气幕式旋转电弧传感器结构设计及其焊接电弧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋开发、核电工业的发展以及港口工程的大量建设,水下焊接技术在这些项目中起到了非常重要的作用,急待提高和发展。局部干法水下焊接同时具有高质量焊缝和操作技术简便易行的优点。基于旋转电弧传感器的局部干法水下焊接有利于水下焊接质量和自动化水平的提高,是非常值得研究的一种水下焊接技术。
     论文针对改善水下焊接质量和提高焊接自动化的目的,结合实验室现有旋转电弧传感器的部分结构,研制了一种适用于水下局部干法焊接的气幕式旋转电弧传感器。该焊炬的排水工作原理是利用高压气体通过排水罩将焊接区域的水排开,在工件表面形成一个局部高压气罩,从而达到局部干法焊接的目的。排水罩采用了收缩喷管加速气流来达到排水的目的。针对所设计的排水罩进行了气液两相流的流场数值模拟,通过对压力场、速度场及速度矢量场的分析,验证了排水装置设计的可行性。
     利用所建立的气幕式旋转电弧传感器水下焊接的电弧数值仿真模型,研究了局部高压气罩内焊接电弧特性的变化趋势。在空气中的最优焊接参数下(电流260A、电压24V),以氩气为保护气,弧长12mam,直流反接等条件下,分别在环境压力为0.1MPa、0.4MPa和0.6MPa下,对氩弧等离子体的温度、电流密度进行了数值仿真。仿真结果表明:随着环境压力的升高,电弧温度有所下降、电流密度有所增大,电弧形状呈收缩趋势,电弧直径变小,电弧变得不稳定呈现短路过渡现象。适当升高电弧电压可有效解决弧长被压缩问题。故通过电弧仿真,在进行气幕式旋转电弧传感器的水下焊接正交试验时,可以大致预测正交试验中电流电压因子的水平值的范围。
     搭建了水下基于气幕式旋转电弧传感器的焊接实验平台。然后针对气幕式旋转电弧传感器的水下局部干法焊接的6个影响因素设计了正交试验表,通过正交试验,得出了该焊接方法最优工艺参数。通过与陆地焊接焊缝和水下湿法焊接焊缝的外观对比,以及对焊缝进行X射线探伤对比分析和焊缝截面质量对比分析,可知气幕式旋转电弧传感器水下局部干法焊接所取得焊缝质量相对于湿法焊接有很大的提高。
With the marine development, the nuclear power industry development and a lot of port project construction, underwater welding technology plays a very important role in these aspects, arid improve and develop and need to great improvement and development. Local dry underwater welding has the high quality welding seam of dry underwater welding and easy and simple technology of wet underwater welding. the local dry underwater welding Based on rotating arc sensor is to benefit of raising the level of underwater welding automation,the welding technology is worth researching.
     Thesis aims to the purpose of improve the underwater welding quality and improve the underwater welding automatic tracking, combining with part of the structure of laboratory existing rotating arc sensor, and developed a kind of air curtain rotating arc sensor applied in underwater local dry welding of to improving underwater welding quality. The sensor's working principle is to use high-pressure air through drainage device to drain off the watet of welding areas, so as to achieve the purpose of local dry welding. The sensor combined drainage device and sensor with an organic whole, and integrated high-pressure air pipe and protection gas pipeline into arc sensor; The drainage device adopted the contraction nozzle to speed up air currents, thus reach drainage purposes. Aims to the designed drainage device, the gas-liquid two phase flow numerical simulation of flow field has been done. Through the analysis of pressure field, velocity field and velocity vector field, verified the feasibility of the drainage device designing.
     With established air curtain rotating arc sensor of underwater welding arc argon plasma numerical simulation model, study changing trend of welding arc characteristic in the local high-pressure gas cover. Under the optimal welding parameters in the air(current 260A, voltage 24V), under the conditions of argon as the protection of the gas, arc length 12mm, straight polarity direct current, respectively in environmental pressure 0.1 MPa,0.4 MPa and 0.6 MPa,with the help of numerical simulation, plasma temperature, current density has been researched.The simulation results show that, with the environmental pressure increasing, arc temperature has dropped and arc current density has increased somewhat, arc has a shrinking trend, arc diameter decreased, arc became unstable and present short-circuit transition phenomenon. Appropriate elevated arc voltage can effectively solve the problem the arc length is compressed. when make the orthogonal test with air curtain rotating arc underwater welding, we can roughly predict the level value of current and voltage factor in orthogonal test by the arc simulation.
