结构共振疲劳试验及裂纹构件的振动疲劳耦合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程中,任何结构都存在不同程度的损伤,多数以裂纹模式存在。受外部激励作用,结构可能同时产生振动和疲劳现象,两者之间相互耦合,从而引起新的科学问题。本文以典型结构件的共振疲劳试验结论为理论分析的依据,基于局部柔度理论,透过振动分析与疲劳裂纹扩展理论研究裂纹梁和裂纹板的振动疲劳耦合效应,探讨裂纹扩展下的结构振动行为与振动对疲劳裂纹扩展的影响。主要研究内容和学术贡献如下:
     试验方面,设计了激振器激励的振动疲劳试验系统,提出了共振频带激励的结构寿命测试方法。以典型结构件为对象,完成了不同工况下的结构共振疲劳试验。透过试验现象观察和试验数据分析,发现了影响结构振动疲劳寿命的诸多因素,并讨论了各因素与振动疲劳寿命之间的内在联系。
     理论方面,基于断裂力学和能量原理,推导了横向裂纹梁的局部柔度模型,计算了典型加载时常见形式裂纹均匀梁的局部柔度系数。以裂纹梁为对象,提出了裂纹梁的振动疲劳寿命分析方法,着重考虑结构响应特性随疲劳裂纹扩展的变化。分析时,通过复弹性模量引入阻尼损耗因子,Paris方程模拟裂纹扩展,同步分析方法考虑振动与疲劳的耦合效应。分析后发现,激励频率、阻尼以及模态等对疲劳裂纹扩展具有重要影响,共振疲劳裂纹扩展的阻尼效应十分明显,第一阶共振疲劳破坏尤为严重。然后,考虑裂纹呼吸行为对振动与疲劳的作用,利用双线性弹簧模型描述裂纹呼吸行为,通过Galerkin方法把裂纹梁简化为单自由度系统,基于刚度时变性建立裂纹梁的参数振动方程,结合Coulomb干摩擦模型和能量耗散理论推导摩擦阻尼损耗因子,应用广义Forman方程模拟裂纹扩展。研究表明,裂纹闭合使梁的固有频率下降速度减缓,缩短振动疲劳寿命,呼吸行为引发参数振动,导致振动不稳定,摩擦阻尼对共振疲劳寿命影响显著。以裂纹板为对象,建立了裂纹板的振动模型,并讨论振动参数对板疲劳裂纹扩展的影响。理论推导时,把结构裂纹等效为附加外载荷,由力学平衡原理推导含裂纹项的板振动方程,通过Rice和Levy得到的应力关系式形成裂纹项,经Galerkin法把双边悬臂裂纹板简化为单自由度系统,再根据Berger方法考虑面内载荷得到含二、三次非线性项的振动方程。结果显示,结构尺寸、疲劳裂纹及激励力等参数对裂纹板的振动行为具有明显的影响,阻尼、激励幅值和激励频率等对疲劳裂纹扩展寿命的作用不容忽视。
     最后,推广理论研究成果,提出一种简易的考虑耦合影响的结构振动疲劳寿命分析方法。通过典型试验件的共振疲劳寿命计算验证分析方法的合理性。结果表明,该寿命分析方法简单易行,给工程结构的振动疲劳寿命分析提供了一种思路。
There are different modes of damage in any engineering structures, and most of them are cracks. Problems of vibration and fatigue are often produced by external force simultaneously. New scientific problems are produced due to coupling effect of vibration and fatigue. Based on the results of fatigue testing for the resonating structure, the cracked beam and the cracked plate are employed for coupling research of vibration and fatigue through vibration analysis and fatigue crack growth calculation in view of local complicane model. The vibration behaviors change as crack growth and the influence of vibration on fatigue crack propagation are discussed. The results and the main contributions are as following.
     In experiment, vibration-exciter-based fatigue testing system is designed and a fatigue testing method of the resonance controlled structure is proposed. Experiments are carried out for the typical components under different working conditions. Influences of dynamic characteristis on the structure fatigue life are discoveried through investigation of experimental phenomena and datas. The internal connecting link of vibration and fatigue crack growth is discussed.
