锆金属动态力学性能及其本构关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用了MTS材料试验机和分离式霍普金森压杆(SHPB)装置对纯锆在不同温度(298K-1073K)和应变率(10~(-4)s~(-1)-2800s(-1))下的压缩力学性能进行了系统的研究。进行高应变率实验时采用了小尺寸试样SHPB实验技术。通过数值模拟和部分实验对小尺寸试样实验涉及的二维效应、偏心压缩效应以及杆弯曲对SHPB测量精度的影响等问题进行了详细的分析。其中,横截面不匹配引起的二维效应主要表现为端面凹陷,而端面凹陷对于小变形下应变的测量精度影响很大,进入塑性变形后端面凹陷带来的影响迅速减小。偏心压缩效应可以通过对称贴片或靠后贴片的办法予以消除。采用小尺寸试样SHPB技术对纯锆高应变率下力学行为进行探索时,首次在纯锆中发现了绝热剪切失稳现象;对弯曲杆的直撞有限元模拟结果表明,随弯曲程度的增大,波形失真程度呈幂函数形式增长,提出了霍普金森杆实验中杆允许的弯曲程度,并进行了实验验证。通过在试样和压杆之间添加A95陶瓷块建立了一套组合杆式高温SHPB装置,采用有限元模拟对添加陶瓷块及温度梯度场对测试精度的影响进行了分析。
     基于以上实验技术得到的纯锆不同温度和应变率下的实验结果表明:常温下不同应变率纯锆应力~应变曲线流动应力段呈发散状,流动应力和加工硬化随应变率提高而增大,随温度升高而降低。常温下动态压缩试验中大应变时试样发生与载荷方向约成45°沿对角线的宏观剪切破坏,单次大变形和重复加卸载大变形动态压缩应力~应变曲线材料的破坏应变几乎相同,但随变形增大,单次大变形的加工硬化明显要低。微观金相观测结果表明,孪晶密度随应变率提高而增大,随温度升高而锐减。在小变形段,孪晶密度随应变增大而增大;当变形进一步增大,孪晶之间及孪晶与晶界及位错滑移带之间发生交互作用,试样内部可见许多微小孪晶簇;大应变试样中可见绝热剪切带的萌生,剪切带附近的孪晶弯成弓形靠拢。破坏试样SEM断口形貌呈典型的剪切破坏特征。宏观应力-应变曲线的加工硬化行为与孪晶的演化发展相对应,绝热剪切带可能是由微孪晶簇内孪晶取向的不一致诱发的。
     结合试验结果,在位错动力学的基础上建立了描述纯锆力学性能温度和应变率相关的本构方程,采用该本构方程拟合了纯锆在不同温度和应变率下的应力应变曲线,结果发现除了大应变和温度较低时孪晶影响比较显著外,拟合的结果和试验结果符合很好。由于在微观分析中发现孪晶变形主要出现在常温条件下,因此通过考虑孪晶引起的硬化效应在本构方程中引入修正,经过修正后的本构方程能够很好地描述孪晶变形和位错滑移对纯锆温度和应变率相关力学性能的影响。
     采用LS-DYNA接口技术,将得到的本构模型嵌入LS-DYNA中,对金属圆管动态破坏SHPB实验及爆炸载荷下柱壳的变形和破坏过程进行了数值模拟,给出了材料内部的应力、温度、损伤的时程曲线。
     最后对全文的工作进行了总结和展望。
Compression mechanical properties of Zirconium under different temperature and different strain rates were studied by MTS and split Hopkinson pressure bar(SHPB) apparatus.Small SHPB tests was used to investigate mechanical properties under high rates.Two-dimensional effects would be brought into small specimen SHPB tests,and this effect was mainly elastic indentation of the bar's interface with the specimen.The two-dimensional effects decreased rapidly,when the specimen developed into plastic deformation stage.The influence could be eliminated efficiently by mounting strain gauges in series or far away from the specimen-bar interfaces in the eccentric compression tests.Also,a distortional signal would be recorded when a bent bar was used in test.It's found that the amplitude of distortion increases with the increasing bending.A limiting condition for bent bar in Hopkinson bar tests was presented.Also, these difficulties were evaluated and testified by numerical simulations and some experiments.The experiment system of high temperature split Hopkinson pressure bar (SHPB)by adding ceramic platens between bars and specimen was investigated in this paper,which is suitable for measuring the dynamic response of metals at 1073K. The influence of ceramic platens and temperature field was analyzed.
     Compression experiments on the HP-Zr were carried out in a temperature range of 298K-1073K and a strain rate range of 10~(-4)s~(-1)-2800s~(-1).Results indicated that:The stress~strain curves show an unusual strain hardening behavior,flow stress and strain hardening increased with the increasing strain rate,and decreased with the increasing temperature.Macroscopic ductile cracking at 45°to the compression axis is seen for large deformation tests.The failure strain of single large deformation test was the same as that of small strain reloading tests.Optical micrographs show that the twinning increased with an increase in strain and strain rates,and decreased rapidly with the increasing temperature.The cylindrical compression specimens failed by adiabatic shearing bands(ASB).In small deformation stage,the twinning density increased with the increasing strain;further more,the interactions between twins, grain boundry and slip band,many micro-twins were seen;adiabatic shearing bands were seen in large deformation specimens,the twins bowed toward to the shearing bands.SEM graphs of failure surface appeared typical shearing rupture characteristics. The strain hardening of stress~strain curves coincided with the twinning development in specimen during deformation,the ASB might be caused by in-homogeneity of twinning orientations.A constitutive model based on the dislocation kinetics was used to describe the stress-strain relationship of HP-Zr at the investigated temperatures and strain rates.Furthermore,a modification incorporating the twinning effect was applied to the model.The correlations between the simulated curves and the experimental results are in good agreement,except for the conditions in which developing twins play an important role.