     Established the underwater welding hardware platform and software system. With six influencing factors for air curtain rotating arc sensor underwater local dry welding, the orthogonal experiment table was designed. By the test,the optimum process parameters of local dry welding is obtained. Through comparing the land welding effect and underwater wet welding effect and the contrastive analysis of X-ray detection of welding seam and the contrastive analysis weld section, we can get that local dry welding seam quality relative to wet welding has greatly improved.
引文
[1]焦向东,周灿丰,陈家庆等.21世纪海洋工程连接技术的挑战与对策[C].2007船舶焊接国际论坛论文集,2007:23-27.
    [2]唐德渝.海洋石油工程水下焊接技术的现状及发展趋势[J].现代焊接,2009(4):1-5.
    [3]张华,李志刚.水下焊接机器人技术发展现状及趋势[J].机器人技术与应用,2008(6):11-14.
    [4]熊勇.旋转电弧水下焊缝识别与跟踪控制方法的研究[D].江西:南昌大学,2009.
    [5]刘占户,曾鹏飞,李晓娜.水下管道焊接技术的研究现状及发展趋势[J].电焊机,2006(7):25-28.
    [6]刘海滨,陈晓强,李有富.钻井平台防腐监测装置的水下焊接与安装[J].石油工程建设,2008,34(2):36-38.
    [7]朱加雷,焦向东,周灿丰等.304不锈钢局部干法自动水下焊接[J].焊接学报,2009,30(1):29-32.
    [8]叶建雄,尹懿,张晨曙.湿法水下焊接及水下焊接机器人技术进展[J].焊接技术,2009,38(6):1-4.
    [9]徐坤刚.旋转电弧水下焊接工艺研究[D].江西:南昌大学,2009.
    [10]王中辉,蒋力培,焦向东等.高压干法水下焊接装备与技术的发展[J].电焊机,2005,35(10):9-11,61.
    [11]俞建荣,张奕林,蒋力培.水下焊接技术及其进展[J].焊接技术,2001,30(4):2-4
    [12]张彤.药芯焊丝微型排水罩局部干法水下焊接的研究[D].广州:华南理工大学,1999.
    [13]张旭东,陈武柱,芦田荣次,等.局部干法水下ND:YAG激光焊接技术[J].应用激光,2002,22(3):309-213.
    [14]朱加雷.核电厂检修局部干法自动水下焊接技术研究.[D].北京:北京化工大学,2010.
    [15]杜乃成.计算机仿真在焊接学科中的应用[J].焊接技术,1999,(1):42-43.
    [16]胡绳荪,张绍彬,侯文考.焊缝跟踪中的非接触式超声波传感器的研究[J].仪表技术与传感器,1999,4(2):5-6,22.
    [17]董德祥,亢稚禄.接触式光电传感焊缝跟踪技术的研究[J].焊接设备与材料,1999,2(1):27-28.
    [18]廖宝剑.以电弧为传感器的多自由度智能焊接系统研究[D].北京:清华大学,1993.
    [19]Kimch. A study of an arc sensor model for gas metal arc welding with rotating arc part:dynamic simulation of wire melting [J]. Proceedings of the institution of Mechanical Engineers Pare B,London,2001,215(B9):1271-1279.
    [20]降雨志.基于CCD焊缝自动跟踪系统的研究[D].辽宁:沈阳工业大学,2005.
    [21]潘际銮.现代弧焊控制[M].北京:机械工业出版社,2000.
    [22]张华,熊震宇,贾剑平等.基于旋转电弧传感的示教再现弧焊机器人的智能化研究[J].机械工程学报,2002,38(supp):113-116.
    [23]高延峰.移动机器人旋转电弧传感焊枪偏差与倾角检测及角焊缝跟踪[D].江西:南昌大学,2008.
    [24]贾剑平,张华,潘际銮等.用于弧焊机器人焊缝纠偏的高速旋转扫描电弧传感器[J].南昌航空工业学院学报,1999,13(2):6-11.
    [25]李红利.TIG焊旋转电弧传感器结构设计及焊接系统的研究[D].江西:南昌大学,2008.
    [26]李月华.旋转电弧传感器焊枪位姿识别方法研究[D].江西:南昌大学,2007.
    [27]贾建平,张华.用于弧焊机器人的新型高速旋转电弧传感器的研制[J].南昌大学学报(工科版),2000,22(3):1-3,18.
