实验模态分析的前端信号精度研究及虚拟式模态分析仪的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验模态分析是随着计算机技术、振动测试技术、虚拟仪器技术的发展,从上个世纪60年代开始发展起来的一项重要的工程应用技术。到目前为止,与其相关的理论模型研究,已经较为完善,并逐步转向各种行业的工程应用中。在机械、建筑、航空航天、船舶、汽车等多个领域的应用非常广泛,并且已经日趋成熟。在国内外也出现了多种不同功能、不同层次的模态分析软件。随着科技的进步,很多工程结构对模态分析软件的分析结果精度要求越来越高,然而由于结构本身、传感器、数据采集调理、参数识别等环节都可能引入误差,所以模态参数识别结果的精度往往不高。本文正是基于以上背景,完整地开发了一套虚拟式模态分析仪,并且对其前端的频响函数估计精度问题进行了深入的研究和探讨。
     文章首先介绍了实验模态分析的相关研究背景和国内外的研究现状,然后较为系统地描述了实验模态分析的基础知识。从物理模型出发,推导出了模态分析的理论模型,从正反两个角度说明了实验模态分析的原理。根据实验模态分析的运作流程,完整地介绍了实验模态分析的过程,包括实验前的实验准备(结构的安装、调试和校准,激励测点、响应测点布置等)、几何结构模型的建立、时域原始振动数据的采集、频响函数的估计、模态参数的识别、模态模型的验证、结果参数和振型动画的输出等。
     针对提高频响函数的估计精度问题使用两种方法进行了专门的研究和探讨,一种方法是使用频率抽取校正方法首先对采集的原始数据信号进行频谱校正,提高其频谱精度,待各个测试点各个方向的数据都进行校正以后,再使用其进行频响函数估计,然后在频响函数的基础上进行模态参数识别,得到较高精度的模态参数;另一种方法是采用高阶谱的方法,使用高阶谱优良的噪声不敏感性,首先对原始采样数据信号进行双谱估计,再使用双谱重构原始信号的Fourier变换,达到去噪的目的,然后使用重构信号估计频响函数,进而进行模态参数识别。通过仿真数据和实际的简支梁采样数据分别验证了两种方法的有效性,得到了精度较高的模态参数识别结果。
     文章还重点介绍了QLVMA-2型虚拟式模态分析仪的研制研发过程和其各个部分的功能结构。该模态分析仪采用图形化的显示操作界面,简洁明了、用户操作简单、上手快,真正体现了“虚拟”仪器的特点。该模态分析仪可以实现整个实验模态分析过程,分别为几何结构建模、结构数据采集、频响函数估计、模态参数识别、结果参数和振型动画显示、模态模型验证等。在介绍仪器功能的基础上通过简支梁的实验模态分析、钢板结构的实验模态分析、工字形梁的实验模态分析、刚性框架结构的实验模态分析、摩托车车架结构的实验模态分析等各种形状、大小的结构实验模态分析实例,验证了该仪器实验模态分析结果的正确性和适用性,并且与国内外著名的商用模态分析软件作了对比实验、与ABAQUS有限元分析软件的计算模态参数和振型作了对比实验,都充分的验证了虚拟式模态分析仪分析结果的可靠性和准确性。文章最后还对所做工作进行了总结,并且对下一步研究方向进行了展望。
With the development of computer technology, vibration measurement and virtual instrument, the experimental modal analysis has become an important engineering application technique since 1960s. So far, the correlative theoretical mode research has been perfected and gradually turned to the engineering application in various industries. The technique has become more and more popular, especially in the fields of mechanism, architecture, aviation, spaceflight, shipping, and automobile and so on. A variety of modal analysis softwares with different functions and levels have emerged inland and overseas. With the advancement of science and technology, the request of the precision of analysis result to the softwares has become higher in many engineering structures. However, due to the introduction of errors in structure itself, transducer, data acquirement, data processing, and parameter identification and so on, the result is usually not that precise. Hence, on the above situations, this dissertation produces a set of virtual instrument for modal analysis, with a deep and thorough research into the precision problem of frequency response function measurement of front signal processing.