     With the interface of LS-DYNA and the theory of plastic constitutive relation,the constitutive model based on the dislocation kinetics was used to study the dynamic failure of metallic tube of SHPB tests and the process of deformation and failure of cylinder shells subjected to internal sliding explosion.The time curves of the stress, temperature and damage were given,which would gave reference to the test.
     The final part is the summary of the paper and the prospect of the future work.
引文
[1]丁道云(译).材料科学与技术丛书第8卷 非铁合金的结构与性能.1999.
    [2]Rickover HG,Geiger,L.D.,Lustman,B.History of the development of Zirconium alloys for use in nuclear Reactors:U.S.Energy research and development administration,Division of naval reactors,.TID-26 740 Washingtong,DC:U.S.Gov.Printing Office 1975.
    [3]李佩志.我国锆合金的研究现状.稀有金属材料与工程 1993;22:7.
    [4]夏耀堪,王敬生.世界锆合金的研究现状和展望.金属材料研究 2000;26:21.
    [5]刘建章.国内核动力堆锆合金的研究动向.稀有金属材料与工程 1990;6:32.
    [6]袁改焕,李恒羽,王德华.锆材在核电站的应用及前景.稀有金属快报 2007;26:14.
    [7]赵文金.核工业用高性能锆合金的研究.稀有金属快报 2002;5:15.
    [8]周耀.锆和锆合金在化工设备中的应用.化工设计 2003;13:19.
    [9]Pynn R.The structure of the diffuse omega phase observed in Zr and Ti alloys.J Phys F:Metal Phys 1978;8:1.
    [10]K VY.Electronic structure of omega phase of titanium and zirconium.J Phys F:Metal Phys 1979;9:1771.
    [11]C.W.Greeff.Phase changes and the equation of state of Zr.MODELLING AND SIMULATION IN MATEARIALS SCIENCE AND ENGINEERING 2005:1015.
    [12]Yusheng Zhao JZ,Cristian Pantea,etc.Thermal equations of state of the alpha beta and omega phases of zirconium.Physical Review B 2005;71:184119.
    [13]Zhang J Z ZYS,Pantea C,et al..Experimental constrainsts on the phase diagram of element zirconium.J Phys Chem Solid 2005;66:1213.
    [14]Zukas J A NT,Swift H F,Greszczuk L B,Curran D R.Impact Dynamics.Malabar,Florida:Krieger Publishing Company 1992.
    [15]M.A.Meyers.Dynamic Behavior of Materials.NewYork:John Wiley&Sons 1994.
    [16]H.Kolsky.An investigation of the mechanical properties of materials at very high rates of loading.Proceedings of the Physical Society of London 1949;B62:676.
    [17]Field JE,Walley,S.M.,Bourne,N.K.et al.Review of experimental techniques for high rate deformation studies.Proc.Acoustics and Vibration Asia,Singapore 1998:9.
    [18]C.K.Dharan FEH.Determination of stress-strain characteristics at very high strain rates. Experiment Mechanics 1970;10:370.
    [19]G.L.Wulf GTR.Journal of Physics E:Scientific Instruments 1974;7:167.
    [20]U.S.Lindholm.High velocity deformation of solids.IMTUA Symp.Tokyo,Japan 1977:26.
    [21]陶俊林,李玉龙,田常津,陈裕泽.10~4s~(-1)应变率下SHPB系统实验相关问题探讨.爆炸与冲击 2004;24:245.
    [22]Gorham DA.In mechanical properties at high rates of strain.Harding,J.Ed.1979:16.
    [23]胡时胜.材料动力学实验技术.冲击动力学进展(王礼立,余同希,李永池编)1992:379.
    [24]H.Kolsky.Stress Wave in Solids.Oxford 1953.
    [25]M.DR.Stress Waves in Solids British Journal of Applied Physics 1956;7:203.
    [26]D.A.Gorham.A numerical method for the correction of dispersion in pressure bar signals.I.Phys.E.Sci.ln strum 1983;16:477.
    [27]P.S.Follansbee CF.Wave ppropagation in the split Hopkinson pressure bar.Journal of Engineering Materials and Technology 1983.
    [28]al ALWe.Experimentally derived bar dispersion and transducer selection for split Hopkinson bars.Shock Compression of Condensed Matter 1999:1099.
    [29]B.Lundberg AH.Analysis of elastic waves from two-point strain measurement.Experiment Mechanics 1977;17:213.
    [30]H.Zhao GAG.A new method for separation of waves:Application to the SHPB technique for an unlimited measuring duration.Journal of Mechanics and Physcis of Solids 1997;45:1185.
    [31]C.Bacon.Separation of waves propagating in an elastic or viscoelastic SHPB with three -dimensional effects.International Journal of Impact and Engineering 1999;22:55.
    [32]Marie-Noelle Bussaca ca.An optimisation method for separating and rebuilding one-dimensional dispersive waves from multi-point measurements.Application to elastic or viscoelastic bars.Journal of Mechanics and Physcis of Solids 2002;50:321.
    [33]Nasser N.Some experiments with SHPB.Proceedings of the Royal Society of London 1991;435:371.
    [34]G.Ravichandran GS.Critical appraisal of limiting strain rates for compression testing of ceramics in SHPB.Journal of American Ceramic Society 1994;77:263.
    [35]O.E.Jones FRN.Axially symmetric cross-sectional strain and stress distributions in suddenly loaded cylindrical elastic bars.J.Appl.Mech 1967;34:718.