     In theory, to begin with the local compliance model of the cracked beam is given in view of the fracture mechanics and energy principle. Local compliance expression of the uniformity cantilever beam subjected to a typical loading with common mode crack is given. In addition, a new analytical method of the vibration fatigue life for the cracked beam is proposed with the structural response changes as crack growth. In this analysis, the damping loss factor is introduced by complex elastic modulus, and the crack growth is analyzed by employing a Paris equation, and the coupling effect of vibration and crack growth is considered by vibration analysis and fatigue crack growth calculation cycle by cycle. It can be shown that the influences of frequency, damping and mode on vibration fatigue life are very obvious. Due to the influence of damping, the resonance fatigue crack growth rate decrease, and the first resonance has more contribution to fatigue crack growth than that of other mode vibration. What is more, the influence of the crack breathing behavior on vibration and fatigue are studied. During the coupling analysis, the breathing crack is depicted by the double linear spring model, and the cracked beam is simplied to single-degree-of-freedom system by Galerkin’s method, and the parametric vibration equation is deduced by employing the varying stiffnes, and the friction damping loss factor is given based on the Coulomb friction model and the energy dissipation theory, and the crack propagation is analyzed by employing a modified Forman equation. Results indicate that the closing effect of the breathing crack adds average stiffness, and influences of parametric resonance on the vibration fatigue can’t be ignored, and the friction damping has important influence on the life of vibration fatigue crack growth. Finally, an analytical model of the vibrating cracked plate is derived and the coupling effects of vibration and fatigue are investigated. In analysis, the crack is equivalented by an additional external force, and equation of the vibrating cracked plate is derived by using mechanical equilibrium principle, and the crack terms are obtained by using stress relational expression introduced by Rice and Levy. Galerkin’s method is applied to reformulate the vibration equation of the bilateral cantilver cracked plate into single-degree-of-freedom system. Nonlinearity is introduced by formulations introduced by applying Berger’s method. Results are presented in terms of natural frequency versus structural dimensions and crack length, and the structural vibration response of the cracked plate is calculated of cracked plate, and the influences of damping and exciting force on the life of vibration fatigue are discussed.
     Finally, a simple analytical method of the structural vibration fatigue life with coupling effect is proposed based on the theoretical research production, and the rationality of the analytical method is verified by the simulation results of the typical experimental component. Results indicate that this analytical method of the vibration fatigue life is simple, and it is a good idea for fatigue life analysis of engineering structures.
引文
[1]梁永发,姜辉琼.三起振动失效带来的启示[J].特种设备安全技术,2006,2:32-33.
    [2] Poursaeidi E, Mohammadi M R. Failure investigation of an auxiliary steam turbine [J]. Engineering Failure Analysis, 2010, 17:1328-1336.
    [3]曾春华,郑十践.疲劳分析方法及应用[M].北京:国防工业出版社, 1991.
    [4]熊俊江.疲劳断裂可靠性工程学[M].北京:国防工业出版社,2008.
    [5]陆榕海,廖振魁.略论发动机涡轮叶片的振动疲劳[J].洪都科技,1997,1:19-23.
    [6]肖寿庭,杜修德.飞机结构振动疲劳问题[C] //厦门:第六届全国疲劳学术会议论文集(下), 1993:P634.
    [7]军用飞机强度和刚度规范(振动)[S].北京:航空工业部630研究所,1985.
    [8]美国军用规范飞机强度和刚度MIL-A-8860B(AS)系列[S].北京:航空航天工业部飞行试验研究中心飞机强度规范研究室,1988.
    [9] Osgood C C. Fatigue design [M]. Oxford: Pergamon press, 1982.
    [10] Crandall S H. Random vibration [M]. New York: Technology Press of MIT and John Wiley and Sons, 1958.
    [11] Crandall S H, Mark W D. Random Vibration in Mechanical Systems [M].Academic Press, 1963.
    [12]姚起杭.谈谈加速振动试验问题[J].航空标准与质量,1975.06:7-18.
    [13]姚起杭,姚军.结构振动疲劳问题的特点与分析方法[J].机械科学与技术,2000, 19(S):56-58.
    [14]姚起杭,姚军.工程结构的振动疲劳问题[J].应用力学学报,2006, 23(1):12-17.
    [15]何泽夏.振动与疲劳[J].火箭推进,1994, 3:14-20.
    [16] C.格林.振动手册[M].北京:《强度与环境》编辑部,1982.
