对等环境下基于缓存数据特征的实时流媒体系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于对等(Peer-to-Peer,P2P)网络的P2P流媒体技术把组播的功能从网络层移到了应用层,充分利用了网络中各对等节点的网络和计算资源,扩展了系统的服务规模,迅速成为当前流媒体技术的研究热点。其中以数据为中心基于自组织网络的P2P流媒体模型拓扑协议简单,对网络波动具有弹性,是目前最主要的模型。改进和提高该模型的服务质量是研究的重点,为此根据节点缓存数据的特征对其涉及的关键问题作出的改进研究工作如下:
     在成员节点维护中考虑节点间的缓存数据状况,提出以局部优化为目标的分布式动态节点管理机制——基于同步评估的成员管理(Synchronization Estimationbased Membership Management,SEBMM)。该机制在进行节点选择时考虑网络性能和节点之间的数据同步性,用以降低节点组织中只关心网络性能而导致的数据不匹配问题。以节点间工作集相似性为同步标准的方法出现数据传输停顿的概率高,故对SEBMM模型提出进一步改进:以节点缓冲序列的交集空间比例作为节点的同步性评价标准,在进行对等节点的选择时评估节点间缓存数据的互补性,以提高系统节点之间传输有效数据的总量。实验结果表明,该模型能提高P2P流媒体系统的数据连续性,缩短传输路径,降低延时。
     节点数据调度传输综合考虑节点即时性能以及数据解码特征,提出自适应动态数据调度(Adaptive Dynamic Data Scheduling,ADDS)算法,以提高数据对象的传输效率和质量。为评估节点的动态传输能力,定义其实时调度性能值为任务负载与数据到达率的函数。并在进行多源选择时,将数据包指派给具有最佳调度性能的节点,提高媒体数据的按时到达率。同时为确保接收端数据回放的质量,提出按数据包的调度价值确定传输序列的机制。该调度价值考虑了数据帧的解码特性以及时间关系。此外,在源节点端引入数据的自动推送策略,与数据驱动型模型固有的拉策略相结合构成混杂数据传输模式,该机制基于实时分配信息推测节点的需求,实现部分数据的主动推送,用以提高网络资源的利用率。
     对节点暂存数据采用差别缓存,提出基于媒体对象有效性预测的缓存管理(Media Object Validity Prediction based Cache Management,MOVPCM)机制,将缓存在节点空间的流媒体对象的置换几率与其缓存价值相关联,降低对象替换带来的解码损失,提高子节点的缓存命中率。为此以提高有效数据总量为目标建立多源缓存管理数学模型,对该模型去除时间耦合以及进行空间局部化,并通过启发式贪婪算法计算最优置换策略。MOVPCM以预测有效度、解码价值以及缓存代价为系数计算该缓存对象的存储优先级,并以该优先级为基础建立对象的差别缓存机制,具有较大解码价值且请求概率高的数据在缓存中具有相对长的生命周期。分析和模拟的结果验证了MOVPCM算法对提高节点的数据命中率的重要作用。
     P2P流媒体系统是对其涉及的各个关键模块的整合。由于当前系统普遍采用的紧耦合整合机制使得各个模块之间的关联性大,不利于扩充,也与P2P环境下节点的松耦合关系不匹配。因此,在原型系统的实现中采用基于语义的方法,通过松耦合的构建模式来实施P2P流媒体系统的节点和数据的统一管理,提高了系统的灵活性和可扩展性。
The Peer-to-Peer (P2P) network based P2P streaming technique migrates the multicast functionality from network layer to application layer, which makes full use of network and computing resources of all joined peers to extend system scale, has become a hot topic in streaming technique field recently. The data-driven P2P streaming models based on self-orgnazation topology is one kind of main models recently, which have attracted more attention because of its simple topology protocol, and being resilient to network dynamics. Usually the QoS (Quality of Service) improvements play important roles in current research in such P2P streaming systems. So according to the characteristic of buffered data, we focus on some key problems as following:
     Taking the characteristic of buffered data into account for partnership maintaining, the synchronization estimation based membership management (SEBMM) mechanism is proposed. The SEBMM considered both the network performance and data synchronization among peers on peer selections, well decreases the probability of data mismatch which is introduced by partially considered of the network performance without considering the data synchronization. Further research shows that the peers running SEBMM scheme will fall short of data receiving because of the selection criterion adopted by SEBMM. Hence, we can improve SEBMM in such approaches as: applying the cache series intersection ratio between peers as synchronization indicator, and taking data mutually complementarity into account when selecting active peers, through which it can increase the data transmission gross. The simulation results demonstrate the feasibility and effectiveness of this solution.
