infinite time if and only if m11m22 > 1, p1p2q1q2 > 1, m12m21 > (1-m11)(1-m22), m21p1q1 > 1 - m22 or m12p2q2 > 1 - m11.
     In Chapter 2, we study two systems of evolutional p-Laplacian equa-tions with nonlinear boundary conditions. The first system has nonlinearnonlocal sources. The second system has coupled local and nonlocal sources.Compared with the equations in Chapter 1, there are di-erent types of thenonlinear sources and complexity of the nonlinear boundary conditions ofthe equations in Chapter 2. In the second chapter, for the source term andcomplexity of the boundary conditions, we conducted a more detailed dis-cussion and finally obtain some necessary and su-cient conditions to theexistence of the solutions.
     In the first part of Chapter 2, we consider the following evolutionalp-Laplacian system with nonlinear nonlocal sources and more complicatedboundary conditions:where T > 0, m1,m2,q11,q12,q21,q22 > 0, p1,p2 > 1. We have overcomethe di-culties caused by the nonlocal sources and the boundary conditions,and obtain the local existence of the weak solutions to the system. Then wediscuss the global existence(blow-up) of weak solutions of the system. Themain results are the following theorems:
     Theorem 6 All positive weak solutions of the system (3) exist globallyif and only if m1m2 1, q12q21p1p2 (1 - p2q22)(1 - p1q11), m1p2q211 - p2q22 and m2p1q12 1 - p1q11.
     Theorem 7 All positive weak solutions of the system (3) blow up infinite time if one of the following inequalities holds:
     i) m1m2 > 1;
     ii) m1m2 1, q12q21p1p2 (1-p2q22)(1-p1q11) and m1p2q21 > 1-p2q22;
     iii) m1m2 1, q12q21p1p2 (1 - p2q22)(1 - p1q11) and m2p1q12 >1 - p1q11;iv) m1m2 1, q12q21p1p2 > (1 - p2q22)(1 - p1q11).
     Then, in the second part of Chapter 2, we consider the evolutionalp-Laplacian system with more complicated nonlocal sources:-where T > 0, m11,m12,m21,m22,q11,q12,q21,q22,a,b,λ> 0, p1,p2 > 1.With this type of source terms, we discuss the local existence, global exis-tence and blow-up of the weak solutions. The main results are the followingtheorems:
     Theorem 8 All positive weak solutions of the system (4) exist globallyif and only if m11m21 1, (1 - m11)(1 - m21) m12m22, q12q21p1p2(1 - p2q22)(1 - p1q11), m12p2q21 (1 - m11)(1 - p2q22) and m22p1q12(1 - m21)(1 - p1q11).
     Theorem 9 All positive weak solutions of the system (4) blow up infinite time if one of the following inequalities holds:
     i) m11 > 1 and m21 > 1;
     ii) m11m21 1 and (1 - m11)(1 - m21) < m12m21;
     iii) m11m21 1, (1 - m11)(1 - m21) m12m22, q12q21p1p2 (1 -p2q22)(1 - p1q11) and m12p2q21 > (1 - m11)(1 - p2q22);
     iv) m11m21 1, (1 - m11)(1 - m21) m12m22, q12q21p1p2 (1 -p2q22)(1 - p1q11) and m22p1q12 > (1 - m21)(1 - p1q11);
     v) m11m21 1, (1 - m11)(1 - m21) m12m22 and q12q21p1p2 > (1 -p2q22)(1 - p1q11).
     In Chapter 3, we consider the following system of doubly degenerateparabolic equation with nonlinear nonlocal source and nonlinear localizedsource:where t > 0, a,b,λ,k,m,p,r,q > 0, x0∈[0,1]. We obtain:
     Theorem 10 If k < p or k < r, All positive weak solutions of thesystem (5) blow up.
     Theorem 11 If k p,r and k m, then when q > mk, all positiveweak solutions of the system (5) blow up; when q mk, all positive weaksolutions of the system exist globally.
     Theorem 12 If k p,r and k > m, then when q > all positiveweak solutions of the system (5) blow up; when q , all positive weaksolutions of the system exist globally.
引文
[1]田娅,非线性反应扩散方程的解的熄灭和支集收缩等性质[D],成都,四川大学,2007.