    [36]L.W.Kennedy OEJ.Longitudinal wave propagation in a circular bar loaded suddenly by a radially distributed end stress.J.Appl.Mech 1969;36:470.
    [37]Nemat-Nasser JBI,J.E.Starrett.Hopkinson techniques for dynamic recovery experiments.Proceedings of the Royal Society of London 1991;435:371.
    [38]B.A.Gama ea.Hopkinson bar experiment:Analysis and simulation University of Delaware Center for COmposite Materials,Research Review 2002;April 24.
    [39]胡时胜.霍普金森压杆技术.兵器材料科学与工程 1991;11:40.
    [40]V.K.Kinra.在杆中切口间断处脉冲波的反射及透射.固体力学学报 1983;2:197.
    [41]田杰,胡时胜.准静态压缩应力应变曲线测量方法的探索.实验力学 2005;20:265.
    [42]R.Beccu CMW,B.Lundberg.Reflection and transmission of transient elastic waves in a bent bar.J.Sound Vibration 1996;191:261.
    [43]J.P.Iee HK.The generation of stress pulses at the junction of two non-collinear rods.Journal of Applied Mechanics 1975;39:809.
    [44]Carlvick.Int.J.Rock Mech.Min.Sci.F Geomech.Abstr.1981;18:167.
    [45]C.M.Wu BL.Reflection and transmission of the energy of harmonic elastic waves in a bent bar.J.Sound Vibration 1996;190:645.
    [46]G.R.Johnson WHC.A constitutive model and data for metals subjected to large strain rates and high temperatures.Proceedings of the Seventh International Symposium on Ballistics,The Hague,The Netherlands 1983;983:541.
    [47]G.R.Johnson WHC.A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures.Eng.Frac.Mech 1985;21.
    [48]F.J.Zerilli RWA.Dislocation mechanics based constitutive relations for material dynamics calculations.J.Appl.Phys 1987;61:1816.
    [49]Steinberg D J CSG,Guinan M W.A constitutive model for metals applicable at high strain rate.J.Appl.Phys.1980;51:1498.
    [50]P.S.Follansbee UFK.A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable.Acta Metall 1988;36:81.
    [51]Clifton RJ.Response of materials under dynamic loading.International Journal of Solids and Structures 2000;37:105.
    [52]J.Chiddister LEM.Compression impact testing of aluminium at elevated temperatures. Experiment Mechanics 1963;3:301.
    [53] U.S.Lindholm LMY. High strain rates testing:tension and compression. Experiment Mechanics 1968;8:1.
    [54] J.D.Campell WGF. Temperature and strain rate dependance of the shear strength of mild steel. Philosophical Magazine Letters 1970;21:63.
    [55] D.L.Osterkamp AI, G.Venizelos. High strain rate properties of selected aluminium alloys. Materials Science and Engineering A 2000;278:225.
    [56] Nemat-Nasser. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys. Acta Materialia 1997;45:907.
    [57] L.P.Loshmanov OAN, V.D.Rudnev. High speed tests at elevated temperatures. Indust.Lab 1996;62:311.
    [58] S.P.Jaspers JHD. Material behavior in conditions similar to metal cutting:flow stress in the primary shear zone. J.Mater.Process.Technol 2002;122:322.
    [59] D.E.Albert GTGI. Mechanical and microstructural response of Ti-24Al-11Nb as a function of temperature and strain rate. Acta Materialia 1997;45:343.
    [60] M.Apostol TV, V.T.Kuokkala. High temperature high strain rate testing with a compressive SHPB. J.Physique IV 2003;110.
    [61] Lin W-SLaC-F. High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests. Journal of Materials Processing Technology 1998;75:127.
    [62] W.S.Lee CFL. Plastic deformation and fracture behavior of Ti-6Al-4V alloy loaded with high strain rate under various temperatures. Materials Science and Engineering A 1998;241:48.
    [63] T.Shirakashi KM, E.Usui Flow stress of low carbon steel at high temperature and strain rate: Part 1.Propriety of incremental strain method in impact compression test with rapid heating and cooling systems. Bull. Japan Soc. Precision Eng. 1983;17:167.
    [64] W.S.Lee CFL. High-temperature deformation behavior of Ti-6Al-4V alloy evaluated by high-strain rate compression tests. J. Mater. Process. Technol. 1998;75:127.
    [65] A.M. Lennon KTR. A technique for measuring the dynamic behavior of materials at high temperatures. International Journal of Plasticity 1998;14:1279.
    [66] Songwon Seoa OM, Hyunmo Yang. Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique. International Journal of Impact Engineering 2005 ;31.
    [67] KT.Ramesh. Effects of high rates of loading on the deformation behavior and failure mechanisms of hexagonal close packed metals and alloys. Metallurgical and Materials Transactions A 2002;33A:927.
    
