喷涂机器人轨迹优化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷涂机器人是一种重要的先进涂装生产装备,在国内外广泛应用于汽车等产品的涂装生产线。喷涂机器人的喷涂效果与物体表面形状、喷涂过程参数等诸多因素有关。为了达到新的喷涂作业标准,实现高效低成本的生产目标,对新喷涂建模的分析以及高性能喷涂机器人轨迹优化算法、控制策略的研究已成为国内外学者们关注的热点。本课题以国家自然科学基金项目和江苏省高技术研究项目为背景,对喷涂机器人轨迹优化技术中的一些难点问题和关键问题进行研究,研究内容主要由以下几个部分构成:
     第一,针对工业生产中喷涂工件复杂多样的特点,提出了两种适用于不同场合且实用性较强的喷涂工件曲面造型方法:一种是基于平面片连接图FPAG的曲面造型方法,该方法先对曲面进行三角网格划分,再将划分后的三角面连接成平面片,最后使用基于平面片连接图FPAG的合并算法将各个平面片连接成为较大的片;另一种是基于点云切片技术的曲面造型方法,该方法主要分为总体算法描述、切片层数的确定、切片数据的分离、切片数据计算、多义线重构等五个部分。实验结果表明,这两种方法分别可以应用于一般性曲面以及曲率变化大的工件曲面的造型,并且计算速度快,完全满足喷涂机器人工作的需要,从而为后续的喷涂机器人轨迹优化工作奠定了基础。
     第二,提出了从规划喷涂路径角度优化喷涂轨迹、提高喷涂质量的思想。根据喷涂机器人实际工作的需要,提出两种喷涂机器人空间路径规划方法:一种是基于分片技术的喷涂机器人空间路径规划,该方法主要是应用于复杂曲面上的路径规划,将复杂曲面分片问题表示为一个带约束条件的单目标优化问题,并给出相应的分片算法,再建立每一片喷涂路径的评价函数,并以此为依据来规划喷涂路径,从而为获得更佳的优化轨迹并得到更好的喷涂效果提供了基础;另一种是基于点云切片技术的喷涂机器人空间路径规划,该方法通过设定切片方向和切片层数,对点云模型进行切片处理,得到切片多义线后对其平均采样,然后估算所有采样点的法向量,最后利用偏置算法获取喷涂机器人空间路径。实验结果表明,这两种方法都比较实用,且计算速度较快,能够在保证喷涂机器人喷涂效率的同时,达到更佳的喷涂效果。
     第三,针对实际工业生产中许多喷涂工件形状复杂,喷涂时会遇到多个喷涂面且各个喷涂面的法向量夹角都比较大的问题,提出了面向三维实体的喷涂机器人空间轨迹优化方法。利用实验方法建立一种简单的涂层累积速率数学模型并采用基于平面片连接图FPAG的曲面造型方法对三维实体进行分片;规划出每一片上的喷涂路径后,以离散点的涂层厚度与理想涂层厚度的方差为目标函数,在每一片上进行喷涂轨迹的优化,并按照两片交界处空间路径方向的不同分PA-PA、PA-PE、PE-PE三种情况研究了两片交界处的喷涂轨迹优化情况,仿真实验结果表明两片交界处的喷涂空间路径为PA-PA时涂层厚度均匀性最佳;采用哈密尔顿图形法表示各个分片上的喷涂轨迹优化组合问题,分别采用GA算法、ACO算法、PSO算法对其进行求解,并通过仿真实验验证了各个算法的可行性。最后,在自行设计的喷涂机器人离线编程实验平台上进行了喷涂实验,并对几种算法结果进行了比较。实验结果表明,提出的面向三维实体的喷涂机器人轨迹优化方法完全能满足涂层厚度均匀性的要求;而使用PSO算法虽然需要消耗少量的系统运算执行时间,但与其他算法相比更加节约喷涂时间,显著提高了喷涂效率。
     第四,针对范围在十几米内,各局部法向量方向差异不大的自由曲面或复杂曲面上的喷涂问题,提出了曲面上的喷涂机器人空间轨迹优化方法。首先研究了自由曲面上的喷涂轨迹优化方法:采用实验方法建立了表达式较简单的涂层累积速率模型后,通过分析喷涂过程中各个可控参数对喷涂效果的影响,建立自由曲面上涂层厚度数学模型;在此基础上生成喷涂机器人空间路径,得出轨迹优化设计是带约束条件的多目标优化问题,并选取时间最小和涂层厚度方差最小作为目标函数,应用带权无穷范数理想点法进行求解;仿真实验和喷涂实验表明,该算法完全符合预设的喷涂质量和喷涂效率的要求。其次,研究了曲面上的静电喷涂机器人轨迹优化问题,在利用实验方法得到静态喷涂涂料空间分布的径向厚度剖面函数后,推导出一种新型、实用的ESRB涂层累积模型:以某品牌汽车车身为喷涂对象进行静电喷涂实验研究,并对喷涂结果进行了分析和讨论。
Painting robot is a kind of important and advanced spray equipment. It is widely used in automotive manufacturing. The figure of a product and the tool parameters can strongly influence the quality of painting. In order to achieve the new spraying operation standards,new painting models and tool planning algorithms are active research for many years. This work is supported in part by the national natural science foundation program and in part by the high-tech research program of Jiangsu. The main work of this dissertation consists of four parts as follows:
     Firstly, due to the complex geometry of free-form surfaces, it is still a challenge to generate optimization trajectories of spray gun that satisfies paint uniformity requirements.And two methods of surface modeling are introduced. The triangular representation of a surface is introduced first. This paper discuss the construction of the flat patch adjacency graph (FPAG). Based on the FPAQ a merging algorithm is proposed to form big patches. Then another method of point cloud is discussed.The relative algorithms of point cloud slicing are deeply researched,including the determination of slicing thickness,the choice of slicing direction,the calculation of slicing date,the reconstruction of poly-lines etc.,so that the uniform slicing of point cloud is completed. The experimental results illustrate the feasibility andavailability of these algorithms.
