基于快速流形学习方法的高光谱遥感非线性特征提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高光谱遥感技术是地球观测体系中的重要一员,是遥感技术发展的前沿领域。近年来随着高光谱传感器的不断升级换代,高光谱数据的空间分辨率与光谱分辨率不断升高。这为高光谱遥感数据处理带来了沉重的压力,使得高维空间特征提取技术成为了高光谱遥感数据预处理必不可少的一环。本文欲将一类新型的具备非线性特征提取能力的特征提取方法,流形学习方法,引入高光谱遥感处理中。该类方法结构简单,所需输入参数少,对参数精度依赖度低,并能保证全局最优解,但计算复杂度高,难以处理高光谱传感器带来的海量数据。为了克服这一困难,本文综合分析了两类流形学习方法(全局法与局部法),以其中两个代表性方法为例(等角特征映射法与拉普拉斯特征映射法),建立了统一的流形学习算法架构。在该架构中,分别从近邻搜索和低维坐标解算两个计算复杂度最高的环节入手,先后提出和引入了光谱角敏感哈希森林方法和尼斯特罗姆方法,建立了新的流形学习算法架构,以改进流形学习方法的计算效率。本文不仅从理论上证明,更在实际数据实验中验证了这两种方法与传统相同类型算法相比在计算效率上的优势。为了验证新算法架构的实用性,本文采用了三组基准测试数据,在流形学习特征提取的基础上进行聚类和分类实验,并与主成分分析法的提取结果进行比较。经过详细的比较和参数分析,实验结果表明,新算法架构下的流形学习方法不仅在聚类/分类应用中对主成分分析法保持稳定的优势,在之基础上的聚类/分类结果更加超过了直接在原始数据上的聚类/分类精度。
Hyperspectral Remote Sensing plays an important role in Earth Observation and is a cuting edge technique among all the Remote Sensing applications. The development of the Hyperspectral Sensors accelerates the growth of spacial and spectral resolution of the Hyperspectral Remote Sensed dataset, which burdens the workload of the Hyperspectral data analysis and processes, and helps the Feature Extraction become an indispensible part of the Hyperspectral dataset preprocessing. This thesis proposes a new kind of feature extraction algorithms, as known as Manifold Learning (ML). ML is a kind of nonlinear feature extraction techniques with simple structure, few parameters, and guaranteed globally optimal solution. But its high computational complexisity impedes its development in the Hyperspectral applications where the large scale data size is beyond the processing power of ML. To overcome this problem, an unified framework of the ML algorithm was established after two kinds of ML algorithms were systematically analyzed, globally structure preserved methods and locally structure preserved methods respectively. Spectral Angle Sensitive Hashing Forest (SASHF) and Nystrom' algorithm were introduced to improve the computational efficiency of nearest neighbor searching and low dimensional coordinates calculating which are the most complicated parts of the ML algorithms. In the thesis, these two algorithms were proved theoretically and experimentally that they have the advantages in computing efficiency against other similar algorithms. An improved framwork of ML was built based on SASHF and Nystrom' algorithm. In the experiments of clustering and classification on three sets of benchmark dataset, this new ML algorithm can not only maintain the information of the original dataset, but also help to improve the performance of the clustering/classification algorithm. The features extracted by the new ML algorithm were proved to outperform the features extracted by Principle Component Analysis and even the original dataset itself.
引文
[1]C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior of distance metrics in high dimensional space[A]. In:Database Theory—ICDT 2001. Springer Berl in Heidelberg,2001:420-434.
    [2]T.L. Ainsworth, C. M. Bachmann, and R. A. Fusina. Local intrinsic dimensionality of hyperspectral imagery from non-linear manifold coordinates[A]. In:IEEE International on Geoscience and Remote Sensing Symposium,2007[M].2007:1541-1542.
    [3]A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions[A]. In:47th Annual IEEE Symposium on Foundations of Computer Science[M].2006:459-468.
    [4]G. P. Asner. Biophysical and biochemical sources of variability in canopy reflectance[J]. Remote Sensing of Environment,1998,64:234-253.
    [5]C. M. Bachmann and T. L. Ainsworth. Bathymetric retrieval from manifold coordinate representations of hyperspectral imagery[A]. In:Geoscience and Remote Sensing Symposium,2007:1548-1551.