     The dissertation first introduces the correlative research background and study status about experimental modal analysis inland and overseas, together with a systematical depiction of the basic knowledge about this analysis. Started from mechanics mode, the theoretical mode of modal analysis has been drawn, illustrating the principle of experimental modal analysis from both the positive and negative viewpoint. Based on the operation procedure, a complete process of experimental modal analysis is introduced, including the preparation before the experiment (the allocation, debugging and calibration of structure, the allocation of test nodes about impact and response, etc), the construction of geometrical structure mode, the original data acquisition of time field, the frequency response function measurement, the modal parameter identification, the validity of modal mode, the output of result parameter and mode shape and so on.
     Two means have been applied to the specific research on the precision of frequency response function measurement. The spectrum correction method of frequency extracting is used to first have spectrum correction of the original data of time field so as to improve the precision of spectrum. After the original data of time field of all test nodes and test directions are corrected, they are then used to measure the frequency response functions where the identification of modal parameters are based and a better precision result is received. The other is the method of higher-order spectral analysis, of which the high quality of noise non-sensitivity is used. After the bispectrum of the original data is measured, it is then used to reconstruct the DFT of the original data in the aim of reducing noise. Finally, the frequency response functions are measured, using the DFT data of reconstruction, and modal parameters are identified. The validity of the two methods has been testified respectively by the simulation result and the actual result of a simple supported beam, where a better precision result of modal parameters is gained.
     The dissertation also gives an emphasis on the programming process on the functional configuration of the QLVMA-2 virtual instrument of modal analysis. Concise and intelligible, and easy and quick to handle, the instrument adopts a graphical operation interface, embodying perfectly the characteristic of a‘virtual’apparatus. The whole process of experimental modal analysis can be carried out on the QLVMA-2, including constructing mode of geometrical structure, the data acquisition of nodes on structure, frequency response functions measurement, modal parameter identification, display of result parameters and mode shapes, validity of modal mode, and so on. Based on the introduction, the validity and applicability of the QLVMA-2 virtual instrument of modal analysis is confirmed through a series of structure analysis examples, such as a simple supported beam, an armor plate, an I-Beam, a steel frame, and an autocycle frame. Compared with some distinguished modal analysis softwares inland and overseas and Abaqus which is a software of finite element analysis, the testified results also prove the reliability and accuracy of the QLVMA-2.
     The dissertation finally closes with a conclusion of the writer’s research work and presents an expectation of the following research direction.
引文
[1] Heylen W, Lammens S, Sas P著,白化同,郭继忠译.实验模态分析理论与试验[M].北京:北京理工大学出版社, 2001.
    [2]曹树谦,张文德等.振动结构模态分析——理论、实验与应用[M].天津:天津大学出版社, 2001.
    [3]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社, 2001.
    [4]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社, 2000.
    [5] Ewins D J著,赵淳生,周传荣译.模态试验理论与实践[M].南京:东南大学出版社, 1991.
    [6]张令弥.振动测试与动态分析[M].北京:航空工业出版社, 1992.
    [7]傅志方,华宏星.模态分析的概念和发展历史[EB/01], http://dengyuehua1973.blogchina.com/dengyuehua1973/4790467.html, 2006-04-02.
    [8]张怀瑾,李德葆.大型矿用载重车轮辋强度计算的建模分析[J].机械强度, 1996, 18(3): 21-24.
    [9]沈松,应怀樵,雷速华,赵增欣.用锤击法和变时基技术进行黄河铁路樵的模态试验分析[J].振动工程学报, 2000, 13(3): 492-495.
    [10]李蕾红,陆秋海,任革学.特征系统实现算法的识别特性研究及算法的推广[J].工程力学, 2002, 19(1):109-114.
    [11]续秀忠,李中付,华红星,陈兆能.非平稳环境激励下线性结构在线模态参数识别[J].上海交通大学学报, 2003, 37(1): 118-121.
    [12]张令弥,冯德强,秦仙蓉.导弹发射车组合结构动力学实验与分析[J].强度与环境, 2004, 31(4): 11-18.
    [13]任伟新,胡卫华,林友勤.斜拉索模态实验参数研究[J].实验力学, 2005, 20(1): 102-108.
    [14]程志强.基于虚拟仪器技术的振动测试与模态分析平台的设计[硕士学位论文].北方工业大学, 2007, 05.
