基于动态几何结构的可视媒体的建模与编辑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视觉是人类获取外部信息的最主要途径,承载视觉信息的媒体统称为可视媒体,具体包括图像、视频、数字几何等主要形式。真实的三维世界中充满着几何结构;可视媒体是外在世界的缩影,几何结构也普遍存在于可视媒体之中。可视媒体中的几何结构具有动态性,通常能在一定的约束条件下自由变化。动态几何结构对可视媒体的建模与编辑至关重要。研究几何结构必须满足的约束条件及其变化规律,有利于合理的可视媒体建模;分析可视媒体的内容如何随着几何结构的动态变化而改变,是进行可视媒体编辑的常用方法。
     本文围绕可视媒体中的动态几何结构,从动态几何结构的变化规律与变化过程中的不变性质入手,具体研究了立体纸雕结构的建模、基于Cage结构的图像变形、边缘结构敏感的图像滤波这三个可视媒体建模与编辑中的关键问题。论文的工作与创新点包括:
     研究了L型立体纸雕这一动态几何结构,提出了能够保证其可动性和稳定性的充分条件;基于这一条件,进而提出了一个自动算法,能够通过任意给定输入模型生成与之相符的L型立体纸雕结构。
     研究了V型立体纸雕这一动态几何结构,除了给出其可动性和稳定性的充分条件外,还提出了其不自交性和可封装性的闭式判定准则;基于这些充分条件和判定准则,进而实现了一个交互式的V型立体纸雕结构建模系统,支持实时的V型立体纸雕设计。
     针对基于Cage的图像动态变形中的不变量—重心坐标进行了研究,对经典的均值坐标提出了两种扩展:具有伪调和性的泊松坐标和能够进行高阶插值的三次均值坐标,并提出了基于Cage网络的图像变形方法,能够保证图像变形的C1连续性。
     提出了边缘结构敏感的混合域图像滤波方法。该方法通过对图像的子窗口内的局部滤波进行保持图像边缘结构的动态变换,结合一个多尺度优化框架将局部滤波的输出结果进行融合,获得全局的滤波输出。该方法快速鲁棒,能有效避免光环和边反转现象。
Vision is the most important way that human apperceive the world. The media thatcontains visual information is called visual media, including image, video, digital geom-etry, etc. Our world is full of geometric structures; since visual media is the projectionof the real world, geometric structures also exist widely in visual media. Most geometricstructures are dynamic, which means they can move under certain constraints. Dynam-ic geometric structures are essential to the modeling and editing process of visual media.Understanding what constraints that dynamic geometric structures should satisfy and howthey can move under these constraints, is important to visual media modeling; analysinghow dynamic geometric structures’ move afect visual media’s appearance, is also usefulto visual media editing.
     This paper focuses on studying the invariant properties of dynamic geometric struc-tures in visual media, particular in the following problems: pop-up structure modeling,cage-based image deformation, and edge-aware image filtering. The contribution of thispaper includes:
     It studied the geometric structure of L-style pop-ups, and proposed sufcient con-ditions for the foldability and stability of an L-style pop-up. Based on these condi-tions, an automatic algorithm was proposed to generate an L-style pop-up accord-ing to a given3d model.
     It studied the geometric structure of V-style pop-ups, and proposed sufcient con-ditions for the foldability and stability of a V-style pop-up, as well as closed-formcriteria for intersection-free and enclosing properties of a V-style pop-up. Based onthese conditions and criteria, it proposed an interactive system for V-style pop-upmodeling in real-time.
     It studied barycentric coordinates for cage-based image deformation. It generalizedthe classical mean value coordinates in two ways: it proposed the novel Poissoncoordinates which are pseudo-harmonic, and proposed the novel cubic mean valuecoordinates that interpolate both function values and gradients, which can be usedfor cage-network based image deformation with C1smoothness.
     It proposed a novel method for edge-aware image filtering in mixed-domain. Thismethod considers a bank of local filters in sub-windows, and merges the outputs of these local filters using a multi-scale optimization-based framework, to get anoverall output. This method is fast and robust, and is able to reduce halo and edge-reversal artifacts.
引文
[1] Twitter.2013. http://www.twitter.com.
    [2] Flickr.2013. http://www.flickr.com.