    [6]C. M. Bachmann, T. L. Ainsworth, D. B. Gillis, and S. J. Maness. Modeling Coastal Waters from Hyperspectral Imagery using Manifold Coordinates [A]. In: Geoscience and Remote Sensing Symposium,2006:356-359.
    [7]C. M. Bachmann, T. L. Ainsworth, D. B. Gillis, S. J. Maness, M. J. Montes, T. F. Donato, J. H. Bowles, D. R. Korwan, R. A. Fusina, G. M. Lamela, and W. J. Rhea. A new data-driven approach to modeling coastal bathymetry from hyperspectral imagery using manifold coordinates[A]. In:OCEANS,2005. Proceedings of MTS/IEEE,2005:2242-2249.
    [8]C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina. Exploiting manifold geometry in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):441-454.
    [9]C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina. Improvements to land-cover and invasive species mapping from hyperspectral imagery in the Virginia Coast reserve [A]. In:Geoscience and Remote Sensing Symposium,2004:4180-4183.
    [10]C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina. Modeling data manifold geometry in hyperspectral imagery[A]. In:Geoscience and Remote Sensing Symposium,2004:3203-3206.
    [11]C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina.Improved Manifold Coordinate Representations of Large-Scale Hyperspectral Scenes[J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44:2786-2803.
    [12]M. Balasubramanian and E. L. Schwartz. The Isomap Algorithm and Topological Stability[J]. Science,2002,295:7-7.
    [13]N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree:an efficient and robust access method for points and rectangles[J]. ACM SIGMOD Record,1990,19(2):322-331.
    [14]M. A. Belabbas and P. J. Wolfe. On landmark selection and sampling in high-dimensional data analysis[J]. Philos T R Soc A,2009,367(1906):4295-4312.
    [15]P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. Fisherfaces:recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
    [16]M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation,2003,15(6):1373-1396.
    [17]Y. Bengio and M. Monperrus. Discovering shared structure in manifold learning[A]. In:IRIS Machine Learning Workshop.2004.
    [18]Y. Bengio,O. Delalleau, N. Le Roux, J.-F. Paiement, P. Vincent, and M. Ouimet. Learning Eigenfunctions Links Spectral Embedding and Kernel PCA[J]. Neural Computation,2004,16(10):2197-2219.
    [19]Y. Bengio, P. Vincent, and J.F. Paiement. Learning Eigenfunctions of Similarity:Linking Spectral Clustering and Kernel PCA[R]. Universit de Montral:Dpartement d' informatique et recherche oprationnelle,2003.
    [20]Y. Bengio, J.-F. Paiement, and P. Vincent. Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering[R]. Cambridge, MA:the Advances in Neural Information Processing Systems,2003.
    [21]J. L. Bentley. Multidimensional divide-and-conquer[J]. Communications of the ACM,1980,23(4):214-229.
    [22]S. Berchtold, D. A. Keim, H. P. Kriegel, and T. Seidl. Indexing the Solution Space:A New Technique for Nearest Neighbor Search in High-Dimensional Space[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2000, 12(1):45-57.
    [23]S. Berchtold, C. Bohm, D. A. Keim, and H. P. Kriegel. A cost model for nearest neighbor search in high-dimensional data space[A]. In:Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems,1997:78-86.
    [24]K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is 'nearest neighbor' meaningful?[A]. In:Database Theory—ICDT' 1999:217-235.
    [25]I. Borg and P. J. Groenen. Modern multidimensional scaling:Theory and applications[M]. Springer Verlag,2005.
    [26]T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional metric spaces[J]. ACM SIGMOD Record,1997,26(2):357-368.
    [27]R. Buaba, M. Gebril, A. Homaifar, E. Kihn, and M. Zhizhin. Locality Sensitive Hashing for satellite images using texture feature vectors [A]. In:IEEE Aerospace Conference,2010:1-10.
    [28]C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery,1998,2:121-167.
    [29]P. Campoy. Dimensionality Reduction by Self Organizing Maps that preserve distances in Output Space[A]. In:the Proceedings of international Joint Conference on Neural Networks, Atlanta, Georgia, USA,2009:1-7.