    [17] Foong C H, Wiercigroch M, Pavlovskaia E,etc. Nonlinear vibration caused by fatigue [J]. Journal of Sound and Vibration, 2007, 303:58-77.
    [18] Wozney G. P. Resonant-vibration Fatigue Testing [J]. Experimental Mechanics, 1962,2(1): 1-8.
    [19] Harris C M, Crede C E, Unboltz K. Vibration Testing Machines [J]. Shock and Vibration Handbook. McGraw Hill Book Co, 1961, 25(2): 66-69.
    [20] Rybalov N E, Gul V E. Investigation on the dynamic fatigue of composite polymer materials [J]. Mekhanika Polimerov, 1965, 1(5):90-94.
    [21] Marloff R H. Resonant fatigue testing of riveted joints [C] // Paper was presented at SESA Spring Meeting held in San Francisco, CA, 1979, 5:37-43.
    [22] Aykan M, Celik M. Vibration fatigue analysis and multi-axial effect in testing of aerospace structures [J]. Mechanical System and Signal Processing, 2009, 23:897-907.
    [23] Damir A N, Elkhatib A, Nassef G. Prediction of fatigue life using modal analysis for grey and ductile cast iron [J]. International Journal of Fatigue, 2007, 29(26):499–507.
    [24] Foong C H, Wiercigroch M, Deans W. An Experimental rig to investigate fatigue crack growth under dynamic Loading [J]. Meccanica, 2003, 38:19-31.
    [25] Foong C H, Pavlovskaia E, Wiercigroch M, etc. Chaos caused by fatigue crack growth [J]. Chaos, Solitons and Fractals, 2003, 16:651-659.
    [26] Foong C H, Wiercigroch M, Deans W F. Novel dynamic fatigue-testing device: design and measurements [J]. Measurement Science and Technology, 2006, 17:2218-2226.
    [27] Schlums D H., Dual J. High resolution crack growth measurements in vibrating beams [J]. Fatigue and Fracture of Engineering Material and Structural, 1997, 20(7): 1051-1058.
    [28] Schlums D H. Fatigue testing and crack analysis of resonating structures [D]. PhD Thesis, Zurich: Swiss Federal Institute of Technology Zurich, 2001.
    [29] Sun X, Horowitz R, Komvopoulos K. Stability and resolution analysis of a phase-locked loop natural frequency tracking systems for MEMS fatigue testing [J]. Journal of Dynamic Systems, Measurement, and Control, 2002, 124(12):599-605.
    [30] Shiryayev O V, Slater J C. Control of resonant fatigue tests in the existence of bifurcations [J]. ISABE, 2003, 1193:1-6.
    [31] Wolfgang S. Tracking of resonance frequencies of vibrating beams by phase-locked loops (PLL) [C] // Proceeding of the seventh international symposium on the vibrations of continuous system: Zakopand, Poland, 2009, 7:57-60.
    [32] George T J, Seidt J, Shen M H, etc. Development of a novel vibration-based fatigue testing methodology [J]. International Journal of Fatigue, 2004, 26:477-486.
    [33] George T J, Shen M H, Onome S E, etc. Goodman diagram via vibration-based fatigue testing [J]. Transaction of the ASME, 2005, 127(1):58-64.
    [34]姚起杭,杨学勤.飞机结构声疲劳设计手册.北京:航空工业出版社,1991.
    [35]肖寿庭,杜修德.LY12CZ铝合金悬臂梁动态疲劳S-N曲线的试验测定[J].机械强度,1995, 17(3):22-24.
    [36]林凯,吕国志.动力学环境下含裂纹板的力学性能分析与试验[J].机械科学与技术,2000,19(增刊):99-101
    [37]葛海斌.汽轮机叶片振动疲劳试验及其自动控制系统开发[D].硕士学位论文,杭州:浙江大学,2005.
    [38]邵闯,葛森.材料高频振动环境疲劳实验的设想[J].结构强度研究,2009,2:11-15.
    [39]邵闯,葛森.层合板结构元件动态S-N曲线的测定方法[J].实验力学,2009,24(3):264-268.
    [40]高金贺.飞机结构联接件振动损伤特性研究[D].硕士学位论文,沈阳:沈阳航空工业学院,2006.