    [2] BARENBLATT G. I., Entov V. M., Rizhnik V. M., Motion of ?uids and gases innatural strata[M], Nedra, Moscow, 1984.
    [3] WU Z. Q., ZHAO J. N., YIN J. X., LI H. L., Nonlinear di?usion equations[M],World Scientific, Singapore, 2001.
    [4] ASTRITA G., MARRUCCI G., Principles of non-newtonian ?uid Mechanics[M],McGraw-Hill, 1974.
    [5] DIBENEDETTO E., Degenerate parabolic equations[M], Springer, Berlin, 1993.
    [6] GUTIN M. E., MACCAMY R. C., On the di?usion of biolocical[J], Math. Biosci.,1977, 33: 35– 49.
    [7] KALASHNIKOV A. S., On a nonlinear equation arising in the theory of nonlinearfiltration[J], Trudy Sem. Petrovsk., 1978, 4: 137-146.
    [8] LADYZENSKAJA O. A., SOLONNIKOV V. A., URALCEVA N. N. Linearand quasilinear equations of parabolic type[M], Translations of Mathematics Mono-graphs, Amer.Math.Soc., Providence, RI, 1968.
    [9] TAN Z., Non-Newton filtration equation with nonconstant medium void and criticalsololev exponent[J], Acta Math. Sin., 2004, 20: 367– 378.
    [10]伍卓群,尹景学,王春朋,椭圆与抛物方程引论[M],科学出版社, 2003.
    [11]王建,双重退化抛物方程的若干问题[D],长春,吉林大学数学研究所, 2007.
    [12] ALESSANDRINI G, GAROFALO N., Symmetry for degenerate parabolic equa-tions[J], Archive for Rational Mechanics and Analysis, 1989, 108: 161-174.
    [13] ANDERSON J. R., Local existence and uniqueness of solutions of degenerateparabolic equations[J], Commun. in Partial Di?erential Equations, 1991, 16: 105-143.
    [14] ANDERSON J. R., Stability and instability for solutions of the convective porousmedium equation with a nonlinear forcing at the boundary[J], Journal of Di?erentialEquations, 1993, 104: 361-408.
    [15] ANDREU F., MAZO′N J. M., TOLEDO J., ROSSI J. D., Porous medium equationwith absorption and a nonlinear boundary condition[J], Nonlinear Analysis: Theory,Methods & Applications, 2001, 49: 541-563.
    [16] ARONSON D. G., The porous medium equation[J], Fasano, Primicerio(Eds.), Non-linear Di?usion Problems, Springer, Berlin, L.N.M., 1986, 1224, 1-46.
    [17] FIFE P., Solutions of parabolic boundary problems existing for all time[J], Arch.Mech. Anal., 1964, 16: 155– 186.
    [18] FILO J., KACUR J., Local existence of general nonlinear parabolic systems[J],Nonlinear Analysis: Theory, Methods & Applications, 1995, 24: 1597-1618.
    [19] IGBIDA N., URBANO J. M. , Uniqueness for nonlinear degenerate problems[J],Nonlinear Di?er. Equ. Appl., 2003, 10: 287– 307.
    [20] IVANOV A. V., UNIFORM H¨older estimates for generalized solutions of quasilinearparabolic equations admitting a double degeneracy[J], Algebra Anal., 1991, 3: 139– 179.
    [21] KALASHNIKOV A. S., Some problems of the qualitative theory of nonlinear de-generate second-order parabolic equations[J], Russian Math. Survey, 1987, 42: 169-222.
    [22] WU Z., ZHAO J., YIN J., LI H., Nonlinear di?usion equations[M], WorldScientific, Singapore, 2001.
    [23] ARRIETA, J. M. , CARVALHO A. N.和BERNAL A. R. Parabolic problems withnonlinear boundary conditions and critical nonlinearities[J]. Journal of Di?erentialEquations, 1999, 156: 376-406.
    [24] IVANOV A. V., JA¨GER W., Existence and uniqueness of a regular solutionof Cauchy- Dirichlet problem for equations of turbulent filtration[J], UniversitatHeidelberg, 1997, 18: 153– 198.
