压力容器用钢在韧脆转变区的断裂韧性预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压力容器用铁素体钢在一定温度范围内存在韧脆转变的现象,成为压力容器,尤其是核反应堆压力容器结构完整性和安全性的潜在威胁。在这一温度区间,材料的断裂韧性表现出强烈的温度相关性以及高度分散性,使得其表述和数值确定相当困难。如何科学评价和预测材料断裂韧性的这一现象和规律,一直是学术界和工程界研究的热点和难点。本文基于主曲线法和Beremin解理断裂局部法,以国产核反应堆压力容器用钢A508-III以及我国常用压力容器用钢16MnR为研究对象,研究了压力容器用钢在韧脆转变区的断裂韧性预测方法。主要研究工作和成果如下:
     (1)开展了ASTM E1921标准对国产典型压力容器钢16MnR和A508-III的适用性研究。按照ASTM E1921标准测得16MnR钢的参考温度T0为-63℃, A508-Ⅲ钢的T0为-61℃。实践证明ASTM E1921标准适用于这两种国产压力容器用钢。
     (2)基于国产A508-III钢和16MnR钢,开展了小试样测试T0的试验研究。研究发现,即使严格按照E1921标准的程序,采用小试样进行T0测试,仍然可能得到错误的结果:与大尺寸试样的测试结果相比,T0测试值被过低估计了30-40多摄氏度。为了防止出现错误的T0测试结果,本文建议了4种审核小试样所测得的T0值有效性的辅助判断方法:(ⅰ)采用更大的Mlmit值;(ⅱ)检查断裂韧性数据的三参数Weibull分布斜率:(ⅲ)以Jp/Jc饥或CMODp/CMOD为指标评价KJc有效性;(ⅳ)用T0~TCVN经验关系判断T0值的有效性。
     (3)采用从实际试验数据中随机抽样和从主曲线分布带中用Monte Carlo模拟随机抽样的方法,进行了Beremin模型参量的标定研究。研究表明,利用有限数量的试样通过Minami标定法无法确定Beremin模型参量m和σu。发现m与σu的变化存在规律,组成了一条该试样特有的m~σu曲线。
     (4)提出了一个通过高低拘束不同试样m~σu曲线的交点确定Beremin模型参量的新标定方法。与已有的基于韧性换算模型(Toughness scaling model,TSM)的标定方法相比,该标定法计算量很小,不改变标定精度,可以直观地显示标定的收敛过程。
     (5)利用主曲线描述的断裂韧性与温度的关系,在韧脆转变区不同温度下,采用Monte Carlo模拟抽样的方法标定了16MnR钢的Beremin模型参量,以此推测了该材料的Beremin参量随温度变化的规律,从而克服了有限试样数及Minami标定法导致的标定不确定性对分析参量与温度的关系所造成的影响。标定的结果表明,在所研究的温度范围内,m在下转变温度区随温度升高而减小,在下-中转变温度区保持与温度无关:σu随温度升高而增大。
     (6)通过本文提出的m~σu曲线交点标定法和Ruggieri等人提出的基于TSM的标定法(RGD标定法)分别标定了16MnR钢和A508-Ⅲ钢的Beremin参量,采用Beremin韧性换算模型,将这两种钢的小试样断裂韧性值换算成高拘束大试样的结果,估算了用1T-SE(B)试样测试T0的预期值,解决了小试样T0测试值因拘束度不足而明显偏低的问题。
Ferritic steels used for construction of pressure vessels undergo a ductile-to-brittle transition (DBT) with decreasing temperature, which is a potential threat to the integrity and safety of pressure vessels, especially reactor pressure vessles. The fracture toughness of ferritic steels shows a strong temperature dependence on temperature and is highly scattered in the DBT region, which make it very diffcult to describe and measure the fracture toughness data. The scientific assessment and prediction of the ductile-to-brittle transion of materils pose great challenge to both the academic circle and the engineering circle. The main contents and conclusions of the thesis are as follows:
     (1) The applicability of ASTM E1921to the domestic16MnR steel and the domestic A508-Ⅲ was investigated. The reference temperature To for16MnR was determined to be-63℃and the To value for A508-Ⅲ was-61℃in accordance with ASTM E1921. The applicability of ASTM E1921to the two types of steel was validated.