    [15]郑利锋,杨小雪,张汉全.基于LabVIEW的虚拟频谱分析仪设计[J].自动化与仪器仪表, 2002, (5): 4-7.
    [16]王泽保,巴林凤,杨品. LabVIEW与虚拟仪器设计[J].微计算机信息, 1999, 15(6): 46-48.
    [17]周传德,秦树人,汤宝平,尹爱军.频谱细化分析方法及其在虚拟仪器中的应用[J].重庆大学学报(自然科学版), 2005, 28(8): 1-3.
    [18] Cautero G, Paolucci G, Brena B. LabVIEW-based Control System for A Surface Science Experimental Station [J]. Measurement Science & Technology. 1994, 5(8): 1002-1011.
    [19] Ko C C, Chen B M, Chen S H. A Large Scale Web-based Virtual Oscilloscope Laboratory Experiment, IEE Engineering Science and Education Journal, 2000, 9(2): 69-76.
    [20]刘君华.基于LabVIEW的虚拟仪器设计[M].北京:电子工业出版社, 2003.
    [21] Bhandari A, Shor M H. Access to an instructional control laboratory experiment through the World Wide Web, in:Proceeding of the 1998 American Control Conference, Philadelphia, 1998: 1319-1325.
    [22]柏林,秦树人,刘小峰.虚拟仪器流技术的研究[J].中国机械工程, 2005, 16(6): 519-522.
    [23]金涛,季忠,秦树人.虚拟仪器系统中误差分析与修正[J].重庆大学学报(自然科学版), 2004, 27(12): 1-4.
    [24]杜金榜,王跃科.仪器仪表技术的发展趋向[J].仪器仪表学报. 2002, 23(5): 228-230.
    [25] Cao S G, Rees N W, Feng G. Analysis and design for a class of complex control systems. Automatica. 1997, 6: 1017-1039.
    [26] Richardson M H, Formenti D L. Parameter estimation from frequency response measurements using the rational fraction polynomial method[C].Proc of 1st International Modal Analysis Conference. Florida, Union College, 1982: 167-180.
    [27] Richardson M H, Formenti D L. Global curve fitting of frequency response measurements using the rational fraction polynomial method[C].Proc of 3rd International Modal Analysis Conference. Florida, Union College, 1985: 390-397.
    [28] Richardson M H. Global frequency & damping estimates from frequency response measurements using the rational fraction polynomial method[C].Proc of 4th International Modal Analysis Conference. Florida, Union College, 1986: 465-470.
    [29]彭伟,袁景侠.模态参数的整体正交多项式识别法[J].动态分析测试技术, 1988, (3): 1-9.
    [30]周海亭,韩祖舜.舰用燃气轮机框架模型的模态参数识别[J].振动与冲击, 1995, 15(3): 7-12.
    [31]孙扬.某涡喷发动机前轴承弹性支撑实验模态分析[J].推进技术, 1999, 20(3): 61-63.
    [32]秦仙蓉,张令弥.对模态参数识别的整体正交多项式算法的评述[J].强度与环境, 2000, (4): 30-38.
    [33]焦群英,陈奎孚.整体正交多项式法识别模态参数的改进[J].中国农业大学学报, 2003, 8(2): 1-6.
    [34] Forsythe G E. Generation and use of orthogonal polynomials for data-fitting with a digital computer[J]. J Soc Indust Appl Math, 1957, 5(2): 54-88.
    [35]胡广书.数字信号处理-理论、算法与实现(第二版)[M].北京:清华大学出版社, 2003.
    [36]段虎明,秦树人,李宁.频率响应函数估计方法综述[J].振动与冲击, 2008, 27(6).
    [37] Schoukens J, Pintelon R. Measurement of frequency response functions in noise environments [J]. IEEE Transactions on Instrumentation and Measurement. 1990, 39(6): 905-909.
    [38]陆爽.噪声对频响函数辨识的影响[J].长春大学学报, 2001, 11(5): 6-9.
    [39] Guillaume P, Pintelon R, Schoukens J. Nonparametric frequency response function estimators based on nonlinear averaging techniques [J]. IEEE Transactions on Instrumentation and Measurement. 1992; 41(6): 739-746.
    [40] Guillaume P. Frequency response measurements of multivariable systems using nonlinear averaging techniques [J]. IEEE Transactions on Instrumentation and Measurement. 1998, 47(3): 796-800.