    [30]P. Ceccato, S. Flasse, S. Tarantola, S. Jacquemoud, and J. M. Gregoire. Detecting vegetation leaf water content using reflectance in the optical domain[J]. Remote Sensing of Environment,2001,77:22-33.
    [31]A. Chakrabarty,O. Choudhury, P. Sarkar, A. Paul, and D. Sarkar. Hyperspectral image classification incorporating bacterial foraging-optimized spectral weighting[J]. Artificial Intelligence Research, 2012,1(1):63-83.
    [32]M. Charikar. Similarity estimation techniques from rounding algorithms[A].In:the Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,2002:380-388.
    [33]J. Chen, J. Ye, and Q. Li. Integrating Global and Local Structures:A Least Squares Framework for Dimensionality Reduction[A].In:the IEEE Conference on Computer Vision and Pattern Recognition, Mineapolis, MN, USA,2007:1-8.
    [34]Y. Chen, M. M. Crawford, and J. Ghosh. Applying nonlinear manifold learning to hyperspectral data for land cover classification[A].In:the Geoscience and Remote Sensing Symposium,2005:4311-4314.
    [35]Y. Chen and J. Patel. Efficient Evaluation of All-Nearest-Neighbor Queries[A]. In:IEEE 23rd International Conference on Data Engineering, 2007:1056-1065.
    [36]0. Chum, M. Perdoch, and J. Matas. Geometric min-hashing:Finding a (thick) needle in a haystack[A].In:the Pattern Recognition and Computer Vision Colloquium,2009:17-24.J
    [37]D. Comaniciu and P. Meer. Mean shift:a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(5):603-619.
    [38]P. Comon. Independent Compunent Analysis[J]. Signal Processing Magazine, IEEE,1994,36(3):287-314.
    [39]R. Courant and D. Hilbert, Methods of Mathematical Physics[M]. Germany: Wiley-VCH,1953.
    [40]M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions[A]. Proceedings of the twentieth annual symposium on Computational geometry,2004:253-262.
    [41]B. Datt. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves[J]. Remote Sensing of Environment,1998,66:111-121.
    [42]C. Domeniconi, D. Gunopulos, and J. Peng. Large Margin Nearest Neighbor Classifiers [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS,2005,16(4):899-909.
    [43]D. Donoho and C. Grimes. Hessian eigenmaps:Locally linear embedding techniques for high-dimensional data[A]. Proceedings of the National Academy of Sciences,2003:5591-5596.
    [44]B. Du, L. Zhang, D. Zhang, K. Wu, and C. Tao. A manifold learning based feature extraction method for hyperspectral classification[A]. In:the International Conference on Information Science and Technology,2012:491-494.
    [45]H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El Abbadi. High dimensional nearest neighbor searching[J]. Inform Syst,2006,31(6):512-540.
    [46]J. E. Fowler and Qian Du. Anomaly Detection and Reconstruction From Random Projections[J]. IEEE Trans. on Image Process.,2012,21(1):184-195.
    [47]J. H. Friedman and J. W. Tukey. A Projection Pursuit Algorithm for Exploratory Data Analysis[J]. IEEE Transactions on Computers,2011,100(9):881-890.
    [48]J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time[J]. ACM Transactions on Mathematical Software,1977,3(3):209-226.
    [49]A. Fu, P. Chan, Y. Cheung, and Y. Moon. Dynamic vp-tree indexing for n-nearest neighbor search given pair-wise distances[J]. The VLDB Journal-The International Journal on Very Large Data Bases,2000,9(2):154-173.
    [50]M. Gashler, D. Ventura, and T. Martinez. Iterative Non-linear Dimensional ity Reduction by Manifold Sculpting[A].In:the Advances in Neural Information Processing Systems, Cambridge, MA, USA,2008:513-520.
    [51]X. Geng, D. C. Zhan, and Z. H. Zhou. Supervised Nonlinear Dimensionality Reduction for Visualization and Classification[J]. IEEE Trans. Syst,.,2005, 35(6):1098-1107.
    [52]K. Georgoulas and Y. Kotidis. Random hyperplane projection using derived dimensions[A]. Proceedings of the Ninth ACM International Workshop on Data Engineering for Wireless and Mobile Access,2010:25-32.