     An adaptive dynamic data scheduling (ADDS) algorithm is introduced, which determines data assignment according to the states of peers in dynamic and data characters for decoding. The ADDS algorithm defines scheduling performance as a function of task overload and data arriving ratio, and assigns the packets to peers with the best scheduling performance. The aim laying behind is to increase the data arriving rate in time. In order to assure the receiver-end of playback quality, all data packets to be scheduled will be sorted in order by scheduling value firstly before assignment and those packets which are in urgency and important for streaming decoding will be given priority to be transmitted. With the inherent PULL strategy, a controlled PUSH strategy based PUSH-ADDS algorithm is adopted at source-end, which will push some packets to receiver forwardly. PUSS-ADDS can make use of spare bandwidth of active peers.
     The proposed media object validity prediction based cache management (MOVPCM) manages cached media objects differently according to their caching value to decrease the decoding distortion arising from packet replacement and increase cache hit rate. A multi-source cache management model with the aim of increasing the valid data gross is also proposed, and after relaxed and localized, it is adopted to work out the optimized replacement series by greedy method. MOVPCM makes use of the predicted validity, decoding value and caching cost as factors to calculate the priority for object caching, based on which objects with high decoding value and request probability will have longer life time in cache. Analysis and simulation results show the validity of the MOVPCM method.
     P2P streaming system is a combination of some key modals involved. Because previous system tends to adopt fasten coupled system, and such systems can't be extended facility, and it mismatches with the loosely coupled P2P environment. So, the prototype system proposed in this thesis adopts a kind of semantic method to achieve peers and streaming data management uniformly through a loosely coupled system construction style, improves the flexibility and expansibility of the system in a certain extent.
引文
[1]郝沁汾.WWW访问特性与代理缓存研究:[博士学位论文].北京:中国科学院计算技术研究所,1999.
    [2]S.Gadde,J.Chase,M.Rabinovich.Web caching and content distribution:a view from the interior.Computer Communications,2000,24(2):222-231
    [3]Ian J.Taylor.From P2P to Web Services and Grids.London:Springer-verlag,2005.
    [4]D.Clark.Face to Face with Peer-to-Peer Networking.IEEE Computer,2001,34(1):18-21
    [5]D.S.Milojicic,V.Kalogeraki,R.Lukose.Peer-to-Peer Computing.Tech.Rep.HPL-2002-57,HP Laboratories Palo Alto,March 2002.