    [28]叶建雄.旋转电弧传感焊枪倾角检测及水下焊缝跟踪技术研究[D].江西:南昌大学,2007.
    [29]傅德熏,马延文.计算流体力学[M].北京:高等教育出版社,2002.
    [30]吴子牛.计算流体动力学基本原理[M].北京:科学出版社,2001.
    [31]朱自强,吴子牛,李津等.应用计算流体动力学[M].北京:北京航空航天大学出版社,1999.
    [32]姚征,陈康民.CFD通用软件综述[J].上海理工大学学报,2001,24(2):24-26.
    [33]赵楠,杨立新.CFD在换热器局部结构优化设计的应用[J].工程热物理学报,2009,30(6):1039-1041.
    [34]李启良,杨志刚.计算流体力学在气动-声学风洞设计中的应用[J].空气动力学学报,2009,27(3):373-376.
    [35]毕小平,李贺佳,索文超.计算流体力学在水散热器芯部外形尺寸设计中的应用[J].内燃机工程,2010,31(1):97-99.
    [36]杜贵贤.燃气快速吹水研究[D].黑龙江:哈尔滨工程大学,2008.
    [37]刘德新.精馏塔板气液两相流体力学和传质CFD模拟与新塔板的开发[D].天津:天津大学,2008
    [38]徐琴华.水下发射燃气射流初期流场的数值研究[D].黑龙江:哈尔滨工程大学,2007.
    [39]Menatr J,Mallk S,Lin L. Coupled radiative,flow and tem[erature-field analysis of a free-buring arc[J].Phys D:Appl.Phys.,2000,(33):257-269.
    [40]C.S.Wu, M. Ushio, M. Tanaka, Analysis of the TIG welding arc behavior.Computational Material Science,1997,7(3):308-314.
    [41]樊丁,杜华云,张瑞华.GTAW电弧温度场与流场数值模拟[J].电焊机,2004,34(8):6-9.
    [42]杜华云,樊丁,张瑞华.GTA电弧温度场流场数值计算[J].兰州理工大学学报,2004,30(5):24-28.
    [43]毛志伟,张华,彭俊斐.高速旋转扫描焊炬.实用新型(申请号:200720084081.3),2007.4.6.
    [44]毛志伟,张华.一种带挡尘盖的旋转扫描焊炬.实用新型(申请号:200720153877.X)2007.5.29
    [45]毛志伟,张华.一种用于旋转扫描焊炬的冷却、保护气室结构.实用新型(申请号: 200720084214.7)2007.4.17
    [46]气体动力学基础http://jpkc.nwpu.edu.cn/jp2005/17/dzjc/chapter/chapter7/chapter7_2.htm
    [47]韩占忠,王敬,兰小平FLUENT流体工程仿真计算实例与应用[M].北京理工大学出版社,2004:14-21.
    [48]刘儒勋,王志峰.数值模拟方法和运动界面追踪[M].合肥:中国科学技术大学出版社,2001:168-172
    [49]王志东,汪德耀.VOF方法中自由液面重构的方法研究[J].水动力学研究与进展,2003,18(1):52-56
    [50]徐家鸾,金尚宪.等离子体物理学[M].北京:原子能出版社,1981.
    [51]Westermoen, Andreas. Modelling of Dynamic Arc Behaviour in a Plasma Reactor[D]. Norwegian University of Science and Technology,2007.3.
    [52]A.D'Angola, G.Colonna, C.Gorse.etc.Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and termperature range[J]. Eur.Phys.J.D,2008, 46:129-150.
    [53]Hans-Peter Schmidt, Gunter Speckhofer.Experimental and theoretical investigation of high-pressure arcs—Part I:The cylindrical arc column(two-dimensional modeling)[J].IEEE transactions on plasma science,1996(4):1178-1186.
    [54]吴其芬,李桦.磁流体力学[M].国防科技大学出版社,2007.
    [55]王春健,焦向东,周灿丰.高压空气环境下脉冲MIG焊电弧形态分析[J].焊接技术,2010,39(10):7-10.
    [56]赵华夏.干式高压TIG焊接电弧物理特性的研究[D].北京:北京化工大学,2007.
    [57]赵华夏.高压环境焊接电弧特性及熔滴过度行为研究[D].北京:北京化工大学,2010.
    [58]李志刚.高压水环境旋转电弧焊接特性及其焊缝传感跟踪研究[D].江西:南昌大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700