    [41] White P R, Collis W B. Analysis of the TLS Frequency Response Function Estimator[C]. Proceedings of the 9th International Workshop on Statistical and Array Processing, Portland, Oregan, September, 1998, 156-159.
    [42] Mitchell L D, Cobb R E. An unbiased frequency response function estimator [J]. Proceedings of the 5th International Modal Analysis Conference. London, U.K., April, 1984, 437-446.
    [43]滑广军,吴运新,吴吉平.一种新的频响函数的无偏估计方法[J].振动,测试与诊断, 2003, 23(3): 175-178.
    [44] Antoni J, Wagstaff P, Henrio J C. Ha--A consistent estimator for frequency response functions with input and output noise [J]. IEEE Transactions on Instrumentation and Measurement. 2004, 53(2): 457-465.
    [45] Schoukens J, Pintelon R, Rolain Y. Broadband versus stepped sine FRF measurements [J]. IEEE Transactions on Instrumentation and Measurement. 2000, 49(2): 275-278.
    [46] Dobrowiecki T, Schoukens J, Guillaume P. Optimized excitation signals for MIMO frequency response function measurements [J]. IEEE Transactions on Instrumentation and Measurement. 2006, 55(6): 2072-2079.
    [47] Vanhoenacker K, Schoukens J, Swevers J, Vaes D. Summary and comparing overview of techniques of detection of nonlinear distortions [C]. Proc. ISMA, 2002, 1241-1256.
    [48] Dobrowiecki T, Schoukens J. Practical choices in the FRF measurement in presence of nonlinear distortions [J]. IEEE Transactions on Instrumentation and Measurement. 2001,50(1): 2-7.
    [49] Vanhoenacker K, Dobrowiecki T, Schoukens J. Design of multisine excitations to characterize the nonlinear distortions during FRF-measurements [J]. IEEE Transactions on Instrumentation and Measurement. 2001, 50(5): 1097-1102.
    [50] D’haene T, Pintelon R, Schoukens J, Gheem E V. Variance analysis of frequency response function measurements using periodic excitations [J]. IEEE Transactions on Instrumentation and Measurement. 2005, 54(4): 1452-1456.
    [51] Ou W, Han C Z, Chen M. H∞identification for nonlinear system based on generalized frequency response function [C]. Proceedings of the 4th World Congress on Intelligent Control and Automation. Shanghai, China, June, 2002, 114-118.
    [52] Dedene N, Pintelon R, Lataire P. Measurement of multivariable frequency response functions in the presence of nonlinear distortions—some practical aspects [J]. IEEE Transactions on Instrumentation and Measurement. 2002, 51(4): 577-582.
    [53] Nuij P, SteinBuch M. Identification of non-linear dynamics using higher order frequency response functions [C]. IMTC 2004–Instrumentation and Measurement Technology Conference. Como, Italy, May, 2004, 2177-2182.
    [54] Evans C, Rees D, Jones L. Nonlinear disturbance errors in system identification using multisine test signals [J]. IEEE Transactions on Instrumentation and Measurement. 1994, 43(2): 238-244.
    [55] Evans C, Rees D. Nonlinear distortions and multisine signals– part II: minimizing the distortion [J]. IEEE Transactions on Instrumentation and Measurement. 2000; 49(3): 610-616.
    [56] Solomou M, David R. Frequency domain analysis of nonlinear distortions on linear frequency response function measurements [J]. IEEE Transactions on Instrumentation and Measurement. 2005, 54(3): 1313-1320.
    [57] Schoukens J, Rolain Y, Pintelon R. Improved frequency response function measurements for random noise excitations [J]. IEEE Transactions on Instrumentation and Measurement. 1998, 47(1): 322-326.
    [58] Schoukens J, Rolain Y, Pintelon R. Leakage reduction in frequency response function measurements [J]. IEEE Transactions on Instrumentation and Measurement. 2006, 55(6): 2286-2291.
    [59] Antoni J, Schoukens J. Optimal settings for measuring frequency response functions with weighted overlapped segment averaging [C]. IMTC 2006– Instrumentation and Measurement Technology Conference. Sorrento, Italy, April, 2006, 1764-1769.