    [6]D.Schoder,K.Fischbach.Peer-to-Peer Prospects.Communications of the ACM,2003,46(2):27-29
    [7]S.Rhea,C.Wells,P.Eaton.Maintenance-Free Global Data Storage.IEEE Internet Computing,September-October 2001,5(5):40-49
    [8]I.Stoica,R.Morris,D.Liben-Nowell,et al.Chord:A Scalable Peer-to-Peer Lookup Protocol for Internet Applications.IEEE/ACM Transactions on Networking,February 2003,11(1):17-32
    [9]M.Bawa,F.B.Cooper,A.Crespo,et al.Peer-to-Peer Research at Stanford.SIGMOD Record,September 2003,32(3):23-28
    [10]A.Rowstron,P.Druschel.Parry:Scalable,Distributed Object Location and Routing for Large-scale Peer-to-Peer Systems.In Proceedings of IFIP/ACM Middleware'2001.Heidelberg,Germany,2001.329-350
    [11]M.Bawa,H.Deshpande,H.Garcia-Molina.Transience of peers and streaming media.ACM SIGCOMM Computer Communication Review,2003,33(1):107-112
    [12]Y.H.Chu,S.G.Rao,H.Zhang.A case for end system multicast.In Proceedings of the ACM SIGMETRICS international conference on Measurement and modeling of computer systems 2000.2000.1-12
    [13]S.Banerjee,B.Bhattacharjee,C.Kommareddy.Scalable application layer multicast.In Proceedings of the 2002 conference of Applications,technologies,architectures, and protocols for communications. New York, NY, USA, 2002. 205-217
    [14] D. Tran, K. Hua. A Peer-to-Peer Architecture for Media Streaming. IEEE Journal on Selected Areas in Communications, Jan. 2004, 22(1):121-133
    [15] D. Tran, K.Hua, T. Do. ZIGZAG: An Efficient Peer-to-Peer Scheme for Media Streaming. In Proceedings of IEEE INFOCOM'03. San Francisco, CA, USA, April 2003. 1283-1292
    [16] D. Kostic, A. Rodriguez, J. Albrecht, et al. Bullet: high bandwidth data dissemination using an overlay mesh. In Proceedings of ACM SOSP'03. New York, USA, Oct. 2003. 282-297
    [17] H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaming Live Media over a Peer-to-peer Network. Technical report, Stanford University, 2001.
    [18] V. Padmanabhan, H. Wang, P. Chou. Resilient Peer-to-Peer Streaming. In Proceedings of the 11th IEEE International Conference on Network Protocols. Atlanta, Georgia, November 2003. 16-27
    [19] M. Hefeeda, A. Habib, B. Botev, et al. PROMISE: Peer-to-Peer Media Streaming Using CollectCast. In Proceedings of the 11th ACM international conference on Multimedia. Berkeley, CA, USA, November 2003. 45-54
    [20] X. Zhang, J. Liu, B. Li, et al. DONet/Coolstreaming: A data-driven overlay network for efficient live media streaming. In Proceedings of IEEE INFOCOM 2005. Miami, FL, USA, 2005. 2102-2111
    [21] S. Banerjee, S. Lee, B. Bhattacharjee. Resilient multicast using overlays. In Proceedings of the 2003 ACM SIGMETRICS international conference on Measurement and modeling of computer systems. NY, USA, 2003. 102-113
    [22] V. S. Pai, K. Kumar, K. Tamilmani, et al. Chainsaw: Eliminating trees from overlay multicast. In Proceedings of the 4th International Workshop on Peer-To-Peer Systems. New York, USA, 2005. 127-140
    [23] M. Zhang, L. Zhao, Y. Tang, et al. Large-scale live media streaming over peer-to-peer networks through global internet. In Proceedings of the ACM workshop on Advances in peer-to-peer multimedia streaming. New York, NY, USA, 2005.21-28
    [24] J. Li. Peerstreaming: A practical receiver-driven peer-topeer media streaming system. Technical Report MSR-TR-2004-101, Microsoft Research, September 2004.