    [25] URBANO J. M., HO¨LDER continuity of local weak solutions for parabolic equa-tions exhibiting two degeneracies[J], Adv. Di?erential Equations, 2001, 6: 327-358.
    [26] URBANO J. M., Continuous solutions for a degenerate free boundary problem[J],Ann. Mat. Pura. Appl., 2000, 178: 195-224.
    [27] ZHANG Q. S., A Strong Regularity Result for Parabolic Equations[J], Communi-cations in Mathematical Physics, 2004, 244: 245-260.
    [28] KO Y., C1,αRegularity of interface of some nonlinear degenerate parabolic equa-tions[J], Nonlinear Analysis: Theory, Methods & Applications, 2000, 42: 1131-1160.
    [29] CHEN C., Global nonexistence of solutions to degenerate parabolic equations inunbounded domains[J], Applied Mathematics Letters, 2006, 19: 535-540.
    [30] DENG K., LEVINE H. A., The role of critical exponents in blow-up theorems:the sequel[J], J. Math. Anal. Appl., 2000, 243: 85– 126.
    [31] DING J. T., Blow-up of solutions for a class of semilinear reaction di?usion equa-tions with mixed boundary conditions[J], Appl. Math. Lett., 2002, 15: 159– 162.
    [32] ERDEM D., Blow-up of solutions to quasilinear parabolic equations[J], Appl. Math.Lett., 1999, 12: 65– 69.
    [33] ESCHER J., Global existence and nonexistence for semilinear parabolic systemswith nonlinear boundary conditions[J], Math. Ann., 1989, 284: 285-305.
    [34] ESCOBEDO M., HERRERO M. A., Boundedness and blow up for a semilinearreaction-di?usion system[J], J. Di?erential Equations, 1991, 89: 176-202.
    [35] FILA M., Remarks on blow-up for a nonlinear parabolic equation with a gradientterm[J], Proc. Amer. Amer. Math. Soc, 1991, 111: 795– 801.
    [36] FRIEDMAN A., MCLEOD B., Blow-up of positive solutions of semilinear heatequations[J], Indiana Univ. Math. J, 1985, 34: 425– 447.
    [37] FUJITA H., On the blowing up of solutions of the Cauchy problem for ut =?u + u1+α[J], J. Fac. Sci. Univ. Tokyo. Sect., 1966, 13: 109– 124.
    [38] GALAKTIONOV V. A., Boundary value problem for the nonlinear parabolic equa-tion ut = ?uσ+1[J], Di?. Uravn. 1981, 17: 836-842. English translation Di?. Equa.,1981, 17: 551-555.
    [39] HU B., YIN H., On critical exponents for the heat equation with a mixed Drichilet-Neumann boundary condition[J], J. Math. Anal. Appl., 1997, 209: 683– 711.
    [40] LAIR A. V. , OXLEY M. E., A necessary su?cient condition for global existencefor a degenerate parabolic boundary value problem[J], J.Math.Anal.Appl, 1998, 221:338-348.
    [41] LEVINE H. A., The role of critical exponents in blow-up theorems[J], SIAM Rev.,1990, 32: 262– 288.
    [42] GABRIELLA C., MITIDIERI E., Blow-up estimates of positive solutions of aparabolic system[J], J. Di?erential Equation, 1994, 113: 265-271.
    [43] SOUPLET P. Uniform blow-up profiles and boundary behavior for di?usion equa-tions with nonlocal nonlinear source[J], J. Di?erential Equations, 1999, 153: 374-406.
    [44] ZHENG S. N., WANG W., Blow-up rate for a nonlinear di?usion equation[J].Applied Mathematics Letters, 2006, 19: 1385-1389.
    [45] ALLEGRETTO W., NISTRI P., Existence and optimal control for periodicparabolic equations with nonlocal term[J], IMA Journal of Mathematical Controland Information, 1999, 16: 43– 58.
    [46] HIRANO N., Existence of unstable periodic solutions for semilinear parabolic equa-tions[J], Nonlinear Analysis: Theory, Methods & Applications, 1994, 23: 732–744.
    [47] KE Y. Y., HUANG R., SUN J. B., Periodic solutions for a degenerate parabolicequation[J], Applied Mathematics Letters, 2009, 22: 910-915.