    [68] 赖祖涵. 金属的晶体缺陷与力学性质. 冶金工业出版社 1988.
    
    [69] Y.V.R.K. Prasad RWA. Philosophical Magazine Letters 1974;29:1421.
    
    [70] B.J.Koeppel GS. Metallurgical and Materials Transactions A 1999;30:2641.
    
    [71] W.R.Blumenthal RWC, C.P.Trujillo et al. APS Shock Physics 1997.
    
    [72] D.Montoya GN, J.P.Ansart. J.Phys IV France 1991;C3:27.
    
    [73] A.E.AbeyHDS. Trans.ASME:J.Basic Eng 1971 ;93:1291.
    
    [74] T.Nicholas. Air Force Materials Laboratory,Dayton,OH:personal communication 2001.
    
    [75] P.W.Bridgman. The resistance of 72 elements,alloys and compounds to 100000 kg/cm~2. Proc.Amer.Acad.Arts.Sci 1952;81:165.
    
    [76] J.C.Jamieson. Science 1963;140:72.
    
    [77] B.Olinger JCJ. Phase and compressibility to 120 Kilobars. High Temperatures-High Pressures 1973;5:123.
    
    [78] V.A.Zilbershteyn GIN, E.I.Estrin. Fiz.Met.Metalloved 1973;35:584.
    [79] S.K.SikkaYKV,R.Chidambaram. Prog.Mater.Sci 1982;27:245.
    
    [80] Hui Xia GP, Huan Luo,Yogesh K.Vohra,Arthur L.Ruoff. Crystal structures of group IVa metals at ultrahigh pressures. physical Review B 1990;42:6736.
    
    [81] Hui Xia SJD, Arthur L.Ruoff,Yogesh K.Vohra. New high-pressure phase transition in zirconium metal. Physical Review Letters 1990;64:204.
    
    [82] Zhang J Z ZYS. Formation of zirconium metallic glass Nature 2004;430:332.
    [83] Y.K.Akahama MK, H.Kawamura. J.Phys.Soc.Japan 1991,60.3211.
    [84] L.V.AI'tshuler AAB, I.P.Dudoladov. Zh.Eksp.Teor.Fiz 1967;53:1967.
    [85] L.V.Al'tshuler AAB IPDea. Zh.Eksp.Teor.Fiz 2,3-34 1981;J.Appl.Mech.Tech.Phys 22,145.
    
    [86] MCQueen RGM, S.P.Taylor et al. High Velocity Impact Phenomena. NewYork 1970.
    [87] A.R.Kutsar MNP, V.V.Kamissarov. Zh.Eksp.Teor.Fiz 1984;39:399.
    [88] S.G.Song GTG. Philosophical Magazine A 1995;71:275.
    