    [25]S.McCanne,V.Jacobson,M.Vetterli.Receiver-driven layered multicast.In Proceedings of ACM SIGCOMM.New York,Aug.1996.26(4):117-130
    [26]R.Rejaie,A.Ortega.PALS:peer-to-peer adaptive layered streaming.In Proceedings of the 13th international workshop on Network and operating systems support for digital audio and video.New York,NY,USA,2003.153-161
    [27]罗杰文.Peer-to-Peer 综述.http://www.intsci.ac.cn/users/luojw/papers/p2p.htm
    [28]J.Jannotti,D.Gifford,K.Johnson,et al.Overcast:Reliable multicasting with an overlay network.In Proceedings of the Fourth Symposium on Operating Systems Design and Implementation.2000.197-212
    [29]S.Q.Zhuang,B.Y.Zhao,A.D.Joseph.Bayeux:An architecture for scalable and fault-tolerant wide-area data dissemination.In Proceedings of the 11th international workshop on Network and operating systems support for digital audio and video.New York,June 2001.11-20
    [30]M.Castro,P.Druschel,A-M.Kermarrec,et al.SplitStream:High-bandwidth content distribution in a cooperative environment.In Proceedings of the nineteenth ACM symposium on Operating systems principles.Bolton Landing,NY,USA,2003.298-313
    [31]X.Jiang,Y.Dong,D.Xu.GnuStream:A P2P media streaming prototype.In Proceedings of the IEEE International Conference on Multimedia and Expo.July 2003.325-328
    [32]T.R.Gruber.A Translation Approach to Portable Ontology Specifications.Knowledge Acquisition,1993,5:199-220
    [33]R.Studer,V.R.Benjamins,D.Fensel.Knowledge Engineering,Principles and Methods.Data And Knowledge Engineering,1998,25(1-2):161-197
    [34]T.Berners Lee.Weaving the Web.London:Orion Business Books,1999.
    [35]D.D.Roure,N.R.Jermings,N.R.Shadbolt.Research Agenda for the Semantic Grid:A Future e-Science Infrastructure.National e-Science Centre,Edinburgh,U.K.,UKeS-2002-02,Dec.2001.
    [36]曾伟,徐明伟,吴建平.网络拓扑模型评述.计算机应用研究,2005,7:1-4
    [37]A.Medina,A.Lakhina,I.Matta,et al.BRITE:An Approach to Universal Topology Generation.In Proceedings of the IEEE/ACM MASCOTS.New York:ACM Press, 2001.346-356
    [38] Q. Chen, H. Chang, R. Govindan, et al. The Origin of Power Laws in Internet Topologies Revisited. In Proceedings of the IEEE INFOCOM. New York: IEEE Press, 2002. 608-617
    [39] B. M. Waxman. Routing of Multipoint Connections. IEEE Journal on Selected Areas in Communications, 1988, 6(9): 1617-1622
    [40] E. W. Zegura, K. L. Calvert, M. J. Donahoo. A Quantitative Comparison of Graph-based Models for Internetworks. IEEE/ACM Transactions on Networking, 1997, 5(6):770-783
    [41] C. Faloutsos, P. Faloutsos, M. Faloutsos. On Power-Law Relationships of the Internet Topology. In Proceedings of the ACM SIGCOMM. New York: ACM Press, 1999.251-262
    [42] W. Aiello, F. Chung, L. Lu. Random Evolution in Massive Graphs. In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science. New York: IEEE Press, 2001. 510-519
    [43] E. W. Zegura, K. L. Calvert, S. Bhattacharjee. How to model an internetwork. In Proceedings of IEEE INFOCOM 1996. San Francisco, CA, USA, March 1996. 594-602
    [44] W. Jiang, H. Schulzrinne. QoS measurement of Internet real-time multimedia services. Technical Report CUCS-015-99, Department of Computer Science, Columbia University.
    [45] H. Sanneck, G. Carle. A framework model for packet loss metrics based on loss runlengths. In Proceedings of the SPIE/ACM SIGMM Multimedia Computing and Networking Conference 2000. San Jose, CA, USA, 2000. 177-187
    [46] V. Markovski, F. Xue, L. Trajkovic. Simulation and analysis of packet loss in video transfers using user datagram protocol. Supercomputing, 2001, 20(9): 175-196
    [47] J. Almeida, J. Krueger, D. Eager, et al. Analysis of educational media server workloads. In Proceedings of the 11th international workshop on network and operating system support for digital audio and video. Port Jefferson, NY, 2001. 21-30
    [48] Rongtao Liao, Shengsheng Yu, Lijun Dong. A novel peer management model for live peer-to-peer streaming. In Proceedings of 2007 International Symposium on Intelligent Signal Processing and Communication Systems. Xiamen, China, Nov.28-Dec.1 2007. 760-763
    [49] Rongtao Liao, Shengsheng Yu, Jing Yu. Synchronization-based Overlay Construction for Resilient P2P Streaming. In Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China, Jun.25-27 2008. 7980-7985.