    [3] YouTube.2013. http://www.youtube.com.
    [4] Google3D Warehouse.2013. http://sketchup.google.com/3dwarehouse.
    [5] Gu X D, Yau S T. Computational conformal geometry. Somerville: International Press,2008.
    [6] Kilian M, Flo¨ry S, Chen Z, et al. Curved folding. ACM Transactions on Graphics,2008,27(3):Article75.
    [7] Bianchini M, Siliakus I, Aysta J. The paper architect. New York: Crown,2009.
    [8] Zhang S, Chen T, Zhang Y, et al. Vectorizing cartoon animations. IEEE Transactions onVisualization and Computer Graphics,2009,15(4):618–629.
    [9] Jacobson A, Baran I, Popovic′J, et al. Bounded biharmonic weights for real-time deformation.ACM Transactions on Graphics,2011,30(4):Article78.
    [10] Erlangen program.2013. http://en.wikipedia.org/wiki/Erlangen program.
    [11] Chatani M, Nakamura S, Ando N. Practice of origamic architecture and origami with personalcomputer. Tokyo: Kodansha,1987.
    [12] Siliakus I. http://ingrid–siliakus.exto.org.
    [13] Stormer G. http://webpages.charter.net/gstormer.
    [14] Birmingham D. Pop up! A manual of paper mechanisms. UK: Tarquin Publications,1997.
    [15] Carter D. The elements of pop-up. New York: Little Simon,1999.
    [16] Cheong C M, Zainodin H, Suzuki H. Origamic4: origamic architecture in the Cartesian coor-dinates system. Natick: A. K. Peters,2009.
    [17] Lee Y T, Tor S B, Soo E L. Mathematical modelling and simulation of pop-up books. Com-puters&Graphics,1996,20(1):21–31.
    [18] Glassner A. Interactive pop-up card design, part1. IEEE Computer Graphics and Applications,2002,22(1):79–86.
    [19] Glassner A. Interactive pop-up card design, part2. IEEE Computer Graphics and Applications,2002,22(2):74–85.
    [20] Hendrix S L, Eisenberg M A. Computer-assisted pop-up design for children: computationallyenriched paper engineering. Advanced Technology for Learning,2006,3(2):119–127.
    [21] Mitani J, Suzuki H. Computer aided design for origamic architecture models with polygonalrepresentation. Proceedings of CGI’04: the Computer Graphics International, Washington,D.C.: IEEE Computer Society,2004.93–99.
    [22] Hull T. On the mathematics of flat origamis. Congressus Numerantium,1994,100:215–224.
    [23] Demaine E, O’Rourke J. Geometric folding algorithms: linkages, origami, polyhedra. UK:Cambridge University Press,2007.
    [24] Tachi T. Origamizing polyhedral surfaces. IEEE Transactions on Visualization and ComputerGraphics,2009,16(2):298–311.
    [25] Mitani J, Suzuki H. Making papercraft toys from meshes using strip-based approximate un-folding. ACM Transactions on Graphics,2004,23(3):259–263.
    [26] Garland M, Heckbert P S. Surface simplification using quadric error metrics. Proceedingsof SIGGRAPH’97: the24th Annual Conference on Computer Graphics and Interactive Tech-niques, New York: ACM,1997.209–216.
    [27] Cohen J, Olano M, Manocha D. Appearance-preserving simplification. Proceedings of SIG-GRAPH’98: the25th Annual Conference on Computer Graphics and Interactive Techniques,New York: ACM,1998.115–122.
    [28] Wei J, Lou Y. Feature preserving mesh simplification using feature sensitive metric. Journalof Computer Science&Technology,2010,25(3):595–605.
    [29] Shatz I, Tal A, Leifman G. Paper craft models from meshes. The Visual Computer,2006,22(9):825–834.
    [30] Massarwi F, Gotsman C, Elber G. Papercraft models using generalized cylinders. Proceedingsof PG’07: the15th Pacific Conference on Computer Graphics and Applications, Washington,D.C.: IEEE Computer Society,2007.148–157.
    [31] Xu J, Kaplan C S, Mi X. Computer-generated papercutting. Proceedings of PG’07: the15th Pacific Conference on Computer Graphics and Applications, Washington, D.C.: IEEEComputer Society,2007.343–350.