    [89] C.W.Greeff PAR, M.D.Knudson et al. Shock Compression of Condensed Matter 2003;706:209.
    [90]A.M.Podurets VVD,R.F.Trunin.X-Ray Diffraction Study of Shock-Induced Phase Transformations in Zirconium and Bismuth.Thermophysical Properties of Materials 2003;41:254.
    [91]Robert S.Hixson GTG,and Dennis B.Hayes.研究多相状态方程的冲击压缩技术.21世纪的核武库管理.洛斯阿拉莫斯60周年庆文集节选2004.
    [92]E.Cerreta GTGI,B.L.Henrie,D.W.Brown,R.S.Hixson,P.A.Rigg.The influence of peak stress on the mechanical behavior and the substructural evolution in shock-prestrained zirconium.Shock Compression of Condensed Matter 2003:541.
    [93]E.Cerreta GTGI,R.S.Hixson,P.A.Rigg,D.W.Brown.The influence of interstitial oxygen and peak pressure on the shock loading behavior of zirconium.Acta Materialia 2005:1751.
    [94]李英华,蔡灵仓,张林,李英雷.a-锆低压动态力学特性研究.高压物理学报 2006;21:188.
    [9 李英华,蔡灵仓,张林 Effects of Shock Pressure on Transition Pressure in Zr.Chinese Physics Letter 2007;3:784.
    [96]Ahuja R WJM,Johansson B and Eriksson O Phys.Rev.B 1993;48:16269.
    [97]C JGaGS.J.Phys:Condens.Matter 1994;6:10273.
    [98]Jomard G MLaPA.Phil.Mag.B 1998;77:67.
    [99]Yu OSAaTV.Phys.Rev.B 1998;57:13485.
    [100]Joshi K D JG,Gupta S C and Sikka S K J.Phys:Condens.Matter 2002;14:10921.
    [101]Greeff CW.Modelling Simul.Mater.Sci.Eng.2005;13:1015.
    [102]J.W.Chiristial SM.Deformation twinning.Prog.Mater.Sci 1995;39:1.
    [103]M.V.Klassen N.Mechanicaltwinning of crystals.1964:1.
    [104]M.H.Yoo JKL.Deformationg twinning in hcp metals and alloys.Phil.Mag 1991;63A:987.
    [105]哈宽富.金属力学性质的微观理论.北京:科学出版社 1983:304.
    [106]宋西平.钛锆TiAl金属间化合物中的孪生行为.西安交通大学,博士论文 1999.
    [107]J.A.Venables.Deformation twinning in face centred cubic metals.Phil.Mag 1961;6:379.
    [108]S.Mahajan DFW.Deformation twinning in metals and alloys.Int.Met.Rev 1973;18:43.
    [109]S.Mahajan GYC.Formation of deformation twins in fcc crystals.Acta Metall 1973;21:1353.
    [110]T.Mori HF.Dislocation reactions during deformation twinning in Cu-11at.%Al single crystals.Acta Metall 1980;28:771.
    [111]Nemat-Nasser WGGaJYC.Mechanical properties and deformation mechanisms of a commercially pure titanium.Acta Materialia 1999;47:3705.
    [112]A.A.Salem SRK,R.D.Doherty.Strain hardening regimes and microstructural evolution during large strain compression of high purity titanium.Scripta Mat 2002;46:419.
    [113]A.A.Salem SRK,R.D.Doherty.Strain hardening of titanium:role of deformation twinning.Acta Materialia 2003;51:4225.
    [114]G.C.Kaschner GTGI.The influence of crystallographic texture and interstitial impurities on the mechanical behavior of zirconium.Metallurgical and Materials Transactions A 2000;31A:1997.
    [115]刘孝敏.工程材料的微细结构和力学性能.中国科学技术大学出版社 2003.
    [116]冯端.金属物理学 第三卷 金属力学性质.科学出版社 1999.
    [117]S.G.Song GTGI.Influence of temperature and strain rate on slip and twinning behavior of zr.Metallurgical and Materials Transactions A 1995;26A:2665.
    [118]G.C.Kaschner CNT,R.J.Mccabe et al.Exploring the dislocation /twin interactions in zirconium.Materials Science and Engineering A 2007;463:122.
    [119]G.C.Kaschner CNT,I.J.Beyerlein et al.Role of twinning in the hardening response of zirconium during temperature reloads.Acta Materialia 2006;54:2887.
    [120]S.R.Chen GTG.Influence of twinning on the constitutive response of zr:experiments and modeling.J.Phys Ⅳ France 1997;C3:741.
    [1]Zukas J ANT,Swift H F,Greszczuk L B,Curran D R.Impact Dynamics.Malabar,Florida:Krieger Publishing Company 1992.
    [2]M.A.Meyers.Dynamic Behavior of Materials.NewYork:John Wiley&Sons 1994.
    [3]胡时胜.材料动力学实验技术.冲击动力学进展(王礼立,余同希,李永池编)1992:379.
    [4]K.F.Graff.Wave motion in elastic solids.Ohio State Univ.Press,Northern Ireland 1975.
    [5]C.M.Wu BL.Reflection and transmission of the energy of harmonic elastic waves in a bent bar.J.Sound Vibration 1996;190:645.
    [6]R.Beccu CMW,B.Lundberg.Reflection and transmission of transient elastic waves in a bent bar.J.Sound Vibration 1996;191:261.
    [7]李英雷 胡昌明,王悟.SHPB实验数据处理的规范化问题讨论.爆炸与冲击 2005;25:553.
    [8]U.S.Lindholm.High velocity deformation of solids.IMTUA Syrup.Tokyo,Japan 1977:26.
    [9]陶俊林,李玉龙,田常津,陈裕泽.10~4s~(-1)应变率下SHPB系统实验相关问题探讨.爆炸与冲击 2004;24:245.
    [10]Gorham DA.In mechanical properties at high rates of strain.Harding,J.Ed.1979:16.
    [11]Nemat-Nasser JBI,J.E.Starrett.Hopkinson techniques for dynamic recovery experiments.Proceedings of the Royal Society of London 1991;435:371.
    [12]陶俊林.SHPB实验技术若干问题研究.中国工程物理研究院博士论文 2005.
    [13]B.A.Gama ca.Hopkinson bar experiment:Analysis and simulation University of Delaware Center for COmposite Materials,Research Review 2002;April 24.
    [14]U.Zencker RC.Limiting conditions for compression testing of fiat specimen in the split Hopkinson pressure bar.Experiment Mechanics 1999;39.
    [15]L.B.Addessio EKC,G.T.Gray.Mechanical behavior of zirconium and hafnium in tension and compression.Metallurgical and Materials Transactions A 2005;36A:2893.
    [16]A.A.Salem SRK,R.D.Doherty.Strain hardening regimes and microstructural evolution during large strain compression of high purity titanium.Scripta Mat 2002;46:419.
    [17]A.A.Salem SRK,R.D.Doherty.Strain hardening of titanium:role of deformation twinning.Acta Materialia 2003;51:4225.
    [18]S.G.Song GTGI.Influence of temperature and strain rate on slip and twinning behavior of zr. Metallurgical and Materials Transactions A 1995;26A:2665.
    [19] S.Yadav KTR. The mechanical behavior of polycrystalline hafnium:strain-rate and temperature dependence. Mater.sci.Eng.A 1998;A246:265.
    
    [20] G.C.Kaschner GTGI. The influence of crystallographic texture and interstitial impurities on the mechanical behavior of zirconium. Metallurgical and Materials Transactions A 2000;31 A: 1997.
    [21] G.C.Kaschner GTGI, S.R.Chen. The influence of texture and impurities on the mechanical behavior of zirconium. Shock Compression of Condensed Matter 1997:435.
    [22] T.Shioya JYa. Study of dynamic behavior of dense silicon nitride ceramics at elevated temperature. J.Phys IV France 1997;C3:367.
    [23] Z. Rosenberg DD, E. Strader and S.J. Bless. A new technique for heating specimens in Split-Hopkinson-Bar experiments using induction-coil heaters. Experimental Mechanics 1986:275.
    [24] Wu AGaX. Elevated temperature testing with the Torsional Split Hopkinson Bar., Experimental Mechanics 1994:166.
    [25] 夏开文,程经毅,胡时胜. SHPB 装置应用于测量高温动态力学性能的研究. 实验力学 1998;13:307.
    
    [26] J.Chiddister LEM. Compression impact testing of aluminium at elevated temperatures. Experiment Mechanics 1963;3:301.
    