    [41]漆文凯,徐怀志,卢振球,等.叶片振动疲劳试验中的机电耦合闭环控制技术研究[J].理化检验(物理分册),2001, 37(4):151-155.
    [42]杨凌云,郭勇,王振林.汽轮机叶片振动疲劳试验振幅的DSCM实时监测技术[J].汽轮机技术,2006, 36(8):701-703.
    [43]韩清华,韩飞,王海英,等.飞机平尾振动疲劳试验分析[J].结构强度研究,2009,2:4-7.
    [44] Dentsoras A J, Dimarogonas A D. Resonance controlled fatigue crack propagation [J]. Engineering Fracture Mechanics, 1983, 17: 381-386.
    [45] Dentsoras A J, Dimarogonas A D. Resonance controlled fatigue crack propagation in a beam under longitudinal vibrations [J]. International Journal of Fracture, 1983, 23:15-22.
    [46] Dentsoras A J, Dimarogonas A D. Fatigue crack propagation in resonating structures [J]. Engineering Fracture Mechanics, 1989, 34(3): 381-386.
    [47] Dentsoras A J, Kouvaritakis E P. Effects of vibration frequency on fatigue crack propagation of a polymer at resonance [J]. Engineering Fracture Mechanics, 1995, 50(4):467-473.
    [48] Colakoglu M. Measurement and analysis of damping factor in engineering materials to assess fatigue damage [D]. PhD Thesis, Washington City: Washington University, 2001.
    [49] Valanis K C. On the effect of frequency on fatigue life[C] // Presented at the winter annual meeting of the American society of mechanical engineering Washington D.C, 1981, 11:15-20.
    [50] Whaley P W, Chen P S, Smith G M. Continuous measurement of material damping during fatigue tests [J]. Experimental Mechanics, 1984, 12:342-348.
    [51] Sanliturk K Y, Imregun M. Fatigue life prediction using frequency response function [J]. Journal of Vibration and Acoustics, 1992, 114(7):381-386.
    [52] Bishop N W M. Vibration fatigue analysis in finite element environment[C] // An Invited Paper presented to the XVI ENCUENTRO DEL GRUPO ESPA?OL DE FRACTURA, Torremolinos, Spain, 1999, 4: 14-16.
    [53] Hanna Z A. Vibration fatigue assessment finite element analysis and test correlation [D]. Master Thesis, Windsor:University of Windsor, 2005.
    [54] Liu X, Sooklal V K, Verges M A, etal. Experimental study and life prediction on high cycle vibration fatigue in BGA packages [J]. Microelectronics Reliabilitu, 2006, 46:1128-1138.
    [55] Kim Y B, Noguchi H, Amagai M. Vibration fatigue reliability of BGA-IC package with Pb-free solder and Pb-Sn solder [J]. Microelectronics Reliability 2006, 46:459-466.
    [56] Wu M L. Rapid assessment of BGA fatigue life under vibration loading [D]. PhD Thesis, Maryland USA:University of Maryland, 2006.
    [57] Selverian J H. Dynamic fatigue of alumina [J]. Journal of Materials Science, 2005, 40:495– 497.
    [58] Shih Y S, Chen J J. Analysis of Fatigue Crack Growth on a Cracked Shaft [J]. International Journal of Fatigue, 1997, 19(6):477-485.
    [59] Shih Y S, Chen J J. The frequency effect on the fatigue crack growth rate of 304stainless steel [J]. Nuclear Engineering and Design, 1999, 191:225–230.
    [60] Shih Y S, Wu G Y. Effect of vibration on fatigue crack growth of an edge crack for a rectangular plate [J]. International Journal of Fatigue, 2002, 24:557–566.
    [61] Wu G Y, Shih Y S. Dynamic instability of rectangular plate with an edge crack [J], Computers and Structures, 2005, 84:1-10.
    [62] Wu G Y. Coupling analysis of vibration and fatigue crack growth for the cracked rectangular plates [D]. PhD Thesis, Taiwan: Chun-Yuan Christian University, 2000.
    [63] Chiou J T. Effect of initial amplitude on fatigue crack growth and vibration of rectangular plate with an edge crack [D]. Master Thesis, Taiwan: Chun-Yuan Christian University, 2002.