    [60] Pintelon R, Rolain Y, Moer W V. Probability density function for frequency response function measurements using periodic signals [J]. IEEE Transactions on Instrumentation and Measurement. 2003, 52(1): 61-68.
    [61] Pintelon R, Schoukens J. Measurement of frequency response runctions using periodic excitations, corrupted by correlated input/output errors [J]. IEEE Transactions on Instrumentation and Measurement. 2001, 50(6): 1753-1760.
    [62]段虎明,秦树人,李宁.离散频谱校正方法综述[J].振动与冲击, 2007, 26(11): 138-145.
    [63] Grandke T. Interpolation algorithms for discrete Fourier transforms of weighted signals [J]. IEEE Trans M, 1983, IM-32(2): 350-355.
    [64] Offelli C, Petri D. A frequency-domain procedure for accurate real-time signal parameter measurement [J]. IEEE Trans M, 1990, 39(2): 363-368.
    [65]朱利民,钟秉林,黄仁.离散频谱多点卷积幅值修正法的理论分析[J].振动工程学报, 1999, 12(1): 120-125.
    [66]丁康,江利旗.离散频谱的能量重心校正法[J].振动工程学报, 2001, 14(3): 354-358.
    [67] Qu L, Liu X, Peyronne G, Chen Y. The holospectrum: a new method for rotor surveillance and diagnosis [J]. Mechanical System and Signal Processing, 1989, 3(3): 255-267.
    [68] Huang D S. Phase errors in fast Fourier transform analysis. Mechanical Systems and Signal Processing [J], 1995, 9(2): 113-118.
    [69] Xie M, Ding K. Correction for the frequency, amplitude and phase in FFT of harmonic signal [J]. Mechanical System and Signal Processing, 1996, 10(2): 211-221.
    [70]丁康,张晓飞.频谱分析校正理论的发展[J].振动工程学报, 2000, 13(1): 14-22.
    [71]刘渝.正弦波频率快速估计方法[J].数据采集与处理. 1998, 13(1): 7-11.
    [72]丁康,钟舜聪.通用的离散频谱相位差校正法[J].电子学报, 2003, 31(1): 142-145.
    [73]黄志云,徐科军.基于相位差的频谱校正方法的研究[J].振动与冲击, 2005, 24(2): 77-79.
    [74] Heydt G T, Fjeld P S, Liu C C et al. Applications of the windowed FFT to electric power quality assessment [J]. IEEE Transactions on Power Delivery, 1999, 14(4): 1411-1416.
    [75]黄纯,何怡刚,江亚群.一种新的自动准同期并列算法的研究[J].中国电机工程学报, 2005, 25(3): 60-64.
    [76]史东锋,许锋,郭万林.谐波信号的通用频谱校正算法在回转机械监测中的应用[J].南京航空航天大学学报, 2004, 36(4): 505-510.
    [77]陈奎孚,张森文,郭幸福.消除负频率影响的频谱校正[J].机械强度, 2004, 26(1): 25-28.
    [78]王柏林.频谱小偏差校正新方法[J].电力系统自动化, 2005, 29(20): 46-49.
    [79]曹延伟,张昆帆等.一种稳健的离散频谱校正方法[J].电子与信息学报, 2005, 27(9): 1353-1356.
    [80] Anon. Implementation of the RELAX algorithm [J]. IEEE Transactions on Aerospace and Electronic Systems. 1998, 34(2): 657-664.
    [81]李玉柏.基于DFT滤波器组实现Zoom-FFT算法分析[J].信号处理, 2000, 16(sup): 122-127.
    [82]郭渝,汤宝平,纪跃波,秦树人.基于解析信号和带通滤波的频率细化分析[J].重庆大学学报(自然科学版), 2001, 24(4): 17-21.
    [83] Susaki H. A fast algorithm for high-accuracy frequency measurement: Application to ultrasonic Doppler sonar [J]. IEEE Journal of Oceanic Engineering. 2002, 27(1): 5-12.
    [84] Kopecky M, Cuth V, Vavro J. Vibration control of rotating machines parts [C]. Proceedings of SPIE. 2002, 4753: 735-738.
    [85] Zhang W Q, Tao R, Ma Y F. Fast computation of the ambiguity function [C]. 7th International Conference on Signal Processing Proceedings. Beijing, China: IEEE, 2004. 2124-2127.