    [27] J.D.Campell WGF. Temperature and strain rate dependance of the shear strength of mild steel. Philosophical Magazine Letters 1970;21:63.
    [28] U.S.Lindholm LMY. High strain rates testing:tension and compression. Experiment Mechanics 1968;8:1.
    [29] Mostafa Shazly VP, Susan Draper. Mechanical behavior of Gamma-Met PX under uniaxial loading at elevated temperatures and high strain rates. International Journal of Solids and Structures 2004;41:6485.
    [30] Nemat-Nasser. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys. Acta Materialia 1997;45:907.
    [31] A.M.Lennon KTR. A technique for measuring the dynamic behavior of materials at high temperatures. International Journal of Plasticity 1998; 14:1279.
    [32] A.M. Lennon KTR. A technique for measuring the dynamic behavior of materials at high temperatures. International Journal of Plasticity 1998; 14:1279.
    [33]G.T.Gray.Classica split Hopkinson pressure bar testing.ASM Handbook 2000;8:461.
    [34]Lankford.Temperature strain rate dependence of compressive strength and damage mechanisms in aluminium oxide.J.Mater.Sci 1981;16:1567.
    [35]Eleiche AM.Impedance matching in non-homogeneous elastic bars.J.Phys.D:Appl.Phys 1975;8:505.
    [36]Songwon Seoa OM,Hyunmo Yang.Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique.International Journal of Impact Engineering 2005;31.
    [37]C.E.Frantz PSF.New experimental technique with the split Hopkinson pressure bar.In High energy rate fabrication ASME 1984;Edited by Berman and Schroeder:229.
    [38]李玉龙,索涛,郭伟国,胡锐,李金山,傅恒志.确定材料在高温高应变率下动态性能的Hopkinson杆系统.爆炸与冲击 2005;25:487.
    [39]谢若泽,张方举,田常津,李玉龙,陈裕泽等.高温SHPB实验技术及其应用.第三届全国爆炸力学实验技术学术会议论文集.
    [40]谢若泽.张方举,田常津等.高温SHPB实验技术及其应用.爆炸与冲击 2005;4:330.
    [41]C.Bacon JC,J.Lataillade.Evaluation of force and particle velocity at the heated end of a rod subjected to impact loading.J.Phys Ⅳ France 1991;C3:395.
    [42]张方举,谢若泽,田常津等.SHPB系统高温实验自动组装技术.实验力学 2005;2:281.
    [43]邓志方.李思忠.颜怡霞等.一种高温SHPB实验技术中的温度场分析.实验力学2005;20:65.
    [44]J.D.Bass BS,T.J.Ahrens.In high pressure research in miniral physics.Terrapub,Tokyo/Am.Geophys.union,Washington,D.C 1987;Edited by M.H.Manghnani and Y.SYONO:393.
    [45]王礼立.应力波基础.国防工业出版社第二版 2005.
    [46]刘孝敏,胡时胜.应力脉冲在变截面SHPB锥杆中的传播特性.爆炸与冲击 2000;20:110.
    [1]N.Narita JIT.Deformation twinning in fcc and bcc metals,dislocations in solids.F.R.N.Nabarro(eds)1992;B.V.:135.
    [2]郭可信,叶恒强,吴玉琨.电子衍射图在晶体学中的应用.科学出版社 1983:251.
    [3]冯端.金属物理学 第三卷 金属力学 性质.科学出版社 1999.
    [4]赖祖涵.金属的晶体缺陷与力学性质.冶金工业出版社 1988.
    [5]M.H.Yoo.Slip,twinning and fracture in hexagonal close packed metals.Metallurgical and Materials Transactions A 1981;12A:409.
    [6]S.Mahajan DFW.Deformation twinning in metals and alloys.Int.Met.Rev 1973;18:43.
    [7]N.E.Paton WAB.Plastic deformation of titanium at elevated temperatures.Metall.Trans 1970;1:2839.
    [8]R.E.Reed-hill.Role of deformation twinning in the plastic deformation of a polycrystalline anisotropic,Deformation Twinning.Gorden and Breach Press 1964;NewYork:295.
    [9]R.E.Reed-hill.Twin intersections and Cahn's continuity conditions.Trans.Met.Soc.AIME 1964;230:809.
    [10]V.Ramachandran DHB,R.E.Reed-hill.Tensile behavior of polycrystalline zirconium at 4.2K.Metall.Trans 1970;1:3011.
    [11]Erich T.Deformation mechanisms,texture and anisotropic in Zirconium and Zircaloy.ASTM 1988;special technical publication:966.
    [12]A.Seeger.Moderne probleme der metallphysik Berlin 1965;Springer.
    [13]L.B.Addessio EKC,G.T.Gray.Mechanical behavior of zirconium and hafnium in tension and compression.Metallurgical and Materials Transactions A 2005;36A:2893.
    [14]E.Orowan.Dislocation in Metals.AIME 1954;NewYork:l16.
    [15]A.H.Cottrell BAB.A mechanism for the growth of deformation twins in crystals.Phil.Mag 1951;42:573.
    [16]M.L.Kronberg.The formation and reversion of guinier-preston zones in Al-6.7at.%Zn and effects of small concentrations of magnesium and silver.Acta Metall 1969;17:29.
    [17]J.T.Fourie FW,F.W.C.Bosweli.The growth of twins in tin single crystals as observed by TEM.Acta Metall 1960;8:851.
    [18]G.L.Pearson ca.Acta Metall 1957;5:181.
    [19]宋西平.钛锆TiAl金属间化合物中的孪生行为.西安交通大学,博士论文 1999.
    [20]G.F.Bolling RHR.Continual mechanical twinning,acta Metall 1965;13:709.
    [21]F.Greulich LEM.Effect of grain size,dislocation cell size and deformation twin spacing on the residual strengthening of shock-loaded Nickel.Mater.Sci.Eng 1979;39:81.
    [22]G.T.Gray.Deformation twinning in Al-4.8wt%Mg.Acta Metall 1988;36:1745.
    [23]C.L.Magee DWH,R.G.Davies.The effect of Interstitial solutes on the twinning stress of bcc metals.Phil.Mag 1971:1531.
    [24]J.A.Venables.Deformation twinning in face centred cubic metals.Phil.Mag 1961;6:379.