     (2) The determination of the reference temperature To using small specimens of A508-Ⅲ and16MnR was carried out. The experiment results showed that small specimen may lead to non-consevative To estimate even when the test was performed according to E1921requirements. The reference temperatures calculated from the small specimens resulted in To estimates that were30℃to40℃below the estimates obtained from the larger specimens. To avoid the incorrect To estimate, four auxiliary methods for censoring To were suggested, including a more stringent Mlimit value, the evaluation of Weibull slope, the evaluation of the Kjc data validity in terms of Jp/Jc or CMODP/CMOD and the evaluation of To validity using the empirical correlation between To and TCVN from Charpy impact testing.
     (3) Based on random sampling from experimental data and Monte Carlo simulation of data from the scatter band described by the Master Curve, it was proved that the calibration method proposed by Minami would result in large uncertainty in the calibrated Beremin's parametes, m and σu, when a finite number of data are available. It was found that m and σu vary regularly, and they constitute a unique curve for a specimen.
     (4) A new calibration method was proposed to find Beremin's parmeters determined by the intersection of m~σn curves for high and low constraint specimens. Compared with the existing calibration method based on toughness scaling model (TSM), the new calibration method is characterized by low computational cost, the same accuracy and visual display of the calibration process.
     (5) Monte Carlo simulation was employed to produce a large number of fracture toughness data randomly drawn from the scatter band described by the Master Curve to determine Beremin's parameters in the DBT region. In terms of16MnR steel, the results revealed that m decreases with temperature in the lower transition region and remains independent of temperature over the lower-to-mid transition. The changes in the scatter of macroscopic fracture toughness data and cleavage fracture mechanism are responsible for the temperature dependence of m. The Weibull stress scale parameter, σu, increases with temperature reflecting a rise in the microscale toughness.
     (6) The Beremin's parameters for16MnR and A508-Ⅲ were calibrated using the calibration method based on the intersection of m-σu curves and the calibration method proposed by Ruggieri et al.(RGD method), respectively. After the fracture toughness data from small specimens were scaled to the results of1T-SE(B) by using Beremin's toughness scaling model, the To values were estimated. The underestimated T0b measured from small specimens, which exhibited loss of constraint, were corrected.
引文
[1]Wallin K. Master curve analysis of the "Euro" fracture toughness dataset. Engineering Fracture Mechanics.2002,69(4):451-481
    [2]Petti JP. Constraint and Dutile Tearing Effects on the Cleavage Fracture of Ferritic Steel: University of Illinois at Urbana-Champaign; 2004.
    [3]American Society of Mechanical Engineers. ASME boiler and pressure vessel code, Section Ⅲ, Subsection G.
    [4]American Society of Mechanical Engineers. ASME boiler and pressure vessel code, Section Ⅺ, Subsection A.
    [5]ASTM E399. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials. ASTM; 2005.
    [6]Kirk MT. The Technical Basis for Application of the Master Curve to the Assessment of Nuclear Reactor Pressure Vessel Integrity.2002.
    [7]Merkle JG, Wallin K, McCabe DE. Technical Basis for an ASTM Standard on Determining the Reference Temperature,T0,for Ferritic Steels in the Transition Range. U.S. Nuclear Regulatory Commission Report NUREG/CR5504.1998.
    [8]Margolin BZ, Gulenko AG, Nikolaev VA, et al. A new engineering method for prediction of the fracture toughness temperature dependence for RPV steels. International Journal of Pressure Vessels and Piping.2003,80(12):817-829
    [9]Zurbuchen C, Viehrig HW, Weiss FP. Master Curve and Unified Curve applicability to highly neutron irradiated Western type reactor pressure vessel steels. Nuclear Engineering and Design.2009,239(7):1246-1253
    [10]Wallin K, Saario T, Torronen K. Statistical Model for Carbide Induced Brittle Fracture in Steel. Metal Science.1984,18:13-16
    [11]Wallin K, Saario T, Torronen K, et al. Mechanism-Based Statistical Evaluation of the ASME Reference Fracture Toughness Curve.5th International Conference on Pressure Vessel Technology. San Francisco, California:ASME; 1984.