    [64]姚起杭,姚军.结构振动疲劳的工程分析方法[J].飞机工程,2006,1:39-43.
    [65]姚起杭,姚军.防止振动疲劳破坏的设计技术[J].飞机工程,2006,3:9-18.
    [66]姚起杭,姚军.大展弦比机翼结构振动疲劳问题的简单预估[J].振动工程学报,2004,17(增刊): 4-6.
    [67]姚军,姚起杭.结构随机振动响应的简化分析[J].应用力学学报,2002 ,19 (1) :103-105.
    [68]朱学旺,刘青林.交叉模态对结构随机振动疲劳损伤的贡献[J].中国工程科学.2008, 10:36-41.
    [69]张积亭,周苏枫.飞机典型构件振动疲劳寿命分析[J].机械科学与技术,2002,21(4):38-41.
    [70]曹明红,齐丕骞,葛森.涉及双模态应力响应谱的振动疲劳寿命估算方法[J].结构强度研究.2007, 1:22-27.
    [71]周敏亮,陈忠明.飞机结构的随机振动疲劳分析方法[J],飞机设计. 2008, 28:46-49.
    [72]孙伟.结构振动疲劳寿命估算方法研究[D],硕士学位论文,南京:南京航空航天大学,2005.
    [73]王明珠,姚卫星,孙伟.结构随机振动疲劳寿命估算的样本法[J].中国机械工程,2008,19(8):972-975.
    [74]王明珠.结构振动疲劳寿命分析方法研究[D].博士学位论文,南京:南京航空航天大学,2009.
    [75] Wang R J, Shang D G. Fatigue life prediction based on natural frequency changes for spot welds under random loading [J]. International Journal of Fatigue, 2009, 31:361–366.
    [76] Wang R J, Shang D G, Li L S, etc. Fatigue damage model based on the natural frequency changes for spot-welded joints [J]. International Journal of Fatigue, 2008, 30:1047-1055.
    [77] Shang D G. Measurement of fatigue damage based on the natural frequency for spot welded joints [J]. Material and Design, 2009, 30: 1008-1013.
    [78]毛罕平,陈翠英.考虑动应力时加载频率对裂纹扩展速率的影响[J].江苏工学院学报,1993, 14(6):26-33.
    [79]焦群英,王书茂,才力,等.用于结构共振疲劳寿命估计的应变模态分析[J].机械工程学报,1996, 32(6):52-57.
    [80]金奕山.宽带随机振动结构疲劳寿命预估问题的理论研究[D],博士学位论文,北京:北京航空航天大学,2004.
    [81]刘文光,陈国平.轴向共振控制的结构疲劳裂纹扩展分析[J].南京航空航天大学学报,2010, 42(3): 298-302.
    [82] Liu Wenguang, Chen Guoping. Analysis on Fatigue Life of Cracked Beam under Forced Vibration[C] // Chengdu, China: 2010 2nd International Conference on Computer Engineering and Technology, Volume 5, Mechanical and Aerospace Engineering, 2010.4:46-50.
    [83] Lifshitz J M, Rotem A. Determination of reinforcement unbonding of composites by a vibration technique [J]. Journal of Composite Materials, 1969, 3:412-423.
    [84] Adams R D, Cawley P, Pye C J, etc. A vibration technique for nondestructively assessing the integrity of structures [J]. Journal of Mechanical Engineering Science, 1978, 20:93-100.
    [85] Cawley R D. Adams R D. The location of defects in structures from measurements of natural frequencies [J]. Journal of Strain Analysis for Engineering Design, 1979, 14(2): 49~57.
    [86] Stubbs N, Osegueda R. Global damage detection in solids-experimental verification [J]. Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis, 1990, 5(2): 81-97.
    [87] Chondros T G, Dimarogonas A D. Identification of cracks in welded joints of complex structures [J].Journal of Sound and Vibration, 1980, 69:531-538.
    [88] Rizos P F, Aspragathos N, Dimarogonas A D. Identification of crack location and magnitude in a cantilever beam from the vibration modes [J]. Journal of Sound and Vibration, 1990, 138(3):381-388.
    [89] Hearn G., Testa R B. Modal analysis for damage detection in structures [J]. Journal of Structural Engineering, 1991, 117(10): 3042~3063.