    [53]A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing[A]. Proceedings of the 25th International Conference on Very Large Data Bases,1999:518-529.
    [54]A. A. Gitelson, B. C. Gao, R. R. Li, S. Berdnikov, and V. Saprygin. Estimation of chlorophyl1-a concentration in productive turbid waters using a Hyperspectral Imager for the Coastal Ocean—the Azov Sea case study [J]. Environmental Research Letters,2011,6(2):23-24.
    [55]A. A. Gitelson and M. N. Merzilyak. Signature analysis of leaf reflectance spectra:algorithm development for remote sensing of chlorophyll [J]. Journal of Plant Physiol,1996,148:494-500.
    [56]Y. Goldberg, A. Zakai, and D. Kushnir. Manifold learning:The price of normalization[J]. The Journal of Machine Learning Research,2008, 9:1909-1939.
    [57]G. H. Golub and C. Reinsch. Singular value decomposition and least squares solutions[J]. Numerische Mathematik,1970,14 (5):403-420.
    [58]M. Hall. Correlation-based feature selection machine learning[R].New Zealand:University of Waikato,1998.
    [59]J. Ham, D. D. Lee, S. Mika, and B. Scholkopf. A kernel view of the dimensionality reduction of manifolds [A]. In:the Twenty-first international conference, New York, New York, USA,2004:47-+.
    [60]G. Hamerly and C. Elkan. Alternatives to the k-means algorithm that find better clusterings[A]. In:the Proceedings of the 11th international conference on Information and Knowledge management,2002:1-8.
    [61]T. Han and D. G. Goodenough. Investigation of nonlinearity in hyperspectral remotely sensed imagery—a nonlinear time series analysis approach[A]. Geoscience and Remote Sensing Symposium,2007:1556-1560.
    [62]T. Han and D. G. Goodenough. Nonlinear feature extraction of hyperspectral data based on locally linear embedding (LLE)[A]. Geoscience and Remote Sensing Symposium,2005:1237-1240.
    [63]R. Hecht-Nielsen, Neurocomputing[M]. Reading, MA, USA:Addison-Wesley Publishing Company,1991.
    [64]S. Helgason. Differential geometry, Lie groups, and symmetric spaces[M]. Waltham, Massachusetts, USA:Academic press,1979.
    [65]S. G. Herzog and J. F. Mustard. Reflectance spectra of five-component mineral mixtures:Implications for mixture modeling[J]. Lunar and Planetary Science ⅩⅩⅦ.1996:535-536.
    [66]A. Hinneburg, C. C. Aggarwal, and D. A. Keim, What is the Nearest Neighbor in High Dimensional Space[M]. Germany:Bibliothek der Universitat Konstanz, 2000.
    [67]T. Hofmann, B. Scholkopf, and A. J. Smola. Kernel methods in machine learning[J]. Ann. Statist.,2008,36 (6):1171-1220.
    [68]C. Hou, C. Zhang, Y. Wu, and Y. Jiao. Stable local dimensionality reduction approaches[J]. Pattern Recogn,2009,42(9):2054-2066.
    [69]P. Indyk and R. Motwani. Approximate nearest neighbors:towards removing the curse of dimensionality[]. Proceedings of the thirtieth annual ACM symposium on Theory of computing,1998:604-613.
    [70]R. M. Jiang, A. H. Sadka, and D. Crookes. Hierarchical video summarization in reference subspace[].IEEE Transactions on Consumer Electronics,2009, 55(3):1551-1557.
    [71]P. E. johnson, M.O. Smith, and J. B. Adams. Simple Algorithms for Remote Determinination of Mineral Abundances and Artical Sizes from Reflectance Spectra [J]. Journal of Geophysical Research,1992,97:3649-3658.
    [72]P. E. johnson, M.O. Smith, S. Taylor-George, and J. B. Adams. A Semiempirical Method for Analysis of the Reflectance Spectral of Binary Mineral Mixtures[J]. Journal of Geophysical Research,1983,88:3557-3561.
    [73]I. M. Johnstone and D. M. Titterington. Statistical challenges of high-dimensional data [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2009,367(1906):4237-4253.