    [25]哈宽富.金属力学性质的微观理论.北京:科学出版社 1983:304.
    [26]A.W.Sleeswyk.1/2 <111>screw dislocations and nucleation of {112} <111> twins in the bcc lattice.Phil.Mag 1963;8:1467.
    [27]M.H.Yoo CTW.Growth of deformation twins in zine crystals.Phil.Mag 1966;14:573.
    [28]R.W.Cahn.Plastic deformation of alpha-uranium twinning and slip.Acta Metall 1953;1:49.
    [29]S.Mahajan GYC.Twin-slip,twin-twin,and slip-twin interactions in Co-8wt%Fe alloy single crystals.Acta Metall 1973;21:173.
    [30]S.Mahajan GYC.Reply to comments on twin-twin interactions in fcc crystals.Scr.Met 1977;11:173.
    [31]J.W.Chiristial TBM.Deformation twinning.Progress in Materials Science 1995;39:1.
    [32]Nemat-Nasser WGGaJYC.Mechanical properties and deformation mechanisms of a commercially pure titanium.Acta Materialia 1999;47:3705.
    [33]A.A.Salem SRK,R.D.Doherty.Strain hardening regimes and microstructural evolution during large strain compression of high purity titanium.Scripta Mat 2002;46:419.
    [34]A.A.Salem SRK,R.D.Doherty.Strain hardening of titanium:role of deformation twinning.Acta Materialia 2003;51:4225.
    [35]S.G.Song GTGI.Influence of temperature and strain rate on slip and twinning behavior of zr.Metallurgical and Materials Transactions A 1995;26A:2665.
    [36]G.C.Kaschner GTGI,S.R.Chen.The influence of texture and impurities on the mechanical behavior of zirconium.Shock Compression of Condensed Matter 1997:435.
    [37]S.Yadav KTR.The mechanical behavior of polycrystalline hafnium:strain-rate and temperature dependence.Mater.sci.Eng.A 1998;A246:265.
    [38]Y.L.Bai BD.Adiabatic Shearing Localization:Occurrence,Theories and Applications.Pergamon,Oxford,United Kindom 1992.
    [39]杨扬,程信林.绝热剪切的研究现状及发展趋势.中国有色金属学报 2002;12:401.
    [40]谭成文,王富耻,李树奎.绝热剪切变形局部化研究进展及发展趋势.兵器材料科学与工程2003;26:62.
    [41]Qiang Li YBX,M.N.Bassim.Dynamic mechanical behavior of pure titanium.Journal of Materials Processing Technology 2004;155-156:1889.
    [42]Y.L.Bai QX,Y.B.Xu,L.T.Shen.Characteristics and Microstructure in the Evolution of Shear Localization in Ti-6Al-4V Alloy.Mechanics of Materials 1994;17:155.
    [43]Yongbo.Xu MAM.Microstructural evolution of localized shear bands induced during explosion in Ti-6Al-4V alloy.J.Mater.Process.Technol 2003;19:385.
    [44]Yongbo.Xu YB,M.A.Meyers.Deformation,phase transformation and recrystallization in the shear bands induced by high strain rate loading in Titanium and its alloys.J.Mater.Sci.Technol 2006;22:737.
    [45]G.Subhash BJP,G.Ravichandran.Constitutive response and characterization of deformation modes in hafnium.2nd Int.Conf.on Tungsten and Refractory Metals,Metal Powder Industries Federation,Princeton,NJ 1994:597.
    [46]王礼立.绝热剪切-材料在冲击载荷下的本构失稳.冲击动力学进展(王礼立,余同希,李永池编)1992;合肥:3-33.
    [1]王礼立.应力波基础.国防工业出版社第二版 2005.
    [2]G.R.Johnson WHC.A constitutive model and data for metals subjected to large strain rates and high temperatures.Proceedings of the Seventh International Symposium on Ballistics,The Hague,The Netherlands 1983;983:541.
    [3]F.J.Zerilli RWA.Dislocation mechanics based constitutive relations for material dynamics calculations,.Journal of Applied Physics 1987;61:1816.
    [4]P.S.Follansbee UFK.A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable.Acta Metall.1988;36:81.
    [5]D.J.Steinberg SGC,M.W.Guinan.A constitutive model for metals applicable at high-strain rate.Journal of Applied Physics 1980;51:1498.
    [6]T.J.Holmquist GRJ.Determination of constants and comparison of results for various constitutive models.J.Phys.Ⅳ 1991;C3:853.
    [7]W.K.Rule SEJ.A revised form for the Johnson-Cook strength model.Int.J.Impact Engng 1998;21:609.
    [8]G.R.Johnson TJH.An improved computational constitutive model for brittle materials.High pressure science and technology 1994;In:Schmidt S C,Shaner J W,Samara G A and Ross M,editors.New York:AIP press.
    [9]G.R.Johnson TJH.An computational constitutive model for brittle materials subjected to large strains,high strain rates and high pressures.Proceedings of the EXPLOMET Conference.San Diego,CA 1990.
    [10]Frank.J.Zerilli RWA.Description of tantalum deformation behaviour by dislocation mechanics based constitutive relations.J.Appl.Phys 1990;68.
    [11]Frank.J.Zerilli RWA.Constitutive equations for HCP metals and high strength alloys steels.In:Symposium on High strain rate effects.San Francisco,CA,1995.
    [12]赖祖涵.金属的晶体缺陷与力学性质.冶金工业出版社 1988.
    [13]J.Weertman JRW.Elementary dislocation theory.1992:72.
    [14]冯端.金属物理学 第三卷 金属力学 性质.科学出版社 1999.
    [15]M.A.Meyers DJB.Constitutive description of dynamic deformation:physically-based mechanisms.. Material Science and Engineering A 2002;322:194.
    