    [32] Li Y, Yu J, Ma K L, et al.3D paper-cut modeling and animation. Computer Animation andVirtual Worlds,2007,18(4-5):395–403.
    [33] Uehara R, Teramoto S. The complexity of a pop-up book. Proceedings of the18th CanadianConference on Computational Geometry,2006.
    [34] Hara T, Sugihara K. Computer aided design of pop-up books with two-dimentional v-foldstructures. Proceedings of the7th Japan Conference on Computational Geometry and Graphs,2009.
    [35] Mitani J, Suzuki H, Uno H. Computer aided design for origamic architecture models with voxeldata structure. Transactions of Information Processing Society of Japan,2003,44(5):1372–1379.
    [36] Whiting E, Ochsendorf J, Durand F. Procedural modeling of structurally-sound masonry build-ings. ACM Transactions on Graphics,2009,28(5):Article112.
    [37] Lai Y K, Zhou Q Y, Hu S M, et al. Feature sensitive mesh segmentation. Proceedings of SPM’06: the ACM Symposium on Solid and Physical Modeling, New York: ACM,2006.17–25.
    [38] Shamir A. A survey on mesh segmentation techniques. Computer Graphics Forum,2008,27(6):1539–1556.
    [39] Lai Y K, Hu S M, Martin R R, et al. Rapid and efective segmentation of3D models usingrandom walks. Computer Aided Geometric Design,2009,26(6):665–679.
    [40] Julius D, Kraevoy V, Shefer A. D-charts: quasi-developable mesh segmentation. ComputerGraphics Forum,2005,24(3):581–590.
    [41] Yamauchi H, Gumhold S, Zayer R, et al. Mesh segmentation driven by Gaussian curvature.The Visual Computer,2005,21(8):659–668.
    [42] Wang C. Computing length-preserved free boundary for quasi-developable mesh segmentation.IEEE Transactions on Visualization and Computer Graphics,2008,14(1):25–36.
    [43] Mehra R, Zhou Q, Long J, et al. Abstraction of man-made shapes. ACM Transactions onGraphics,2009,28(5):Article137.
    [44] Belcastro S, Hull T. Modelling the folding of paper into three dimensions using afne trans-formations. Linear Algebra and Its Applications,2002,348:273–282.
    [45] Hiner M. Paper engineering. UK: Tarquin Publications,1985.
    [46] Hull T. Project origami: activities for exploring mathematics. Natick: A. K. Peters,2006.
    [47] O’Rourke J. How to fold it: the mathematics of linkages, origami, and polyhedra. UK: Cam-bridge University Press,2011.
    [48] Mitani J, Suzuki H. Computer aided design for180-degree flat fold origamic architecture withlattice-type cross sections. Journal of Graphic Science of Japan,2003,37(3):3–8.
    [49] Okamura S, Igarashi T. An interface for assisting the design and production of pop-up card.Lecture Notes in Computer Science,2009,5531(2):68–78.
    [50] Hufman D A. Curvature and creases: a primer on paper. IEEE Transactions on Computers,1976,25(10):1010–1019.
    [51] Wachspress E. A rational finite element basis. London: Academic Press,1975.
    [52] Meyer M, Lee H, Barr A, et al. Generalized barycentric coordinates on irregular polygons.Journal of Graphics Tools,2002,7(1):13–22.
    [53] Warren J. Barycentric coordinates for convex polytopes. Advances in Computational Mathe-matics,1996,6(1):97–108.
    [54] Warren J, Schaefer S, Hirani A N, et al. Barycentric coordinates for convex sets. Advances inComputational Mathematics,2007,27(3):319–338.
    [55] Floater M S. Mean value coordinates. Computer Aided Geometric Design,2003,20(1):19–27.
    [56] Hormann K, Floater M S. Mean value coordinates for arbitrary planar polygons. ACM Trans-actions on Graphics,2006,25(4):1424–1441.
    [57] Dyken C, Floater M S. Transfinite mean value interpolation. Computer Aided GeometricDesign,2009,26(1):117–134.
    [58] Bruvolla S, Floater M S. Transfinite mean value interpolation in general dimension. Journal ofComputational and Applied Mathematics,2010,233(7):1631–1639.