    [90] Dharmaraju N, Sinha J K. Some comments on use of anti-resonance for crack identification in beams [J].Journal of Sound and Vibration, 2005, 286(3):669-671.
    [91] Dilena M, Morassi A. The use of anti-resonances for crack detection in beams [J].Journal of Sound and Vibration, 2004, 276:195-214.
    [92] Dilena M, Morassi A. Damage detection in discrete vibrating systems [J].Journal of Sound and Vibration, 2006, 289(4, 5):830-850.
    [93] Doebling S W, Farrar C R. Effect of measurement statistics on the detection of damage in the Alamosa Canyon Bridge[C] // Proceedings 15th International Modal Analysis Conference, Orlando, FL, 1997: 919-929.
    [94]胡家顺.裂纹管结构的振动分析与裂纹识别[D].博士学位论文,大连:大连理工大学, 2009.
    [95]李学平.裂缝损伤结构动力分析及其识别方法研究[D].博士学位论文,长沙:中南大学,2008.
    [96] Shang D G, Barkey M E, Wang Y, etc. Effect of fatigue damage on the response frequency of spot-welded joints [J]. International Journal of Fatigue, 2003, 25:311-316.
    [97]余志刚.基于P型有限元法的裂纹结构动力学分析与故障诊断研究[D].博士学位论文,北京:清华大学,2008.
    [98]王瑞杰.基于动态响应分析的点焊接头疲劳损伤与寿命预测[J].博士学位论文,北京:北京工业大学,2008.
    [99] Colakoglu M. Measurement and analysis of damping factor in engineering materials to assess fatigue damage [D]. PhD Thesis, Washington City: Washington University, 2001.
    [100] Panteliou S D, Dimarogonas. Thermodynamic damping in porous materials with ellipsoidal cavities [J]. Journal of Sound and Vibration, 1997, 201(5):555-565.
    [101] Dimarogonas A D. Method and apparatus for predicting fatigue by introducing a continuous excitation to determine damping factor [P], U.S, Patent and Trademark Office. Patent No.5, 1997: 614, 674.
    [102] Panteliou S D, Chondros T G, Argyrakis V C. Damping factor as an indicator of crack severity [J]. Journal of Sound and Vibration, 2001, 241(2): 235-245.
    [103] Colakoglu M. Description of fatigue damage using a damping monitoring technique [J]. Turkish Journal of Engineering and Environmental Sciences, 2003, 27:125-130.
    [104]张家滨.基于子空间算法的结构模态参数识别与在线监测研究[D].博士学位论文,南京:南京航空航天大学,2008.
    [105] Chandrashekhar M, Ganguli R. Damage assessment of structures with uncertainty by using mode shape curvatures and fuzzy logic [J]. Journal of Sound and Vibration, 2009, 326: 939-957.
    [106] Fang S E, Perera R. Power mode shapes for early damage detection in linear structures [J].Journal of Sound and Vibraion, 2009, 324:40-56.
    [107] Tomaszewska A. Influence of statistical errors on damage detection based on structural flexibility and mode shape curvature [J].Computers and Structures, 2010, 88: 154-164.
    [108]李德葆,陆海秋.实验模态分析及其应用[M].北京:科学出版社,2001.
    [109] Maia N M, Silva J M, Almas E A, etal.Damge detection in structures from mode shape to frequency response function methods [J]. Mechanical Systems and Signal Processing, 2003, 17:489-498.
    [110]杨彦芳,宋玉普,纪卫红.基于实测频响函数主成分的在役网架损伤识别方法[J].振动与冲击,2007,26(9):128-132.
    [111]邹万杰,瞿伟廉.基于频响函数和遗传算法的结构损伤识别研究[J].振动与冲击,2008,27(12): 28-30.
    [112] Wai S H. Damage assessment in structures using vibration characteristics [D]. PhD Thesis, Queensland: Queensland University of Technology, 2009.
    [113]康兴无,陈世健,刘勇,马慧娟.一种基于柔度的结构损伤定位新方法[J].噪声与振动控制,2009,6:40-43.
    [114]李晶,吴柏生.基于广义柔度矩阵的结构损伤识别方法[J].吉林大学学报(理学版),2009,47(4): 737-739.