    [86]李天昀,葛临东.两种快速频域细化分析方法的研究[J].振动工程学报, 2004, 26(9): 1192-1194.
    [87]周传德,秦树人,汤宝平,尹爱军.频率细化分析方法及其在虚拟仪器中的应用[J].重庆大学学报(自然科学版), 2005, 28(8): 1-3.
    [88] Yazidi A, Henao H, Capolino G A, Artioli M, Filippetti F. Improvement of frequency resolution for three-phase induction machine fault diagnosis [C]. 2005 IEEE Industry Applications Conference. Kowloon, Hong Kong, China: IEEE, 2005. 20-25.
    [89] Kia S H, Henao H, Capolino G A. Zoom-MUSIC frequency estimation method for three-phase induction machine fault detection[C]. 31st Annual Conference of IEEE Industrial Electronics Society. Raleigh, NC, United States: IEEE, 2005, 2603-2608.
    [90]罗利春. Zoom-FFT的改进、频谱反演与时-频局部化特征[J].电子学报, 2006, 34(1): 77-82.
    [91]钱克矛,李川奇.频谱校正的线性调频Z变换方法[J].振动工程学报, 2000, 13(4): 628-632.
    [92]李会方,郝重阳.分段Chirp-Z变换及其在目标速度跟踪中的应用[J].数据采集与处理, 1995, 10(4): 334-338.
    [93] Pereira S, Pun T. Iterative template matching algorithm using the Chirp-Z transform fordigital image watermarking [J]. Pattern Recognition. 2000, 33(1): 173-175.
    [94] Aiello M, Cataliotti A, Nuccio S. An induction motor speed measurement based on current harmonic analysis with Chirp-Z transform[C]. IEEE Instrumentation and Measurement Technology Conference. Budapest: IEEE, 2001, 1. 578-582.
    [95]周昌雄,王建华.基于Chirp-Z变换加窗修正幅值谱[J].计量技术, 2002; 10: 6-7.
    [96] Bakx J L. Efficient computation of optical disk readout by use of the chirp z transform [J]. Applied Optics. 2002, 41(23): 4897-4903.
    [97]李天昀,葛临东.基于CZT与Zoom-FFT的频谱细化分析中能量泄漏的研究[J].电子对抗技术, 2003, 18(5): 11-15.
    [98]杨亦春,马驰州等.相关峰细化的精确时延估计快速算法研究[J].声学学报, 2003, 28(2): 159-166.
    [99] Zang C Y, Dai L, Zheng H P, He J J. Using frequency zoom technology to realize high precision and adaptive frequency measurement for power system [C]. 2004 International Conference on Power System Technology. Singapore: IEEE, 2004, 155-159.
    [100]许漫坤,平西建,李天昀.一种改进的二维离散极坐标Fourier变换快速算法[J].电子学报, 2004, 37(2): 1140-1143.
    [101] Aiello M, Cataliotti A, Nuccio S. A chirp-z transform-based synchronizer for power system measurements [J]. IEEE Transactions on Instrumentation and Measurement. 2005, 54(3): 1025-1032.
    [102] Meyer-Base U, Natarajan H, Castillo E, Garcia A. Faster than the FFT: The chirp-z RAG-n discrete fast fourier transform [J]. Frequenz. 2006, 60(7): 147-151.
    [103] Sarkar. Indranil, Fam. Adly T. The interlaced chirp Z transform signal processing [J]. Signal Processing, 2006, 86(9):2221-2232.
    [104]刘进明,应怀樵. FFT谱连续细化分析的Fourier变换法[J].振动工程学报, 1995, 8(2): 162-166.
    [105]段虎明,秦树人,李宁.离散频谱的频率抽取校正法[J].振动与冲击, 2007, 26(7). 59-62.
    [106]谢明,丁康,莫克斌.两个密集频率成分重叠频谱的校正方法[J].振动工程学报, 1999, 12(1): 109-114.
    [107]徐培民,杨积东,闻邦椿.离散频谱分析中两个邻近谱峰参数的识别[J].振动工程学报, 2001, 14(3): 254-258.
    [108]陈奎孚,张森文.利用三条谱线计算频率紧邻的两个成分的参数[J].振动工程学报, 2004, 17(2): 153-158.