     Secondly, two methods of tool path planning in spray forming processes are introduced. This paper proposes a tool path planning approach which optimizes the tool motion performance and the thickness uniformity. There are two steps in this approach. The first step partitions the part surface into flat patches based on the topology and normal directions.The second step determines the tool movement patterns and the sweeping directions for each flat patch. Based on the above twosteps, optimal tool paths can be calculated. Then another tool path planning method of point cloud is discussed. The point cloud data is obtained by scanning the surface of work piece, then slicing the point cloud data to estimate the normal vectors of the sampled points, so the tool path is formed through offsetting the distance between spray gun and work piece along the normal vectors. Experimental tests are carried out and the results validate the proposed approach.
     Thirdly, trajectory optimization of painting robot for3D solid is studied. A3D solid is divided into several patches by the evaluation function and trajectory optimization for each patch is performed. In order to satisfy the material uniformity requirements, optimization algorithms of the three different cases are developed to integrate the trajectories on the intersecting area of two patches. Tool trajectory for geometry-complicated parts are generated by partitioning them into individual surfaces,generating the trajectories for each partition, and then, interconnecting the trajectories from the different patches so as to minimize the overall path length. Three different solutions are presented to tool trajectory optimal integration problem.The first solution is based on genetic algorithms.The second one is based on ant colony optimization and the third one is based on particle swarm optimization. Experimental results demonstrate the effectiveness of the three methods and the quality of solutions that can be achieved.
     Finally, trajectory optimization of painting robot for surfaces is studied. Trajectory optimization of free-form surfaces is introduced firstly. Because the current paint deposition rate function is too complicated, the paint deposition rate function on a plane according to the experiment data is provided. The paint thickness function for free-form surfaces is also given. A multi-objective constraint optimization problem is formulated. An optimal tool trajectory with an optimal time and film quantity deviation is generated. And ideal point method is adopted here to calculate the values by iteration. Then the paint deposition rate function of electrostatic rotary bell applicator according to the experiment data is provided. The electrostatic spray painting experiment on automobile demonstrates the feasibility and availability of these optimization algorithms.
引文
[1]熊有伦.机器人学[M].北京:机械工业出版社,1993:6-8.
    [2]朱世强,王宣银.机器人技术及其应用[M].杭州:浙江大学出版社,2001:9-13.