    [16] U.F.Kocks ASA, M.F.Ashby Thermodynamics and kinetics of slip. Progress in Materials Science, Pergamon Press, New York. 1975; 19:1.
    
    [17] M.A.Meyers. Dynamic Behavior of Materials. NewYork John Wiley&Sons 1994.
    
    [18] Sia.Nemat-Nasser YL. Flow stress of F.C.C. polycrystals with application to OFHC Cu. Acta Materialia 1988;46:565.
    
    [19] K.Okazaki HC. Effects of interstitial content and grain size on the strength of titanium at low temperatures. Acta Metallurgica 1973 ;21:1117.
    
    [20] D.R.Chichili KTR, K.J. Hemker. The high-strain-rate response of alpha-titanium: Experiments deformation mechanisms and modeling. Acta Materialia 1998;46:1025.
    [1]ANSYS公司上海办事处 美.ANSYS/LS-DYNA培训手册.2000.
    [2]J.M.Micrael JOB.Simulation of energy absorbing materials in blast loaded structures.8th International LS-DYNA Users Conference 2004.
    [3]al PJe.J.Appl.Phys.1952;23:396.
    [4]al:PJe.J.Appl.Phys.1954;25:778.
    [5]E.BE.J.Appl.Phys.1969;40:437.
    [6]Beetle J.C.ea.SEM/1971(Part Ⅰ)1971:37.
    [7]Stelly M.MLE,eds.Shock-Waves and High Strain-rate Phenomena 1981;Plenum Press,NY:113.
    [8]Hu B.Y.ea.Paper presented in High Pressure Science and Technology Conference.28 June-2July,1993;Colorado,USA.
    [9]Lamborn P.A.ea.ed.Harding J.Mechanical Properties at High Rates of Strain.Inst.Phy.Conf.Set 1974;21:251.
    [10].MSF.NWL-T-24/65.1965.
    [11]胡八一等.爆炸金属圆筒试验的研究概况.爆轰波与冲击波 1994;第4期.
    [12]谭多望等.炸药爆轰产物驱动刚塑性球壳的加速运动.高压物理学报 1998;12.
    [13]谭多望等.炸药爆轰产物驱动刚粘塑性球壳的运动.爆炸与冲击 2000;20.
    [14]李永池等.内爆炸载荷下圆管变形、损伤和破坏规律研究.力学学报 1999;31.
    [15]李永池等.含损伤材料的热粘塑性本构关系和柱壳破裂研究.爆炸与冲击 2001;21.
    [16]李永池等.损伤材料的热粘塑性本构关系及对柱壳破裂问题的研究.中国科学技术大学学报 1999;29.
    [17]汤铁钢等.外部爆轰加载过程中金属圆管断裂实验研究.爆炸与冲击 2002;22.
    [18]汤铁钢等.高应变率压缩加载下LY12铝圆管的剪切断裂研究.高压物理学报 2003;17.
    [19]汤铁钢等.爆炸加载下金属柱壳膨胀破裂过程研究.爆炸与冲击 2003;23.
    [20]胡海波等.金属柱壳在爆炸加载断裂中的单旋现象.爆炸与冲击 2004;24.
    [21]高重阳等.薄壁柱壳在内部爆炸载荷下膨胀断裂的研究.爆炸与冲击 2000;20.
    [22]谭成文等.内爆炸加载条件下圆筒的膨胀、破裂规律研究.爆炸与冲击 2003;23.
    [23]张世文等.金属圆管内爆轰波相互作用效应的数值模拟研究.爆炸与冲击 2004;24.
    [24]李雪梅等.液体炸药滑移内爆加载下钢管的变形和层裂破坏研究.爆炸与冲击 2003;23.
    [25]李雪梅等.钢园管在内爆加载下的层裂特性研究.爆炸与冲击 2005;25.
    [26]李英华,王悟,胡时胜.金属圆管动态破坏实验技术研究.第三届全国爆炸力学实验技术学术会议论文集 2004.
    [27]G.I.Taylor.Science papers of Sir G.T.Taylor.Ⅲ(44).London Cambridge University Press 1963:387.
    [28]A.G.lvanov.Strength of Materials.1976;8.
    [29]C.R.Hoggatt,R.F.J.Recht.Fracture behavior of tubular bombs.J.Appl.Phys 1968;39:1856.
    [30]D.A.Shockey,L.Seaman.Material behavior under high stress and ultrahigh loading rates.NEwYork and London.Plenum Press 1983;273.
    [31]封加波.金属动态延性破坏的损伤度函数模型.博士学位论文 1992;北京理工大学.
    [32]E.Hirsh.Propellants and Explosives.1979;4:79.
    [33]al FOe.Shock waves and high strain rate phenomena.Murr L.E.eds 1981;Plenum Press,NY:113.
    [34]A.L.Gurson.Plastic flow and fracture behavior of ductile materials incorporating void nucleation,growth and interaction.Ph.D.Thesis,Brown University,1975.
    [35]A.L.Gurson.Continuum theory of ductile rupture by void nucleateon and growth,I.Yield criteria and flow rules for porous ductile media..J.Eng.Mater.Tech.1977;99:2.
    [36]朱林法.金属材料冲击损伤和破坏行为的数值模拟研究.中国科学技术大学硕士学位论文2003.
    [37]C.W.Greeff.Phase changes and the equation of state of Zr.MODELLING AND SIMULATION IN MATEARIALS SCIENCE AND ENGINEERING 2005:1015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700