    [74]W. Kim, Y. Chen, M. M. Crawford, J. C. Til ton, and J. Ghosh. Multiresolution manifold learning for classification of hyperspectral data[A]. Geoscience and Remote Sensing Symposium,2007:3785-3788.
    [75]T. Kohonen, Self-organi zing maps, Inc., Secaucus, NJ:Springer Verlag,2001.
    [76]E. Kokiopoulou and P. Frossard. Semantic Coding by Supervised Dimensionality Reduction[J]. IEEE Trans. Multimedia,2008,10(5):806-818.
    [77]V. Koltchinskii and E. Gine. Random matrix approximation of spectra of integral operators[J]. Bemoulli,2000,6(1):113-167.
    [78]F. Korn, B.-U. Pagel, and C. Faloutsos. On the "Dimensionality Curse" and the'Self-Similarity Blessing'[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2001,13(1):96-110.
    [79]B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search[A]. IEEE 12th International Conference on Computer Vision, 2009:2130-2137.
    [80]D. A. Landgrebe. Hyperspectral image data analysis[J]. Signal Processing Magazine, IEEE,2002,19(1):17-28.
    [81]K. Lin, H. Jagadish, and C. Faloutsos. The TV-tree:An index structure for high-dimensional data[J]. The VLDB Journal—The International Journal on Very Large Data Bases,1994,3(4):517-542.
    [82]L. Ma, M. M. Crawford, and J. Tian. Anomaly detection for hyperspectral images using local tangent space alignment[A]. In:IEEE International Geoscience and Remote Sensing Symposium,2010:824-827.
    [83]L. Ma, M. M. Crawford, and J. Tian. Local Manifold Learning-Based k-Nearest-Neighbor for Hyperspectral Image Classification[J]. IEEE Trans. Geosci. Remote Sensing,2010,48(11):4099-4109.
    [84]L. van der Maaten, E. Postma, and J. van den Herik. Dimensionality Reduction:A Comparative Review[J]. Journal of Machine Learning Research,2009, (10): 1-41
    [85]J. MacQueen. Some methods for classification and analysis of multivariate observations[A]. In:the Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability,1967:281-297.
    [86]A. M. Marinez and K. C. Avinash. Pea versus lda[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(2):228-233.
    [87]J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations[J]. Philosophical Transactions of the Royal Society,1909, A(209):415-446.
    [88]B. Mikhail and P. Niyogi. Towards a theoretical foundation for Laplacian-based manifold methods [J]. Journal of Computer and System Sciences, 2008,74(8):1289-1308.
    [89]H. Q. Minh, P. Niyogi, and Y. Yao. Mercer's Theorem, Feature Maps, and Smoothing[A]. Learning theory[M]. Germany:Springer Berlin Heidelberg, 2006:154-168.
    [90]A. Mohan, G. Sapiro, and E. Bosch. Spatially Coherent Nonlinear Dimensionality Reduction and Segmentation of Hyperspectral Images[J]. IEEE Geosci. Remote Sensing Lett.,2007,4(2):206-210.
    [91]B. Mohar. The Laplacian spectrum of graphs[J]. Graph Theory Combinatorics and Applications,1991,2(1):871-898.
    [92]A. Moore. Effcient Memory based Learning for Robot Control [D]. Cambridge, UK:University of Cambridge,1991.
    [93]J. F. Mustard and C. M. Pieters. Photometric Phase Functions of Common Geologic Minerals and Applications to Quantitative Analysis of Mineral Mixture Reflectance Spectra[J]. Journal of Geophysical Research,1989, 94:13619-13634.
    [94]J. F. Mustard and C. M. Pieters. Quantitative Abundance Estimates from Bidirectional Reflectance Measurements[A]. Proceedings of 17th Lunar Planetary Science Conference,1987:E617-E626.
    [95]M. Naseer and S.-Y. Qin.2010 Second International Conference on Computer Research and Development[A]. In:the Second International Conference on Computer Research and Development,2010:116-120.
    [96]D. A. Nash and J. E. Conel. Spectral Reflectance Systematics for Mixtures of Powdered Hypersthene, Labradorite, and Ilmenite[J]. Journal of Geophysical Research,1974,79:1615-1621.
    [97]T. Neylon. A locality-sensitive hash for real vectors[A].21st Ann. ACM-SIAM Symposium on Discrete Algorithms,2010:1179-1189.