    [59] Lipman Y, Kopf J, Cohen-Or D, et al. GPU-assisted positive mean value coordinates for meshdeformations. Proceedings of SGP’07: the5th Eurographics Symposium on Geometry Pro-cessing,2007.117–123.
    [60] Schaefer S, Ju T, Warren J. A unified, integral construction for coordinates over closed curves.Computer Aided Geometric Design,2007,24(8-9):481–493.
    [61] Christ N H, Friedberg R, Lee T D. Weights of links and plaquettes in a random lattice. NuclearPhysics B,1982,240(3):337–346.
    [62] Pinkall U, Polthier K. Computing discrete minimal surfaces and their conjugates. Experimentalmathematics,1993,2(1):15–36.
    [63] Eck M, DeRose T D, Duchamp T, et al. Multiresolution analysis of arbitrary meshes. Proceed-ings of SIGGRAPH’95: the22nd Annual Conference on Computer Graphics and InteractiveTechniques,1995.173–182.
    [64] Belyaev A. On transfinite barycentric coordinates. Proceedings of SGP’06: the4th Euro-graphics Symposium on Geometry Processing,2006.89–99.
    [65] Shepard D. A two-dimensional interpolation function for irregularly-spaced data. Proceedingsof the23rd ACM National Conference,1968.517–524.
    [66] Caselles V, Morel J M, Sbert C. An axiomatic approach to image interpolation. IEEE Trans-actions on Image Processing,1998,7(3):376–386.
    [67] Gordon W J, Wixom J A. Pseudo-harmonic interpolation on convex domains. SIAM Journalon Numerical Analysis,1974,11(5):909–933.
    [68] Manson J, Li K, Schaefer S. Positive gordon-wixom coordinates. Computer Aided Design,2011,43(11):1422–1426.
    [69] Hormann K, Sukumar N. Maximum entropy coordinates for arbitrary polytopes. ComputerGraphics Forum,2008,27(5):1513–1520.
    [70] Manson J, Schaefer S. Moving least squares coordinates. Computer Graphics Forum,2010,29(5):1517–1524.
    [71] Langer T, Seidel H P. Higher order barycentric coordinates. Computer Graphics Forum,2008,27(2):459–466.
    [72] Weber O, Poranne R, Gotsman C. Biharmonic coordinates. Computer Graphics Forum,2012,31(8):2409–2422.
    [73] Zeev N. Conformal mapping. New York: Dover,1952.
    [74] Polyanin A D. Handbook of linear partial diferential equations for engineers and scientists.London: Chapman&Hall/CRC,2002.
    [75] Perona P, Malik J. Scale-space and edge detection using anisotropic difusion. IEEE Transac-tions on Patern Analysis and Machine Intelligence,1990,12(7):629–639.
    [76] Tomasi C, Manduchi R. Bilateral filtering for gray and color images. Proceedings of ICCV’98: the6th International Conference on Computer Vision, Washington, D.C.: IEEE ComputerSociety,1998.839–846.
    [77] Fattal R, Lischinski D, Werman M. Gradient domain high dynamic range compression. ACMTransactions on Graphics,2002,21(3):249–256.
    [78] Farbman Z, Fattal R, Lischinski D, et al. Edge-preserving decompositions for multi-scale toneand detail manipulation. ACM Transactions on Graphics,2008,27(3):Article67.
    [79] Fattal R. Edge-avoiding wavelets and their applications. ACM Transactions on Graphics,2009,28(3):Article22.
    [80] Subr K, Soler C, Durand F. Edge-preserving multiscale image decomposition based on localextrema. ACM Transactions on Graphics,2009,28(5):Article147.
    [81] Paris S, Hasinof S W, Kautz J. Local Laplacian filters: edge-aware image processing with aLaplacian pyramid. ACM Transactions on Graphics,2011,30(4):Article68.
    [82] Gastal E S L, Oliveira M M. Domain transform for edge-aware image and video processing.ACM Transactions on Graphics,2011,30(4):Article69.
    [83] Aubert G, Kornprobst P. Mathematical problems in image processing: partial diferential equa-tions and the calculus of variations. Springer-Verlag,2006.