    [12]Wallin K. The scatter in KIC results. Engineering Fracture Mechanics. 1984,19(6):1085-1093
    [13]Wallin K. The size effect in KIC results. Engineering Fracture Mechanics. 1985,22(1):149-163
    [14]Wallin K. Fracture toughness transition curve shape for ferritic structural steels. Proceedings of the Joint FEFG/ICF, International Conference on Fracture of Engineering materials and structures.1991:83-88
    [15]ASME Boiler and Pressure Vessel Code Case N-629. Use of fracture toughness test data to establish reference temperature for pressure retaining materials for Section XI. American Society of Mechanical Engineers.1999
    [16]ASTM E1921-97. Standard Test Method for Determination of Reference Temperature, To, for Ferritic Steels in the Transition Range. Annual book of ASTM standards.1997
    [17]Kirk MT, Dodds RH, Jr. J and CTOD Estimation Equations for Shallow Cracks in Single Edge Notch Bend Specimens. U.S. Nuclear Regulatory Commission Report NUREG/CR 5969.1993.
    [18]Wallin K. Statistical Aspects of Constraint with Emphasis on Testing and Analysis of Laboratory Specimens in the Transition Region. ASTM STP 117.1993:264-288
    [19]Wallin K. Quantifying Tstress controlled constraint by the master curve transition temperature T0. Engineering Fracture Mechanics.2000,68(3):303-328
    [20]Hohe J, Hebel J, Friedmann V, et al. Probabilistic failure assessment of ferritic steels using the master curve approach including constraint effects. Engineering Fracture Mechanics.2007,74(8):1274-1292
    [21]Joyce JA, Tregoning RL. Development of the TO reference temperature from precracked Charpy specimens. Engineering Fracture Mechanics.2001,68(7):861-894
    [22]Wallin K, Planman T, Valo M, et al. Applicability of miniature size bend specimens to determine the master curve reference temperature T0. Engineering Fracture Mechanics. 2001,68(11):1265-1296
    [23]Dlouhy I, Holzmann M, Brumovsky M. Measurement of fracture toughness transition behaviour of Cr-Ni-Mo-V pressure vessel steel using pre-cracked Charpy specimens. International Journal of Pressure Vessels and Piping.1999,76(9):591-598
    [24]Heerens J, Ainsworth RA, Moskovic R, et al. Fracture toughness characterisation in the ductile-to-brittle transition and upper shelf regimes using pre-cracked Charpy single-edge bend specimens. International Journal of Pressure Vessels and Piping. 2005,82(8):649-667
    [25]Choi SB, Chang YS, Kim YJ. et al. Correction of constraint loss in fracture toughness measurement of PCVN specimens based on fracture toughness diagram. Journal of Mechanical Science and Technology.2010.24(3):687-692
    [26]Wallin K. Structural integrity assessment aspects of the Master Curve methodology. Engineering Fracture Mechanics.2010,77(2):285-292
    [27]Wallin K. Use of the Master Curve methodology for real three dimensional cracks. Nuclear Engineering and Design.2007,237(12-13):1388-1394
    [28]SINTAP—Structural integrity assessment procedures for European industry. British steel Report.1999.
    [29]Wallin K, Nevasmaa P, Laukkanen A, et al. Master Curve analysis of inhomogeneous ferritic steels. Engineering Fracture Mechanics.2004,71(16-17):2329-2346
    [30]Joyce JA. On the utilization of high rate Charpy test results and the master curve to obtain accurate lower bound toughness predictions in the ductile-to-brittle transition. ASTM STP 1329.1997:253-273
    [31]Ferreno D, Lacalle R, Gorrochategui I. et al. Fracture characterisation of a nuclear vessel steel under dynamic conditions in the transition region. Engineering Failure Analysis. 2010,17(2):464-472
    [32]Dlouhy I, Lenkey G, Holzmann M. Master curve evaluation at static and dynamic conditions of loading for cast ferritic steel. SMiRT 16.2001:1597-1604.