    [98]F. Nielsen, P. Piro, and M. Barlaud. Bregman vantage point trees for efficient nearest neighbor queries [A]. IEEE International Conference on Multimedia and Expo,2009:878-881.
    [99]M. Niskanen and O. Silven. Comparison of dimensionality reduction methods for wood surface inspection[A]. In:the Proceedings of SPIE,2003:178-188.
    [100]C. H. Park, H. Park, and P. Pardalos. A comparative study of linear and nonlinear feature extraction methods[A]. Fourth IEEE International Conference on Data Mining,2004:495-498.
    [101]J. C. Platt. Sequential Minimal Optimization:A Fast Algorithm for Training Support Vector Machines[EB/OL]. Microsoft Research,1998.
    [102]A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni. Recent advances in techniques for hyperspectral image processing[J]. Remote Sensing of Environment,2009,113(1):S110-S122.
    [103]D. A. Roberts, M.O. Smith, and J. B. Adams. Green Vegetation, Nonphotosynthetic Vegetation, and Soils in AVIRIS data[J]. Remote Sensing of Environment,1993,44:255-269.
    [104]H. Roux and D. Dartus. Use of parameter optimization to esti-mate a flood wave:potential applications to remote sensing of rivers[J]. Journal of Hydro 1,2006,328:258-266.
    [105]S. T. Roweis. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science,2000,290(5500):2323-2326.
    [106]L. Saul and S. T. Roweis. An introduction to local ly linear embedding[EO/OL]. The department of Computer Science, University of Toronto,2001.
    [107]B. Scholkopf, A. Smola, and K.-R. Muller. Kernel principal component analysis[A]. Artificial Intelligence Networks-ICANN'97,1997:583-588.
    [108]B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J]. Neural computation 1998,10(5):1299-1319.
    [109]H. Seung and D. Lee. Cognition-The manifold ways of perception[J]. Science, 2000,290 (5500):2268-+.
    [110]G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter-sensitive hashing[A]. In:the Proceedings of Ninth IEEE International Conference on Computer Vision,2003:750-757.
    [111]J. F. Shanahan, J. S. Schepers, D. D. Francis, G. E. Varvel, W. W. Wilhelm, J. M. Tringe, M. R. Schiemmer, and D. J. Major. Use of Remote-Sensing Imagery to Estimate Corn Grain Yield[J]. Agronomy Journal,2001,93(3):563-589.
    [112]J. Shawe-Taylor, C. K. I. Williams, N. Cristianini, and J. Kandola. On the Eigenspectrum of the Gram Matrix and the Generalization Error of Kernel-PCA[J]. IEEE Transactions on Information Theory,2005,51 (7):2510-2522.
    [113]J. Shawe-Taylor and C. K. I. Williams. The Stability of Kernel Principal Components Analysis and Its Relation to the Process Eigenspectrum[A]. In:the Advances in Neural Information Processing Systems, Cambridge, MA,2002, 15:367-374.
    [114]J. Shawe-Taylor and N. Cristianini. On the Concentration of Spectral Properties[A]. In:the Advances in Neural Information Processing Systems, Cambridge, MA,2002:511-517.
    [115]V. de Silva and J. B. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction[A].In:the Advances in Neural Information Processing Systems, Cambridge, MA,2012,15:721-728.
    [116]T. A. B. Snijders, P. E. Pattison, G. L. Robins, and M. S. Handcock. New Specifications for Exponential Random Graph Models[J]. Sociological Methodology,2006,36(1):99-153.
    [117]A. Talwalkar, S. Kumar, and H. Rowley. Large-scale manifold learning[A]. In: the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK,2008:1-8.
    [118]J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction[J]. Science,2000,290(5500):2319-+.
    [119]L. Teng, H. Li, and X. Fu. Dimension reduction of microarray data based on local tangent space alignment [A]. In:the Fourth IEEE Conference on Cognitive Informatic,2005:154-159.
    [120]D. A. Toole, D. A. Siegel, D. W. Menzies, M. J. Neumann, and R. C. Smith. Remote-Sensing Reflectance Determinations in the Coastal Ocean Environment: Impact of Instrumental Characteristics and Environmental Variability[J]. Applied Optics,2000,39(3):456-469.