    [50] A. J. Ganesh, A. M. Kermarrec, L. Massoulie. Peer-to-peer membership management for gossip-based protocols. IEEE Transactions on Computers, Feb. 2003, 52(2): 139-149
    [51] J. Byers, J. Considine, M. Mitzenmacher, et al. Informed content delivery across adaptive overlay networks. IEEE/ACM Transactions on Networking, 2004, 12(5):767-780
    [52] A. Broder. On the resemblance and containment of documents. In Proceedings of Compression and Complexity of Sequences. Positano, Italy, June 1997. 21-29
    [53] A. Broder, M. Charikar, A. Frieze, et al. Min-wise independent permutations. Journal of Computer and System Sciences, 2000, 60(3):630-659
    [54] N. Alonand, J. H. Spencer. The Probabilistic Method. John Wiley and Sons, 1992:
    [55] M. Yang, Z. Fei. A proactive approach to reconstructing overlay multicast trees. In Proceedings of IEEE INFOCOM 2004. New York, 2004. 2743-2753
    [56] M. Guo, M. Ammar. Scalable live video streaming to cooperative clients using time shifting and video patching. In Proceedings of IEEE INFOCOM 2004. New York, 2004.1501-1511
    [57] M. Guo, M. Ammar, E. Zegura. Cooperative patching: A client based P2P architecture for supporting continuous live video streaming. In Proceedings of IEEE International Conference on Computers, Communication and Networks. Washington DC, 2004. 481-486
    [58] S. Banerjee, S. Lee, R. Braud, et al. Scalable resilient media streaming. In Proceedings of 14th ACM International Workshop on Network and Operating Systems Support for Digital Audio and Video. New York: ACM Press, 2004. 4-9
    [59] 郑常熠,王新,赵进.P2P视频点播内容分发策略.软件学报,2007,18(11):2942—2954
    [60] V. Shrivastava, S. Banerjee. Natural selection in peer-to-peer streaming: From the cathedral to the bazaar. In Proceedings of the 15th Workshop on Network and Operating Systems Support for Digital Audio and Video. New York: ACM Press, 2005. 93-98
    
    [61] V. Vishnumurthy, S. Chandrakumar, E.G. Sirer. Karma: A secure economic framework for P2P resource sharing. In Proceedings of the 2005 Conference of the Centre for Advanced Studies on Collaborative research. 2005. 185-199
    [62] Y. Chu, J. Chuang, H. Zhang. A case for taxation in peer-to-peer streaming broadcast. In Proceedings of the ACM SIGCOMM Workshop on Practice and Theory of Incentives in Networked Systems. New York: IEEE Press, 2002. 205-212
    [63] V. K. Goyal. Multiple description coding: Compression meets the network. IEEE Signal Processing Magazine, 2001,18(5):74-93
    [64] V. Venkataraman, K. Yoshida, P. Francis. Chunkyspread: Heterogeneous Unstructured Tree-Based Peer-to-Peer Multicast. In Proceedings of the 14th IEEE International Conference on Network Protocols. New York: IEEE Press, 2006. 2-11
    [65] Y. Cui, K. Nahrstedt. Layered peer-to-peer streaming. In Proceedings of 13th ACM International Workshop on Network and Operating Systems Support for Digital Audio and Video. New York: ACM Press, 2003. 162-171