    [3]王育哲.喷漆机器人在汽车车身涂装中的应用[J].中国涂料,2007,22(4):44-48.
    [4]张明.浅谈机器人喷涂的膜厚控制[J].现代涂料与涂装,2006(6):31-33.
    [5]刘宽信,朱小兰,陈云阁.机器人自动涂装应用工程研究[J].现代涂料与涂装,1995(2):15-20.
    [6]方丹丹,邓思豪,廖汉林.热喷涂机器人离线编程[J].软件导刊,2007(7):26-28.
    [7]石银文.快速发展的机器人自动喷涂技术[J].机器人技术与应用,2007(9):10-14.
    [8]王全福,刘进长.机器人的昨天、今天和明天[J].中国机械工程,2000,11(2):173-177.
    [9]李瑞峰.新一代工业机器人系列产品开发[J].机器人,2001,23(7):633-635.
    [10]张春生.喷漆机器人应用及发展策略[J].机器人技术与应用,1994,3:22-26.
    [11]张恩洲,韩军.多级计算机控制的喷漆机器人[J].江苏机械制造与自动化,1997,6:27-30.
    [12]冯川,孙增圻.机器人喷涂过程中的喷炬建模及仿真研究[J].机器人,2003,25(4):353-358.
    [13]潘沛霖,高学山,阎国荣.履带式磁吸附爬壁机器人喷漆机构的设计[J].机器人,1997(3):147-150.
    [14]刘淑良,赵言正,高学山等.喷砂、喷漆、测量用磁吸附爬壁机器人[J].高技术通讯,2000(9):85-88.
    [15]罗均,吕恬生,梁庆华.缆索涂装机器人喷涂机构的设计[J].机械设计,2001(1):27-28.
    [16]杨志永,张大卫,吴军.喷漆机械手优化设计及其计算扭矩控制[J].机床与液压,2003(5):52-55.
    [17]梅江平,杨志永,张大卫.喷漆机器人尺寸优化设计及控制系统总体规划[J].组合机床与自动化加工技术,2004(10):62-64.
    [18]张友兵,史旅华,田瑞庭等.汽车混流自动线顶喷漆机器人控制系统的开发和 应用[J].机床与液压,2005(8):34-37.
    [19]王燚,赵德安,王振滨等.喷漆机器人喷枪最优轨迹规划的研究[J].江苏理工大学学报:自然科学版,2001,22(5):55-59.
    [20]王振滨,赵德安,李医民等.喷漆机器人离线编程系统探讨[J].江苏理工大学学报:自然科学版,2000,21(5):78-82.
    [21]刁训娣,赵德安,李医民等.喷漆机器人喷枪轨迹设计及影响因素研究[J].机械科学与技术,2004(4):396-398.
    [22]王振滨.喷漆机器人最优轨迹设计与仿真[D].镇江,江苏大学硕士论文,2001.
    [23]Klein A.CAD-Based off-line programming of painting robots [J].Robotica,1987, 5(4):267-271.
    [24]Antonio J K.Optimal Trajectory Planning Problems for spray coating[C]. IEEE International Conference on Robotics and Automation, USA:Atlanta, 1993:2570-2577.
    [25]Antonio J K.Optimal Trajectory Planning Problems for spray coating [R].Puedue University, School of Electrical Engineering, Technical Report No.TR-EE-93-29, September.1993.
    [26]Ramabhadran R, Antonio J K.Planning Spatial Paths for Automated Spray Coating Applications[C].IEEE International Conference on Robotics and Automation, USA:Minneapolis,1996:1255-1260.
    [27]Ramabhadran R, Antonio J K. Fast Solution Techniques for a Class of Optimal Trajectory Planning Problems with Applications to Automated Spray Coating [J]. IEEE Transactions on Robotics and Automation,1997,13(4):519-530.
    [28]Ramabhadran R,Antonio J K.Fast Solution Techniques for a Class of Optimal Trajectory Planning Problems with Applications to Automated Spray Coating[R].Puedue University, School of Electrical Engineering, Technical Report No.TR-EE-95-9, March.1995.
    [29]Antonio J K, Ramabhadran R, Ling T L.A Framework for Trajectory Planning for Automated Spray Coating[J].International Journal of Robotics and Automation,1997,12(4):124-134.