    [48] LIU Z. H., Periodic solutions for double degenerate quasilinear parabolic equa-tions[J], Nonlinear Analysis: Theory, Methods & Applications, 2002, 51: 1245-1257.
    [49] ESCOBEDO M., ZUAZUA E., Global existence and global non-existence of solu-tions to a reaction- d?usion system[J], SIAM J. Math. Anal., 1997, 28: 570-594.
    [50] CHUESHOV I. D., VUILLERMOT P. A., Long-time behavior of solutions to aclass of stochastic parabolic equations with homogeneous white noise[J], Probab.Theory Relat. Fields, 1998, 112: 149-202.
    [51] DIBENEDETTO E., HERRERO M. A., On the Cauchy problem and initial tracesfor a degenerate parabolic equations[J], Trans. Amer. Soc., 1989, 314: 187- 224.
    [52] DIBENEDETTO E., HERRERO M. A., Nonnegative solutions of the evolutionsp-Laplacian equation, Initial traces and Cauchy problem when 1 ? p ? 2[J], Arch.Rat. Mech. Anal., 1990, 111: 225-290.
    [53] DIBENEDETTO E., On the local behavior of solutions of degenerate parabolicequations with measurable coe?cients[J], Ann. Scu. Norm. Sup. Pisa., 1986, 13:487– 535.
    [54] IVANOV A. V., MKRTYCHYAN P. Z., The weight estimates of gradient ofnonnegative weak solutions of quasilinear parabolic equations with double degener-ation[J], Zap. Nauchn. Semin. LOMI, 1990, 181: 275– 285.
    [55] ORTOLEVA P., ROSS J. Local structures in chemical reactions with heterogeneouscataysis[J], J. Chem. Phys, 1972, 56: 4397.
    [56] C E′LINE A., PHILIPPE C., MITIDIERI E., Existence and a priori estimatesfor positive solutions of p-Laplace systems[J], J. Di?erential Equations, 2002. 184:422-442.
    [57] L E? A., Eigenvalue problems for the p-Laplacian[J], Nonlinear Analysis: Theory,Methods & Applications, 2006, 64: 1057-1099.
    [58] DRABEK P., A Note on the Nonuniqueness for Some Quasilinear Eigenvalue Prob-lem[J], Applied Mathematics Letters, 2000, 13: 39-41.
    [59] CHEN H. W., Global existence and blow-up for a nonlinear reaction-di?usionsystem[J], J. Math. Anal. Appl., 1997, 212: 481-492.
    [60] CHEN Y. J. Semilinear blow-up in nonlocal reaction-di?usion systems with non-linear memory[J], Jounal of Nanjing University(Mathematical Biquarterly), 2006,1: 121-128.
    [61] CHEN Y. P., XIE C. H. Global Existence and Nonexistence for a Strongly Cou-pled Parabolic System with Nonlinear Boundary Conditions[J]. Acta MathematicaSinica, English Series, 2005, 22: 1297-1304.
    [62] ClE′MENT P., MANA′SEVICH R., MITIDIERI E., Positive solutions for a quasi-linear system via blow up[J], Commun. in Partial Di?. Equa., 1993, 518: 2071-2106.
    [63] CONSTANTIN A., ESCHER J., YIN Z., Global solutions for quasilinear parabolicsystem[J], J. Di?erential Equations, 2004, 197: 73-84.
    [64] DENG W., LI Y., XIE C., Global existence and nonexistence for a class of degen-erate parabolic systems[J], Nonlinear Analysis: Theory, Methods & Applications,2003, 55: 233-244.
    [65] ESCOBEDO M., LEVINE A. H., Critical blow-up and global existence numbersfor a weakly coupled system of reaction-di?usion equations[J], Arch Rational Mech.Anal., 1995, 129: 47-100.
    [66] FUKUDA I., OKADA A. Behavior of solutions of nonlinear parabolic equationswith localized reactions[J], Nonlinear Analysis: Theory, Methods & Applications,2001, 47: 3215-3221.
    [67] HOLLIS S., MARTIN R., PIERRE M., Global existence and boundedness inreaction-di?usion systems[J], SIAM J. Math. Anal., 1987, 18: 744-761.