    [33]Wallin K. Effect of the strain rate on the fracture toughness of ferritic steels. IAEA specialists meeting on master curve testing and results application. Prague, Czech Republic2001.
    [34]王钟羡,李慧梅,范进,等.A533B-1钢韧脆转变区断裂韧度预测的约束评估法.机械强度.2009,31(2):260-263
    [35]王钟羡,吴春笃22NiMoCr3-7钢韧一脆转变区断裂韧度及断裂失效曲线.核动力工程.2009,30(2):46-50
    [36]Beremin F, Pineau A, Mudry F, et al. A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metallurgical and Materials Transactions A.1983,14(11): 2277-2287
    [37]Ruggieri C, Gao X, Dodds Jr RH. Transferability of elastic-plastic fracture toughness using the Weibull stress approach:significance of parameter calibration. Engineering Fracture Mechanics.2000,67(2):101-117
    [38]Minami F, Bruckner-Foit A, Munz D, et al. Estimation procedure for the Weibull parameters used in the local approach. International Journal of Fracture. 1992,54(3):197-210
    [39]Bakker A, Koers RWJ. Prediction of cleavage fracture events in the brittle-ductile transition region of a ferritic steel In:Blauel, Schwalbe, editors. Defect Assessment in Components-Fundamentals and Applications, ESIS/EG9. London,1991.
    [40]Gao XS, Ruggieri C, Dodds RH. Calibration of Weibull stress parameters using fracture toughness data. International Journal of Fracture.1998,92(2):175-200
    [41]Assessment of the Integrity of Structures Containing Defects. Nuclear Electric Procedure R6;2001.
    [42]ESIS TC1.1 sub-committee on Local Approach. Procedure to measure and calculate material parameters for the Local Approach to fracture using notched tensile specimens. March 1998.
    [43]Qian X, Zhang S, Swaddiwudhipong S. Calibration of Weibull parameters using the conventional mechanism-based strain gradient plasticity. Engineering Fracture Mechanics.2011,78(9):1928-1944
    [44]Rosahl K, Booker JD, Lewis S, et al. A statistical approach for transferring fracture events across different sample shapes. Engineering Fracture Mechanics. 2011,78(1):47-59
    [45]Hojo K, Muroya I, Bruckner-Foit A. Fracture toughness transition curve estimation from a notched round bar specimen using the local approach method. Nuclear Engineering and Design.1997,174(3):247-258
    [46]Minami F, Ochiai T, Hashida T, et al. Local approach to dynamic fracture toughness evaluation. Fatigue and Fracture Mechanics:31st Vol.2000,1389:271-304
    [47]Chang YS, Kim JM, Ko HO, et al. Experimental and numerical investigations on brittle failure probability and ductile resistance property. International Journal of Pressure Vessels and Piping.2008,85(9):647-654
    [48]Milella PP, Bonora N. On the dependence of the Weibull exponent on geometry and loading conditions and its implications on the fracture toughness probability curve using a local approach criterion. International Journal of Fracture.2000,104(1):71-87
    [49]Wiesner CS, Goldthorpe MR. The Effect of Temperature and Specimen Geometry on the Parameters of the "Local Approach" to Cleavage Fracture. J Phys IV France. 1996,06(C6):C6-295-C296-304
    [50]Mathieu JP, Diard O, Inal K. et al. Micromechanical modeling of brittle fracutre of french RPV steel:a comprehensive study of stress triaxiality effect. Proceedings of ASME PVP2008. PVP-61334;2008.