    [30]Suh S H, Woo I K, Noh S K.Development of an automatic trajectory planning system (ATPS) for spray painting robots[C].IEEE International Conference on Robotics and Automation, USA:Sacramento,1991:1948-1955.
    [31]Zaki Aziza, Eskander Mona. Spray painting of a general three-dimensional surface[C]. IEEE/RSJ International Conference on Robotics and Automation, USA:San Francisco,2000:2172-2176.
    [32]Sheng W H, Xi N, Song M, Chen Y.Automated cad-guided robot path planning for spray painting of compound surfaces[C]. IEEE/RSJ International Conference On Intelligent Robots And Systems, Japan:Tankamutsa,2000:1918-1923.
    [33]Veljko Potkonjak, Goran S Dordevic, Dragan Kostic.Dynamics of anthropomorphic painting robot:Quality analysis and cost reduction [J].Robotics and Autonomous Systems,2000,32(2):17-38.
    [34]Wesley H.Huang.Optima line-sweep-based decompositions for coverage algorithms[C].Proceedings of the 2001 IEEE international conference on robotices and automation,Korea:Seoul,2001:27-32.
    [35]Sheng W H, Xi N.Graph-based surface merging in CAD-guided dimensional inspection of automotive parts[C]. Proceedings of the 2001 IEEE international conference on robotices and automation,Korea:Seoul,2001:3127-3132.
    [36]Chen H P, Sheng W H, Xi N, M. Song. Automated robot trajectory planning for spray painting of free form surfaces in automotive manufacturing[C]. IEEE International Conference on Robotics and Automation, USA:Washington DC, 2002:450-455.
    [37]Atkar N Prasad, Choset Howie, Rizzi A Alfred. Towards Optimal Coverage of 2-Dimensional Surfaces Embedded in R3:Choice of Start Curve[C].IEEE/RSJ International Conference on Intelligent Robots and Systems, USA:Las Vegas, 2003:3581-3587.
    [38]Sheng W H, Xi N, Chen H P.Suface partitioning in automated CAD guided tool planning for additive manufacturing [C].IEEE/RSJ International Conference On Intelligent Robots And Systems, USA:Las Vegas,2003:2072-2077.
    [39]Sheng W H, Chen H P, Xi N, Tan J D.Optimal tool path planning for compound surfaces in spray forming processes[C].IEEE International Conference on Robotics and Automation, USA:New Orleans,2004:45-50.
    [40]Chen H P, Xi N, Sheng W H,Chen Y F.Optimal spray gun trajectory planning with variational distribution for forming process[C].IEEE International Conference on Robotics and Automation, USA:New Orleans,2004:51-56.
    [41]Kyoung-Su Im,Ming-Chia Lai,Sheng-Tao John Yu.Simulation of spray transfer processes in electrostatic rotary bell sprayer[J]. Journal of fluids engineering,2004,126(5):449-456.
    [42]Chen H P, Xi N, Sheng W H, et al. Optimizing material distribution for tool trajectory generation in surface manufacturing[C].Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2005:1389-1394.
    [43]S.A.Colbert,R.A.Cairncross.A computer simulation for predicting electrostatic spray coating patterns[J].Powder technology,2005,151(3):77-86.
    [44]Conner C David, Greenfield Aaron, Atkar N Prasad, Rizzi A Alfred and Choset Howie. Paint Deposition Modeling for Trajectory Planning on Automotive Surfaces [J].IEEE Transactions on Automation Science and Engineering,2005, 2(4):381-392.
    [45]Atkar N Prasad, Greenfield Aaron, Conner C David, Choset Howie and Rizzi A Alfred. Hierarchical Segmentation of Surfaces Embedded in R3 for Auto-Body Painting[C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Spain:Barcelona,2005:574-579.
    [46]S.A.Colbert,R.A.Cairncross.A computer simulation for predicting electrostatic spray coating patterns[J].Powder Technology,2005,151 (5):77-86.
    [47]M Barletta, A Gisario, V Tagliaferri. Electrostatic spray deposition (ESD) of polymeric powders on thermoplastic (PA66) substrate[J]. Surface and Coatings Technology,2006,201(1):296-308.