    [121]F. S. Tsai and K. L. Chan. Dimensionality Reduction Techniques for Data Exploration[A]. In:the International Conference on Information, Communications & Signal Processing,2007:1-5.
    [122]W. Turner, S. Spector, N. Gardiner, M. Fladeland, E. Sterling, and M. Steininger. Remote sensing for biodiversity science and conservation[J]. Trends in Ecology and Evolution,2003,18(6):306-314.
    [123]M. M. Verstraete, B. Pinty, and R. E. Dickinson. A Physical Model of the Bidirectional Reflectance of Vegetation Canopies [J]. Journal of Geophysical Research,1990,95:11755-11765.
    [124]R. Weber, H. Schek, and S. Blott. A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces[A]. In:the Proceedings of the International Conference on Very Large Data Bases, 1998:194-205.
    [125]C. K. I. Williams and M. Seeger. Using the Nystrom method to speed up kernel machines[A]. In:the Advances in Neural Information Processing Systems, Cambridge, MA,2001:682-688.
    [126]P. Yianilos. Data structures and algorithms for nearest neighbor search in general metric spaces[A]. In:the Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms,1993:311-321.
    [127]K. Yu, L. Ji, and X. Zhang. Kernel Nearest-Neighbor Algorithm[J]. Neural Processing Letters,2002,15:147-156.
    [128]H. Zha and Z. Zhang. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J]. Journal of Shanghai University (English Edition),2004,8(4):406-424.
    [129]Z. Zhang, N. Ye, N. Deng, and H. Du. Orthogonal Subspace Based Nonlinear Correlation Learning for Supervised Dimensionality Reduction[A].In:the IEEE International Conference on Granular Computing,2009:779-784.
    [130]C. Zhao, J. Wang, L. Liu, W. Huang, and Q. Zhou. Relationship of 2100-2300nm spectral characteristics of wheat canopy to leaf area index and leaf N as affected by leaf water content [J]. Pedosphere,2006,13:333-338.
    [131]白正国,沈一兵,水乃翔.黎曼几何初步[M].北京:高等教育出版社,2004.
    [132]陈维桓.微分几何初步[M].北京:北京大学出版社,1990.
    [133]陈晓玲,龚威,李平湘.遥感数字影像处理导论[M].北京:机械工业出版社,2007.
    [134]陈晓玲,吴忠宜,田礼乔,陈莉琼,叶艺.水体悬浮泥沙动态监测的遥感反演模型对比分析——以鄱阳湖为例[J].科技导报,2007,25(6):19-22.
    [135]陈晓玲,袁中智,李毓湘,韦永康.基于遥感反演结果的悬浮泥沙时空动态规律研究[J].武汉大学学报:信息科学版,2005,30(8):677-681.
    [136]陈晓玲,赵红梅,田礼乔.环境遥感模型与应用[M].武汉:武汉大学出版社,2008.
    [137]万圣辉,佃袁勇,周源.基于Ikonos数据的红树分类方法研究[J].测绘信息与工程,2005,30(4):5-6.
    [138]方圣辉,龚浩.动态调整权重的光谱匹配测度法分类的研究[J].武汉大学学报:信息科学版,2006,31(12):1044-1046.
    [139]高铎,方圣辉,张雪虎,罗莎,梁静.基于遗传算法的东湖水质参数反演方法探讨[J].测绘信息与工程,2006,31(6):42-44.
    [140]黄昕,张良培,李平湘.融合形状和光谱的高空间分辨率遥感影像分类[J].遥感学报,2007,11(2):193-200.
    [141]李德仁.论21世纪遥感与GIS的发展[J].武汉大学学报(信息科学版),2003,28(2):127-131.
    [142]李德仁,周月琴,金为铣.摄影测量与遥感概论[M].北京:测绘出版社,2001.
    [143]钟燕飞,张良培,龚健雅,李平湘¨.基于人工免疫系统的遥感图像分类[J].遥感学报,2005,9(4):374-380.
    [144]周源,方圣辉,李德仁.利用光谱角敏感森林的高光谱数据快速匹配方法[J].武汉大学学报:信息科学版,2011,36(6):687-690.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700