    [66] V. N. Padmanabhan, H. J. Wang, P. A. Chou, et al. Distributing streaming media content using cooperative networking. In Proceedings of the 12th ACM/IEEE International Workshop on Network and Operating Systems Support for Digital Audio and Video. New York: ACM Press, 2002. 177-186
    [67] R. Ahlswede, N. C. Li, R. W. Yeung. Network information flow. IEEE Transactions on Information Theory, 2000, 46(4): 1204-1216
    [68] J. Guo, Y. Zhu, B. Li. CodedStream: Live media streaming with overlay coded multicast.In Proceedings of the SPIE/ACM Conference on Multimedia Computing and Networking. January 2004. 28-39
    [69] M. Zhang, Y. Xiong, Q. Zhang, et al. On the optimal scheduling for media streaming in data-driven overlay networks. In Proceedings of IEEE GLOBECOM 2006. New York: IEEE Press, 2006. 1-5
    
    [70] Y. Cai, A. Natarajan, J. Wong. On scheduling of peer-to-peer video services. IEEE Journal on Selected Areas in Communications, Special Issue on Peer-to-Peer Communications and Applications, 2007, 25(1): 140-146
    [71]M.Zhang,C.Chen,Y.Xiong,et al.Optimizing the throughput of data-driven based streaming in heterogeneous overlay network.In Proceedings of Multimedia Modeling Conference 2007.Washington:IEEE CS Press,2007.475-484
    [72]X.F.Liao,H.Jin,Y.Liu,et al.AnySee:Peer-to-peer live streaming.In Proceedings of IEEE INFOCOM 2006.New York:IEEE Press,2006.1-10
    [73]T.Small,B.Li,B.Liang.Outreach:Peer-to-peer topology construction towards minimized server bandwidth costs.IEEE Journal on Selected Areas in Communications,Special Issue on Peer-to-Peer Communications and Applications,2007,25(1):35-45
    [74]N.Magharei,R.Rejaie.Understanding mesh-based peer-to-peer streaming.In Proceedings International Workshop on Network and Operating Systems Support for Digital Audio and Video.New York:ACM Press,2006.56-61
    [75]J.Zhao,F.Yang,Q.Zhang,et al.LION:Layered overlay multicast with network coding.IEEE Transactions on Multimedia,2006,8(5):1021-1032
    [76]C.H.Cheng,Q.Zhang.Deadline-aware network coding for video on-demand service over P2P networks.Journal of Zhejiang University Science A,2006,7(5):763-775
    [77]M.Wang,B.Li.Lava:A reality check of network coding in peer-to-peer live streaming.In Proceedings of IEEE INFOCOM 2007.New York:IEEE Press,2007.1082-1090
    [78]J.Chakareski,B.Girod.Server diversity in rate-distortion optimized media streaming.In Proceedings of IEEE International Conference on Image Processing.Barcelona,Spain,September 2003.645-648
    [79]刘亚杰.P2P流媒体内容分发关键技术研究:[博士学位论文].长沙:国防科学技术大学研究生院,2005.
    [80]陈海涛.对等网络中的内容搜索、定位和下载技术研究:[博士学位论文].长沙:国防科学技术大学研究生院,2005.
    [81]D.Xu,M.Hefeeda,S.Hambrush,et al.On Peer-to-Peer Media Streaming.In Proceedings of IEEE International Conference on Distributed Computing Systems.Vienna,Austria,July 2002.363-371
    [82]D.Xu,M.Hefeeda,S.Hambrusch,et al.On Peer-to-Peer Media Streaming.Purdue Computer Science Technical Report,Apr.2002.