    [48]Paul D.A.Jones,Stephen R.Duncan.Optirnal robot path for minimizing thermal variations in a spray deposition process[J].IEEE transactions on control systems technology,2007,15(1):1-11.
    [49]Zhao Shaoxing, Kazimierz Adamiak, G S Peter Castle.The implementation of poisson field analysis within FLUENT to model electrostatic liquid spraying[C]. Electrical and Computer Engineering,2007.Canadian Conference on 22-26 April 2007:1456-1459.
    [50]Camelia Matei Ghimbeu, Robert C van Landschoot, Joop Schoonman, et al. Tungsten trioxide thin films prepared by electrostatic spray deposition technique[J].Thin Solid Films,2007,515(13):5498-5504.
    [51]Li Jia,Xiao Jie,Huang Yinlun.Integrated process and product analysis:a multiscale approach to paint spray[J].American insititute of chemical engineers journal,2007,53(11):2841-2857.
    [52]Toshiyuki Sugimoto,Noriyuki Shirahata, Yoshio Higashiyama. Surface potential of insulating plate coated by metallic paint spray[C]. Industry applications conference,2007:438-443.
    [53]Chen H P,Thomas Fuhlbrigge.Automated industrial robot path planning for spray painting process:a review[C].4th IEEE conference on automation science and engineering,2008,USA:Washington DC:522-527.
    [54]Li Fazhong,Zhao de-an,Xie guihua.Trajectory optimization of spray painting robot based on adapted genetic algorithm [C]. International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2009,China,Changsha:907-910.
    [55]Xia wei,Wei Chunhua,Liao xiaoping.Surface segmentation based intelligent trajectory planning and control modeling for spray painting[C].Proceeding of the 2009 IEEE international conference on mechatronics and automation,2009,China,Changchun:4958-4963.
    [56]Li Xiongzi, Oyvind A. Landsnes,Chen Heping.Automatic trajectory generation for robotic painting application[C].41st International Symposium on Robotics and 2010 6th German Conference on Robotics,2010,German,Berlin:1-6.
    [57]Yu Shengrui,Cao Ligang.Modeling and prediction of paint film deposition rate for robotic spray painting[C].Proceedings of the 2011 IEEE international conference on mechatronics and automation,2011,China,Beijing:1445-1450.
    [58]Pal Johan From,Johan Gunnar,Jan Tommy Gravdahl.Optimal paint gun orientation in spray paint applications—experimental results[J].IEEE transaction on automation science and engineering,2011,8(2):438-442.
    [59]刁训娣,赵德安,李医民等.喷漆机器人喷枪轨迹离线优化方法[J].农机化研究,2004(1):93-97.
    [60]王振滨.喷漆机器人最优轨迹设计与仿真[D].镇江,江苏大学硕士论文,2001.
    [61]赵德安,陈伟,汤养.面向复杂曲面的喷涂机器人喷枪轨迹优化[J].江苏大学学报(自然科学版),2007,28(5):425-429.
    [62]陈伟,赵德安,汤养.自由曲面喷漆机器人喷枪轨迹优化[J].农业机械学报,2008,39(1):147-150.
    [63]冯川,孙增圻.机器人喷涂过程中的喷炬建模及仿真研究[J].机器人,2003,25(4):353-358.
    [64]张永贵,黄玉美,高峰等.喷漆机器人空气喷枪的新模型[J].机械工程学 报,2006,42(11):226-233.
    [65]张永贵,黄玉美,彭中波等.考虑动力学因素的喷漆机器人喷枪路径优化[J].机械科学与技术,2006,25(8):993-996.
    [66]张永贵.喷漆机器人若干关键技术研究[D].西安,西安理工大学博士论文,2008.
    [67]曾勇,龚俊,陆保印.面向复杂曲面的喷涂机器人喷枪路径的规划[J].机械科学与技术,2010(5):675-679.
    [68]曾勇,龚俊.面向自然二次曲面的喷涂机器人喷枪轨迹优化[J].中国机械工程,2011,22(3):282-290.
    [69]曾勇,龚俊,陆保印.面向直纹曲面的喷涂机器人喷枪轨迹优化[J].中国机械工程,2010,21(17):2083-2089.