    [115] Griffith A A. The phenomena of rupture and flow in solids [J]. Philosophical Transaction of the Royal Society of London, A221, 1921:163-107.
    [116] Irwin G R. Analysis of stresses and strains near the end of a crack transversing a plate [J]. Journal of Applied Mechanics, 1957, 24: 361.
    [117] Rice J R, Levy N. The part through surface crack in an elastic plate [J]. Journal of Applied Mechanics, 1972, 3: 185-194.
    [118] Tada H, Paris P C, Irwin G R. The stress analysis of cracks handbook [M]. Pennsylvania: Research Corporation Hellertown, 1973.
    [119]顾超林.加筋板连接件的振动疲劳研究[D].硕士学位论文,南京:南京航空航天大学,2010.
    [120] Barter S, Molent L, Goldsmith N, .etc. An experimental evaluation of fatigue crack growth [J]. Engineering Failure Analysis, 2005, 12(1):99-128.
    [121] Paris P C, Erdogan F. A critical analysis of crack Propagation laws [J]. Journal of Basic Engineering, 1963, 85:528-534.
    [122] Sih G C. Strain-energy-density factor applied to mixed mode crack problems [J].International Journal of Fracture, 1974, 10(3):305-320.
    [123] Trantina G G, Johnson C A. Probabilistic defect size analysis using fatigue and cyclic crack growth rate data [J]. Probabilistic Fracture Mechanics and Fatigue Methods, ASTM STP 798, 1983:67-78.
    [124] Walker E K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. Effects of environment and complex load history on fatigue life [J]. ASTM STP 462, 1970:1-14.
    [125] Forman R G, et al. Numerical analysis of crack propagation in cyclic loads structures [J]. Journal of Basic Engineering, Transaction ASME, 1967, 89:459-465.
    [126] Newman J J C. A crack opening equation for fatigue crack growth [J]. International Journal of Fracture, 1984, 24:131-135.
    [127] Mukherjee B, Burns D J. Fatigue-crack growth in polymethylmethacrylate [J].Experiment Mechanics, 1971, 11:433-439.
    [128] Solomon H D, Coffin L F. Effect of frequency and environment on fatigue crack growth in A286 at 11000F [J]. Philadelphia: Fatigue at elevated temperature. ASME STP 520, 1973: 112-122.
    [129] Yokobori T, Sato K. The effect of frequency on fatigue crack propagation rate and striation spacing in 2024-T3 aluminum alloy and SM-50 steel [J]. Engineering Fracture Mechanics, 1976, 8(1): 81-88.
    [130] James L A, Jones D P. Fatigue crack growth correlations for austenitic stainless in air [C] // Annual Meeting of American Society of Mechanical Engineerings, 1985:353-414.
    [131] Makhlouf K, Jones J W. Effect of temperature and frequency on fatigue crack growth in 18% Cr. Ferritic stainless steel [J]. International Journal of Fatigue, 1993, 15(3):163-171.
    [132] Yokobori T, Yokobori A T J, Kamei A. Dislocation dynamics theory for fatigue crack growth [J]. International Journal of Fracture, 1975, 11(5):781-788.
    [133] Dym C L, Shame I H. Solid Mechanics: A Vibration Approach [M]. New York: McGraw-Hill, 1973.
    [134] Papadopoulos C A, Dimarogonas A D. Coupled Longitudinal Vibrations of a Cracked Shaft [J]. Journal of Vibration, Acoustics, Stress and Reliability in Design, 1988, 110: 1-8.
    [135] Papadopoulos C A, Dimarogonas A D. Coupling of Bending and Torsional Vibration of a Cracked Timoshenko Shaft [J]. Ingenieur Archiv, 1987, 57: 257-266.
    [136] Chondros T G., Dimarogonas A D, Yao J. A Consistent Cracked Bar Vibration Theory [J]. Journal of Sound and Vibration, 1997, 200:303-313.
    [137] Chondros T G., Dimarogonas A D, Yao J. Longitudinal Vibration of a Continuous Cracked Bar [J]. Engineering Fracture Mechanics, 1998, 61: 593-606.
    [138] Chondros T G., Dimarogonas A D, Yao J. A Continuous Cracked Beam Vibration Theory [J]. Journal of Sound and Vibration, 1998, 215(1):17-34.