    [68] WANG M. X. Blow-up rates for semilinear parabolic systems with nonlinear bound-ary conditions[J]. Applied Mathematics Letters, 2003, 16: 543-549.
    [69] ZHENG S. N., JI R. H., Multiple absorption-related blow-up rates to a coupledheat system[J]. J. Math. Anal. Appl., 2009, 355: 739-749.
    [70] ZHENG S. N., WANG W., Blow-up rates for semilinear parabolic systems withnonlinear boundary conditions[J]. Applied Mathematics Letters, 2003, 16: 543-549.
    [71] ALAA N., IGUERNANE M., Weak periodic solutions of some quasilinear parabolicequations with data measures[J], Journal of Inequalities in Pure and Applied Math-ematics, 2002, 46: 1– 31.
    [72] DANCER E. N., HESS P., On stable solutions of quasilinear periodic parabolicproblems[J], Ann. Scu. Norm. Sup. Pisa., 1987, 14: 123– 141.
    [73] LI F. J., LIU B. C., Critical exponents for non-simultaneous blow-up in a localizedparabolic system[J], Nonlinear Analysis: Theory, Methods & Applications, 2009,70: 3452-3460.
    [74] LU H. H., WANG M. X., Global solutions and blow-up problems for a nonlineardegenerate parabolic system coupled via nonlocal sources[J], J.Math.Anal.Appl.,2007, 333: 984-1007.
    [75] ZHENG S. N., WANG L. D., Blow-Up Rate and Profile for a Degenerate ParabolicSystem Coupled via Nonlocal Sources[J], Comp.Math.Appl., 2006, 52: 1387-1402.
    [76] WANG S. Doubly Nonlinear Degenerate Parabolic Systemswith Coupled NonlinearBoundary Conditions[J], J. Di?erential Equations, 2002, 182: 431-469.
    [77] WU X. S., GAO W. J., Global existence and blow-up of solutions to an evolutionp-Laplace system coupled via nonlocal sources[J], J.Math.Anal.Appl, 2009, 358:229-237.
    [78] YANG X. H., LI F. C., XIE C. H. Global Existence and Blow-up of Solutionsfor Parabolic Systems Involving Cross-Di?usions and Nonlinear Boundary Condi-tions[J], Acta Mathematica Sinica, English Series, 2005, 21: 923-928.
    [79] PAO C. V., RUAN W. H., Positive solutions of quasilinear parabolic systems withnonlinear boundary conditions[J], J.Math.Anal.Appl, 333 (2007), 472-499.
    [80] WANG M. X., WU Y. H., Global existence and blow-up problems for quasilin-ear parabolic equations with nonlinear boundary conditions[J], SIAM J.Math.Anal,1993, 24: 1515-1521.
    [81] LEVINE H. A., PARK S. R., SERRIN J., Global existence and nonexistencetheorems for quasilinear evolution equations of formally parabolic type[J], J. Di?.Eqs., 1998, 142: 212– 229.
    [82] LI F. C. Global existence and blow-up of solutions to a nonlocal quasilinear de-generate parabolic system[J], Nonlinear Analysis: Theory, Methods & Applications,2007, 67: 1387-1402.
    [83] MITIDIERI E., SWEERS G., VORST R., Non-existence theorems for systems ofquasilinear partial di?erential equations[J], Di?. Integral Equa., 1995, 8: 1331-1354.
    [84] ZHAO J., Existence and noexistence of solutions for ut = div(| u|p?2 u) +f( u,u,x,t)[J], J. Math. Anal. Appl., 1993, 172: 130-146.
    [85] SOUPLET P. Blow-up in nonlocal reaction-di?usion equations[J], SIAM J. Math.Anal, 1998, 29: 1301-1334.
    [86] ROUCHON P., Universal bounds for global solutions of a di?usion equation witha nonlocal reaction term[J], J. Di?erential Equations, 2003, 193: 75– 94.
    [87] ZHAO L. Z., ZHENG S. N. Critical exponents and asymptotic estimates of solu-tions to parabolic systems with localized nonlinear sources[J], J. Math. Anal. Appl.,2004, 292: 621– 635.
    [88] SUN W. J., WANG S., Nonlinear degenerate parabolic equation with nonlinearboundary condition[J], Acta Mathematica Sinica, 2005, 21: 847-854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700