    [70]周春烨,曾勇.面向球面的喷涂机器人经线喷涂轨迹优化[J].机械设计与制造,2010(11):130-132.
    [71]李发忠,赵德安,姬伟,等.面向凹凸结构曲面的喷漆机器人轨迹优化研究[J].江苏科技大学学报:自然科学版,2008,22(4):64-67.
    [72]Sheng Wei Hua,Xi Ning.Optimization in Automated surface inspection of stamped automotive parts[C].Proceedings of the 2002 IEEE/RSJ international conference on robots and systems,2002,Switzerland,Lausanne:1850-1855.
    [73]Sheng Wei Hua,Xi Ning,Song Mumin.CAD-guided sensor planning for dimensional inspection in automotive manufacturing[J].IEEE/ASME transactions on mechatronics,2003,8(9):372-380.
    [74]Sheng Wei Hua,Xi Ning.Viewpoint reduction in vision sensor planning for dimensional inspection[C].Proceedings of the 2003 IEEE international conference on robots intelligent systems and signal processing,2003,China,Changsha:249-254.
    [75]Chen Heping,Sheng Wei Hua.Transformative industrial robot programming in surface manufacturing[C].2011 IEEE international conference on robots and automation,2011,China,Shanghai:6059-6064.
    [76]陈雁,邵君奕,张传清等.喷涂机器人自动轨迹规划研究进展与展望[J].机械设计与制造,2010(2):149-152.
    [77]李文强.逆向工程中复杂曲面重构算法的研究与实现[D].乌鲁木齐,新疆大学 硕士论文,2005.
    [78]陈军,崔汉国,刘建军.复杂船体曲面NURBS造型技术的研究与实现[J].计算机工程,2005,31(1):201-202.
    [79]阙骋.喷漆机器人喷枪轨迹离线编程及仿真技术研究[D].镇江,江苏大学硕士论文,2005.
    [80]Chen Heping.A general framework for automated cad-guided optimal tool planning in surface manufacturing[D].USA:Michigan State,Ph.D dissertation,Michigan State University,2004.
    [81]K. A. Tarabanis. Path planning in the proteus rapid prototyping system[J]. Rapid Prototyping Journal,2001,7(5):241-252.
    [82]R.C.Luo,J.H.zou.Investigation of a linear 2-d planar motor based rapid tooling[C].IEEE International Conference on Robotics and Automation.2002,USA:Washington, DC:1471-1476.
    [83]孙玉文,刘伟军,王越超.基于三角网格曲面模型的刀位轨迹计算方法[J].机械工程学报,2002,38(10):50-53.
    [84]徐松,王剑英.曲面的自适应三角网格剖分[J].计算机辅助设计与图形学学报,2000,12(4):267-271.
    [85]孙殿柱,刘健,李延瑞等.三角网格曲面模型动态空间索引结构研究[J].中国机械工程,2009,20(13):1542-1546.
    [86]金涛,童水光.逆向工程技术[M].北京:机械工业出版社,2003:8-12.
    [87]刘伟军.快速成型技术及应用[M].北京:机械工业出版社,2005:3-6.
    [88]王婷,高东强.基于逆向工程的自由曲面模型重建技术[J].陕西科技大学学报,2011,29(5):73-76.
    [89]邾继贵,郭磊,林佳睿等.大型空间复杂曲面无干扰精密测量方法[J].光学学报,2010,30(12):3524-3529.
    [90]柯映林.反求工程CAD建模理论、方法和系统[M].北京:机械工程出版社,2005:50-61.
    [91]Kang M, Han C.Solving the rural postman problem using a genetic algorithm with a graph transformation[C]. Proceedings of the 1998 ACM symposium on applied computing,1998:356-360.
    [92]袁亚湘.非线性规划数值方法[M].上海科学技术出版社,1993:10-30.
    [93]杜培林,屠长河,王文平.点云模型上测地线的计算[J].计算机辅助设计与图形学学报,2006,18(3):438-442.
    [94]朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481.
    [95]姜寿山,Peter Eberhard.多边形和多面体顶点法矢的数值估计[J].计算机辅助设计与图形学学报,2002,14(8):763-767.