    [109]候正信,王兆华,杨喜.全相位DFT数字滤波器的设计与实现[J].电子学报, 2003,31(4): 539-542.
    [110]吴国乔,王兆华,黄晓红.离散频谱的全相位校正法[J].数据采集与处理, 2005, 20(3): 286-290.
    [111]马建仓,吴启彬等.基于小波变换的频谱细化分析方法[J].信号处理, 1997, 13(3): 274-279.
    [112] Hartin J R. Application of a wavelet based FRF to the analysis of a bilinear structure [C]. Proceedings of the International Modal Analysis Conference. Kissimmee, FL: Society for Experimental Mechanics Inc., 2001, 2. 1414-1419.
    [113]许丽艳,史桂梅,候铁年.基于小波变换的弹射加速度频谱分析[J].青岛大学学报, 2001; 16(1): 52-55.
    [114]曹豫宁,李永丽等.基于小波变换的频谱细化方法在电动机故障检测中的应用[J].继电器, 2002, 30(6): 1-3.
    [115] Alm J F, Walker J S. Time-frequency analysis of musical instruments [C]. SIAM Review. 2002, 44(3): 457-476.
    [116] Lee S K, Shim J S, Cho B O. Damage detection of a gear with initial pitting using the zoomed phase map of continuous wavelet transform [J]. Key Engineering Materials. 2006, 306-308 I: 223-228.
    [117] Montejo L A, Suarez L E. Wavelet-based identification of site frequencies from earthquake records [J]. Journal of Earthquake Engineering. 2006, 10(4): 565-594.
    [118] Qin Shuren, Duan Huming, Mao Yongfang. Correction method of discrete spectrum by extracting frequency[C]. IEEE International Conference on Signal Processing and Communications, Dubai, United Arab Emirates: IEEE, 2007.
    [119]段虎明,秦树人.离散频谱校正方法及其在旋转机械振动测试中的应用[C].第9届全国振动理论及应用会议(NVTA2007),杭州: 2007.
    [120]杨大地,涂光裕.数值分析[M] .重庆:重庆大学出版社, 2003, 07.
    [121] I. Santamaria, C. Pantaleon, Jesus Ibanez. A Comparative Study of High-Accuracy Frequency Estimation Methods [J]. Mechanical Systems and Signal Processing, 2000, 14(5): 819-834.
    [122] Luo J.W., Liu Y.J. Fast Computation of the Target Signal Phase in Noisy Environments [J]. Applied Mathematics and Computation. 2005, 166: 224-232.
    [123] David I. Bergman. Dynamic Error Correction of a Digitizer for Time-Domain Metrology [J]. IEEE Tranactions on Instrumentation and Measurement. 2004, 53(5): 1384-1390.
    [124]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社, 2002.
    [125]皇甫堪,陈建文,楼生强.现代数字信号处理[M].北京:电子工业出版社, 2003.
    [126]张贤达.时间序列分析-高阶统计量方法[M].北京:清华大学出版社, 1996.
    [127] Nikias C L, Petropulu A P. Higher-order spectra analysis [M]. PTR Prentice Hall. New Jersey: Englewood Cliffs, 1993.
    [128]飞思科技产品研发中心. MATLAB 7辅助信号处理技术与应用[M].北京:电子工业出版社, 2005.
    [129]樊养余,孙进才,李平安等.基于双谱的谐波信号重构[J].声学学报. 1999, 24(4): 416-423.
    [130]蒋宏,吴立疆.基于双谱重构的图像降噪[J].北京航空航天大学学报, 2005, 31(3): 321-325.
    [131] Dianat S A, Raghuveer M R. Fast algonithms for phase and magnitude reconstructionfrom bispectrum [J]. Opt Engr, 1990, 29: 504-512.
    [132]秦树人,季忠,尹爱军,秦毅,段虎明,毛永芳.工程信号处理[M].北京:高等教育出版社, 2007.
    [133]辛辛那提大学结构动力学研究实验室,通用文件格式官方资料文档[EB/01], http://www.sdrl.uc.edu/uff2/uff2.html .
    [134]王彤,张令弥,邵姗姗.模态测试与分析软件中的通用文件读写接口设计[J].振动与冲击, 2006, 25(6): 147-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700