    [139] Chasalevris A C, Papadopoulos C A. A continuous model approach for cross-coupled bending vibrations of a rotor-bearing system with a tranverse breathing crack [J]. Mechanism and Machine Theory, 2009, 44: 1176-1191.
    [140] Chondros T G., Dimarogonas A D, Yao J. Vibration of a Beam with a Breathing Crack [J]. Journal of Sound and Vibration, 2001, 239(1):57-67.
    [141] Al-Shudeifat M A, Butcher E A. New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis [J]. Journal of Sound and Vibration, 2011, 330:526-544.
    [142] Bachschmid N, Pennacchi P, Tanzi E. Some remarks on breathing mechanism, on nonlinear effects and on slant and helicoidal cracks [J]. Mechanical System and Signal Processing, 2008, 22: 879-904.
    [143] Georgantzinos S K, Anifantis N K. An insight into the breathing mechanism of a crack in a rotating shaft [J].Journal of Sound and Vibration, 2008, 318:279-295.
    [144]杨海燕,杨秉玉,刘启州.疲劳裂纹叶片振动的非线性特性研究[J].西北工业大学学报, 1999, 17(2): 198-204.
    [145]胡家顺,冯新,周晶.呼吸裂纹梁非线性动力特性研究[J].振动与冲击,2009,28(1):76-80, 87.
    [146] Pugno N, Surace C, Ruotolo R. Evaluation of the non-linear dynamic response to harmonic excitation of a beam with several breathing cracks [J]. Journal of Sound and Vibration, 2000, 235(5): 749-762.
    [147] Ruotolo R, Surace C, Crespo P, et al. Harmonic analysis of the vibrations of a cantilevered beam with a closing crack [J]. Computers and Structures, 1996, 61(6): 1057-1074.
    [148]黄建亮.轴向运动体系的非线性振动研究[D].博士学位论文,广州市:中山大学,2004.
    [149]刘鸿文.材料力学I(第四版)[M].北京:高等教育出版社,2003.
    [150]胡海岩,孙久厚,陈怀海.机械振动与冲击(修订版)[M].北京:航空工业出版社,2002.
    [151] Khadem S E, Rezaee M. Introduction of modified comparison functions for vibration analysis of a rectangular cracked plate [J]. Journal of Sound and Vibration, 2000, 236(2):245-258.
    [152] Okamura H, Liu H W, Chu C, etc. A cracked column under compression [J]. Engineering Fracture Mechanics, 1969, 1:547-563.
    [153] Khadem S E, Rezaee M. An analytical approach for obtaining the location and depth of an all-over part through crack on externally in plane loaded rectangular plate using vibration analysis [J]. Journal of Sound and Vibration, 2000, 230(2):291-308.
    [154] Krawczuk M, Palacz M, Ostachowicz W. Wave propagation in plate structures for crack detection [J]. Finite Elements in Analysis and Design, 2004, 40:991-1004.
    [155] Irwin G R. Crack extension force for a part through crack in a plate [J]. Journal of Applied Mechanics, 1962, 29:651-654.
    [156] Israr A. Vibration analysis of cracked aluminum plates [D]. PhD thesis, Glasgow: University of Glasgow, 2008.
    [157] Saito A. Nonlinear vibration analysis of cracked structures: application to turbomachinery rotors with cracked blades [D]. PhD thesis, Michigan: University of Michigan, 2009.
    [158] Timoshenko S. Theory of plates and shells [M]. McGraw Hill Book Company, Inc., New York and London, 1940.
    [159] Leissa A. Vibration of plates [M]. NASA SP-160, National Acoustical and Space Administration, Washington, DC, 1993.
    [160] Szilard R. Theories and application of plate analysis [M]. John Wiley and Sons, USA, 2004:89.
    [161] Berger H M. A new approach to the analysis of large deflection of plates [J]. Journal of Applied Mechanics, 1955, 22: 465-472.
    [162]曹志远.板壳振动理论[M].北京:中国铁道出版社, 1989.
    [163] Berthelot J M. Dynamics of composite materials and structures. Institute for Advanced Materials and Mechanics [M]. Springer, New York, 1999.
    [164]胡海岩.应用非线性动力学[M].北京:航空工业出版社,2000.
    [165]武恭等.铝及铝合金材料手册[M].北京:科学出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700