    [83]J.B.Kwon,H.Y.Yeom.Distributed Multimedia Streaming over Peer-to-Peer Networks.Euro-Par 2003.851-858
    [84]A.Mukherjee.On the Dynamic and Significance of Low Frequeney Components of Intemet Load.Internetworking:Research Experienee,1994,5:163-205
    [85]P.A.Chou and Z.Miao.Rate-distortion optimized stremaing of packetized media.IEEE Transactions on Multimedia,2001,8(2):390-404
    [86]J.Wang.A survey of Web caching schemes for the Internet.ACM SIGCOMM Computer Communication Review,1999,29(5):36-46
    [87]J.Alghazo,A.Akaaboune,N.Botros.SF-LRU Cache Re-Placement Algorithm.In Proceedings of International Workshop on Records 2004.2004.19-24
    [88]J.T.Robinson,M.V.Devarakonda.Data cache management using frequency-based replacement.In Proceedings of SIGMETRIC on Measuring and Modeling of Computer Systems.Boulder,Colorado,USA,1990.134-142
    [89]肖明忠,李晓明,刘翰宇等.基于流媒体文件字节有用性的代理服务器缓存替代策略.计算机学报,2004,27(12):1633-1641
    [90]Y.Smaragdakis,S.Kaplan,P.Wilson.The EELRU adaptive replacement algorithm.Elsevier Science Performance Evaluation,2003,53(2):93-123
    [91]Y.Smaragdakis,S.Kaplan,P.Wilson.EELRU:Simple and effective adaptive page replacement.In Proceedings of SIGMETRICS on the Measurement and Modeling of Computer Systems,Atlanta,Georgia,USA,1999.122-133
    [92]E.J.O.Neil,P.E.O.Neil,G.Weikum.The LRU-K page replacement algorithm for database disk buffering.In Proceedings of International Conference on Management of Data.Washington,DC,USA,1993.297-306
    [93]E.J.O.Neil,P.E.O.Neil,G.Weikum.An optimality proof of the LRU-K page replacement algorithm.Journal of the ACM,1999,46(1):92-112
    [94]E.Otoo,F.Olken,A.Shoshani.Disk cache replacement algorithm for storage resource managers in data grids.In Proceedings of IEEE/ ACM Conference on Supercomputing,Baltimore,Maryland,USA,2002.1-15
    [95]E.Otoo,A.Shoshani.Accurate modeling of cache replacement policies in a data grid.In Proceedings of the 20th IEEE/11th NASA Goddard Conference on Mass Storage Systems and Technologies.San Diego,California,USA,2003.10-19
    [96]D.Lee,J.Choi,H.Choe,et al.Implementation and Performance Evaluation of the LRFU Replacement Policy.In Proceedings of 23rd Euromicro Conference New Frontiers of Information Technology-Short Contributions.Budapest,Hungary,Sept.1997.106-111
    [97]D.L.Noh,S.H.Sang,L.Mim,et al.LRFU:a block replacement policy that exploits infinite history of references.Journal of KISS(A)(Computer Systems and Theory),July 1997,24(7):632-641
    [98]O.Saleh,M.Hefeeda.Modeling and caching of peer-to-peer traffic.Simon Fraser University,Technical Report:TR2006211,2006.
    [99]M.M.Hefeeda,B.K.Bhargava,D.K.Y.Yau.A hybrid architecture for cost-effective on-demand media streaming.Computer Networks:The International Journal of Computer and Telecommunications Networking,2004,44(3):353-382
    [100]L.Guo,S.Chen,X.Zhang.Design and evaluation of a scalable and reliable P2P assisted Proxy for on demand streaming media delivery.IEEE Transactions on Knowledge and Data Engineering,2006,18(5):669-682
    [101]L.Ying,A.Basu.PcVOD:Internet Peer-to-Peer Video-On-Demand with Storage Caching on Peers.In Proceedings of the 11th international conference on distributed multimedia Systems.Alberta,Canada,September 2005.218-223
    [102]S.Hosseini-Khayat.On Optimal Replacement of Nonuniform Cache Objects.IEEE Transactions on Computers,2000,49(8):769-778
    [103]M.J.Garey,D.S.Johnson.Computers and Intractability:A Guide to the Theory of NP-Completeness.San Francisco:Freeman press,1979.
    [104]Shengsheng Yu,Rongtao Liao,Jingli Zhou,et al.Differential Media Delivering Strategy for Loss Tolerant Streaming.In Proceedings of ISECS International Colloquium on Computing,Communication,Control,and Management.Guangzhou,China,Aug.3-4 2008.290-294
    [105]J.Davice,D.Fensel,F.V.Harmelen.Toward The Semantic Web,Ontology-driven Knowledge Management.John Wiley&Sons Ltd.,2003.
    [106]胡勇其.基于语义的数据对象访问和存储管理:[博士学位论文].北京:中国科学院研究生院,2006.
    [107]李善平.本体论研究综述.计算机研究与发展,2004,7(41):1041-1052

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700