    [96]夏薇,王科荣,廖小平等.喷漆机器人虚拟示教系统中喷枪轨迹插补点位姿的算法及应用研究[J].现代制造工程,2009,(10):11-16.
    [97]杜群贵.三维实体有限元网格自动Delaunay剖分[J].华南理工大学学报(自然科学版),1996,24(9):46-49.
    [98]徐景辉,苑伟政,谢建兵等.一种从器件三维实体到工艺版图的MEMS CAD技术[J].中国机械工程,2008,19(1):80-84.
    [99]Goodman E D, Hoppensteradt L T W.A method for accurate simulation of robotic spray application using empirical parameterization[C]. In IEEE International Conference on Robotics and Automation, volume 2, Sacramento,USA,April 1991:1357-1368.
    [100]黄红选,韩继业.数学规划[M].清华大学出版社,2006:150-155.
    [101]Cook C, Schoenefeld D A, Wainwright R L.Finding rural postman tours[C]. Proceedings of the 1998 ACM symposium on applied computing,1998:318-326.
    [102]Kang M, Han C. Solving the rural postman problem using a genetic algorithm with a graph transformation[C]. Proceedings of the 1998 ACM symposium on applied computing,1998:356-360.
    [103]张文修,梁怡.遗传算法的数学基础[M].西安交通大学出版社,2000:6-11.
    [104]胡燕海,严隽琪,叶飞帆.基于遗传算法的混合流水车间构建方法[J].中国机械工程,2005,16(10):888-891.
    [105]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999:150-151.
    [106]段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2005:34-36.
    [107]谭皓,王金岩,何亦征等.一种基于子群杂交机制的粒子群算法求解旅行商问题[J].系统工程,2005,23(4):83-87.
    [108]Blane M M,Lei Z,Civi H.The 31 algorithm for fitting implicit polynomial curves and surfaces to data[C].IEEE Transaction on Pattern Analysis and Machine Intelligence,March 2000,22(3):298-313.
    [109]张福顺,张大卫.高速旋杯式静电喷涂雾化机理的研究[J].涂装工业,2003,33(12):21-23.
    [110]李诚铭.2006版新编喷涂新工艺新技术及喷涂设备应用实务全书[M].中国知识出版社,2006:1011-1094.
    [111]吴睿,张晓春,钱昱等.汽车静电喷涂工艺的改造[J].汽车工艺与材料,2012,(2):34-38.
    [112]阮宏慧,安艳松,张大卫.自动静电喷涂机喷雾图形搭接与运动设计[J]天津大学学报,2008,41(8):978-983.
    [113]张福顺.旋转式高速静电喷涂雾化机理的研究[D].天津,天津大学硕士毕业论文,2004.
    [114]王义.静电喷涂机器人的反求设计[D].天津,天津大学硕士毕业论文,2005.
    [115]Shrimpton J.S, Watkins A.P,Yule A.J, A Turbulent,Transient Charged Spray Model[C].Proceedings of the 7th International Conference on Liquid Atomization and Spray Systems,1997, Korea, Seoul:820-827.
    [116]Kevin R.J.Ellwood,J.Braslaw.A finite element model for an electrostatic bell spray[J] Journal of electrostatics,1998,45(1):2-23.
    [117]Hua Huang, Ming-Chai Lai. Simulation of Spray Transport from Rotary Cup Atomizer using KIVA-3V[C]. The 10th international KIVA user's group meeting, 2000, USA,Pasadena:256-280.
    [118]Kyoung-Su Im,Ming-Chia Lai.Spray characteristics on the electrostatic rotating bell applicator[J].KSME international journal,2003,17(12):2053-2065.
    [119]Steven A C.Numerical simulations of droplet trajectories from an electrostatic rotary-bell atomizer[D].USA,Doctor of Philosophy of Drexel University,2006.
    [120]李发忠,赵德安,姬伟等.喷涂机器人空间轨迹到关节轨迹的转换方法[J].农业机械学报,2010,41(11):198-201.
    [121]李菊,赵德安,沈惠平等.多喷枪协同式喷涂五轴混联机器人设计[J].农业机械学报,2012,43(4):216-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700