    [51]Mathieu JP, Inal K, Berveiller S, et al. A micromechanical interpretation of the temperature dependence of Beremin model parameters for french RPV steel. Journal of Nuclear Materials.2010,406(1):97-112
    [52]Petti JP, Dodds RH. Calibration of the Weibull stress scale parameter, sigma(u), using the Master Curve. Engineering Fracture Mechanics.2005,72(1):91-120
    [53]Gao XS, Zhang GH, Srivatsan TS. A probabilistic model for prediction of cleavage fracture in the ductile-to-brittle transition region and the effect of temperature on model parameters. Materials Science and Engineering A.2006,415(1-2):264-272
    [54]Gao XS, Joyce JA. Roe C. An investigation of the loading rate dependence of the Weibull stress parameters. Engineering Fracture Mechanics.2008,75(6):1451-1467
    [55]Wasiluk B, Petti JP. Dodds RH. Temperature dependence of Weibull stress parameters: Studies using the Euro-material. Engineering Fracture Mechanics.2006,73(8):1046-1069
    [56]Ruggieri C, Doods RH, Wallin K. Constraint effects on reference temperature, To for ferritic steels in the transition region. Engineering Fracture Mechanics.1998,60(l):19-36
    [57]Gao XS, Dodds RH. Constraint effects on the ductile-to-brittle transition temperature of ferritic steels:a Weibull stress model. International Journal of Fracture.2000,102(1): 43-69
    [58]Keim E. Constraint issues in cleavage fracture and matters arising from practical application. Fatigue & Fracture of Engineering Materials & Structures.2007,30(6): 535-555
    [59]Lidbury DPG, Sherry AH, Bass BR, et al. Validation of constraint-based methodology in structural integrity of ferritic steels for nuclear reactor pressure vessels. Fatigue & Fracture of Engineering Materials & Structures.2006,29(9-10):829-849
    [60]Yin S, Bass R, Williams P, et al. Effect of Shallow Flaws and Biaxial Loading on Transition Temperatures Using a Weibull Stress Model. Proceedings of ASME PVP2004,PVP-2547;2004
    [61]Siegele D, Varfolomeev I. Hohe J, et al. Integrity Assessment of a German Pwr Rpv Considering Loss of Constraint. Proceedings of the ASME PVP2010,PVP-25615;2010.
    [62]Rossoll A, Berdin C. Prioul C. Determination of the fracture toughness of a low alloy steel by the instrumented Charpy impact test. International Journal of Fracture. 2002,115(3):205-226
    [63]Minami F, Iida M, Takahara W. et al. Fracture mechanics analysis of Charpy test results based on the weibull stress criterion. In:Francois D, Pineau A (eds). From Charpy to present impact testing Elsevier and ESIS.2002:411-418.
    [64]惠虎.解理断裂局部法的关键技术改进及应用研究.上海:华东理工大学;2002.
    [65]荆洪阳,王东坡,霍立兴等.加载速率对焊接接头断裂行为的影响.机械强度.2002,24(4):550-555
    [66]荆洪阳,徐连勇,霍立兴等.韧-脆转变温度区间内焊接接头断裂韧度预测焊接学报.2004,,25(1):45-47,51-53
    [67]陈忠安,徐冉,曾振Weibull应力方法预测低合金钢的韧脆转化曲线.工程力学.2007,24(12):25-30
    [68]Heerens J, Hellmann D. Development of the Euro fracture toughness dataset. Engineering Fracture Mechanics.2002,69(4):421-449
    [69]Miura N, Soneda N, Arai T, et al. Applicability of Master Curve method to Japanese reactor pressure vessel steels. Proceedings of the ASME PVP2006,PVP-93792;2006.
    [70]Miura N. Soneda N. Evaluation of fracture toughness by Master Curve approach using miniature C(T) specimens. Proceedings of the ASME PVP2010,PVP-25862;2010.
    [71]VanDerSluys WA, Hoffmann CL. Yoon KK, et al. Fracture Toughness Master Curve Development:Fracture Toughness of Ferritic Steels and ASTM Reference Temperature (T0). WRC Bulletin 457.2000
    [72]IAEA. Application of surveillance programme results to reactor pressure vessel integrity assessment. IAEA TECDOC-1435.2005.
    [73]Lee KH, Kim MC, Lee BS, et al. Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels. Journal of Nuclear Materials.2010,403(1-3): 68-74
    [74]GB713-2008,锅炉和压力容器用钢板.2008
    [75]GB/T229-2007,金属夏比缺口冲击试验方法.2007
    [76]GB/T13239-2006,金属材料低温拉伸试验方法.2006
    [77]ASME. Boiler & pressure Vessel code, sec. Ⅲ, Division 1-SubsectionNB, Class 1 components, rules for Construction of nuclear Facility components.2007.
    [78]ASTM E1921-09. Standard Test Method for Determination of Reference Temperature, To, for Ferritic Steels in the Transition Range. Annual book of ASTM standards.2009
    [79]ASTM E1820-01. Standard Test Method for Measurement of Fracture Toughness. Annual book of ASTM standards.2001
    [80]Nevalainen M, Dodds RH. Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens. International Journal of Fracture.1995,74(2): 131-161
    [81]Joyce JA. Tregoning RL. Determination of constraint limits for cleavage initiated toughness data. Engineering Fracture Mechanics.2005,72(10):1559-1579
    [82]Rathbun HJ, Odette GR, He MY, et al. Influence of statistical and constraint loss size effects on cleavage fracture toughness in the transition-A model based analysis. Engineering Fracture Mechanics.2006,73(18):2723-2747
    [83]Rathbun HJ, Odette GR, Yamamoto T, et al. Statistical and constraint loss size effects on cleavage fracture-implications to measuring toughness in the transition. Journal of Pressure Vessel Technology-Transactions of the ASME.2006,128(3):305-313
    [84]Sattari-Far I, Wallin K. Application of Master Curve Methodology for Structural Integrity Assessments of Nuclear Components. Swedish Nuclear Power Inspectorate; 2005.
    [85]Khalili A. Kromp K. Statistical properties of Weibull estimators. Journal of Materials Science.1991,26(24):6741-6752
    [86]Handa T. Ohata M. Mimura H, et al. Relationship between Weibull Parameter and Fracture Toughness of Structural Steels. Proceedings of the ASME PVP2008, PVP-61680:2008
    [87]Rossoll A. Determination de la tenacite d'un acier faiblement allie a partir de Tessai Charpy instrumente. Paris:Ecole Centrale de Paris; 1998.
    [88]Burstow MC, Beardsmore DW, Howard IC, et al. The prediction of constraint-dependent R6 failure assessment lines for a pressure vessel steel via micro-mechanical modelling of fracture. International Journal of Pressure Vessels and Piping.2003,80(11):775-785
    [89]刘宝碇,赵瑞清.随机规划与模糊规划.北京:清华大学出版社;1998.
    [90]Ruggieri C, Dodds RH. A transferability model for brittle fracture including constraint and ductile tearing effects:a probabilistic approach. International Journal of Fracture. 1996,79(4):309-340
    [91]Hausild P, Berdin C, Bompard P. Prediction of cleavage fracture for a low-alloy steel in the ductile-to-brittle transition temperature range. Materials Science and Engineering A. 2005,391(1-2):188-197
    [92]Burstow MC. A re-assessment of parameter tuning for the Beremin model using the toughness scaling technique. International Journal of Pressure Vessels and Piping. 2003,80(11):797-805
    [93]Chen JH, Wang GZ. On scattering of measured values of fracture toughness parameters. International Journal of Fracture.1998,94(1):33-49
    [94]Chen JH, Li G, Cao R. et al. Micromechanism of cleavage fracture at the lower shelf transition temperatures of a C-Mn steel. Materials Science and Engineering:A. 2010.527(18-19):5044-5054
    [95]Chen JH, Wang GZ, Yan C, et al. Advances in the mechanism of cleavage fracture of low alloy steel at low temperature. Part I:Critical event. International Journal of Fracture. 1997.83(2):105-120
    [96]Bernauer G. Brocks W. Schmitt W. Modifications of the Beremin model for cleavage fracture in the transition region of a ferritic steel. Engineering Fracture Mechanics. 1999.64(3):305-325
    [97]Samal MK. Seidenfuss M, Roos E, et al. Experimental and numerical investigation of ductile-to-brittle transition in a pressure vessel steel. Materials Science and Engineering: A.2008,496(1-2):25-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700