    [84] Tumblin J, Turk G. LCIS: a boundary hierarchy for detail-preserving contrast reduction. Pro-ceedings of SIGGRAPH’99: the24th Annual Conference on Computer Graphics and Interac-tive Techniques, New York: ACM,1999.83–90.
    [85] Weiss B. Fast median and bilateral filtering. ACM Transactions on Graphics,2006,25(3):519–526.
    [86] Chen J, Paris S, Durand F. Real-time edge-aware image processing with the bilateral grid.ACM Transactions on Graphics,2007,26(3):Article103.
    [87] Paris S, Durand F. A fast approximation of the bilateral filter using a signal processing ap-proach. International Journal of Computer Vision,2009,81(1):24–52.
    [88] Yang Q, Tan K H, Ahuja N. Real-time O(1) bilateral filtering. Proceedings of IEEE Conferenceon Computer Vision and Pattern Recognition,2009.557–564.
    [89] Baek J, Jacobs D E. Accelerating spatially varying Gaussian filters. ACM Transactions onGraphics,2010,29(6):Article169.
    [90] Durand F, Dorsey J. Fast bilateral filtering for the display of high-dynamic-range images. ACMTransactions on Graphics,2002,21(3):257–266.
    [91] Choudhury P, Tumblin J. The trilateral filter for high contrast images and meshes. Technicalreport, ACM SIGGRAPH Courses,2005.
    [92] Fattal R, Agrawala M, Rusinkiewicz S. Multiscale shape and detail enhancement from multi-light image collections. ACM Transactions on Graphics,2007,26(3):Article51.
    [93] Paris S, Kornprobst P, Tumblin J, et al. Bilateral filtering: theory and applications. Foundationsand Trends in Computer Graphics and Vision,2009,4(1):1–73.
    [94] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spec-trum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Societyof London A, volume454,1998.903–995.
    [95] Li Y, Sharan L, Adelson E H. Compressing and companding high dynamic range images withsubband architectures. ACM Transactions on Graphics,2005,24(3):836–844.
    [96] Aubry M, Paris S, Hasinof S W, et al. Fast and robust pyramid-based image processing.Technical report, MIT,2011.
    [97] Pe′rez P, Gangnet M, Blake A. Poisson image editing. ACM Transactions on Graphics,2003,22(3):313–318.
    [98] Levin A, Zomet A, Peleg S, et al. Seamless image stitching in the gradient domain. Proceedingsof ECCV’04: the8th European Conference on Computer Vision,2004.377–389.
    [99] Agarwala A, Dontcheva M, Agrawala M, et al. Interactive digital photomontage. ACM Trans-actions on Graphics,2004,23(3):294–302.
    [100] Agarwala A. Efcient gradient-domain compositing using quadtrees. ACM Transactions onGraphics,2007,26(3):Article94.
    [101] Agrawal A, Raskar R. Gradient domain manipulation techniques in vision and graphics. Tech-nical report, IEEE ICCV Courses,2007.
    [102] McCann J, Pollard N S. Real-time gradient-domain painting. ACM Transactions on Graphics,2008,27(3):Article93.
    [103] Bhat P, Zitnick C L, Cohen M, et al. GradientShop: a gradient-domain optimization frameworkfor image and video filtering. ACM Transactions on Graphics,2010,29(2):Article10.
    [104] Bhat P, Curless B, Cohen M, et al. Fourier analysis of the2D screened poisson equationfor gradient domain problems. Proceedings of ECCV’08: the8th European Conference onComputer Vision. Springer-Verlag,2008.114–128.
    [105] Levin A, Lischinski D, Weiss Y. A closed-form solution to natural image matting. IEEETransactions on Pattern Analysis and Machine Intelligence,2008,30(2):228–242.
    [106] He K, Sun J, Tang X. Single image haze removal using dark channel prior. Proceedings ofIEEE Conference on Computer Vision and Pattern Recognition,2009.1956–1963.
    [107] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Phys-ica D: Nonlinear Phenomena,1992,60(1-4):259–268.
    [108] Xu L, Lu C, Xu Y, et al. Image smoothing via L0gradient minimization. ACM Transactionson Graphics,2011,30(6):Article174.
    [109] Wright S J. Sparse optimization methods. Proceedings of the Conference on Advanced Meth-ods and Perspectives in Nonlinear Optimization and Control,2010.
    [110] Winnemo¨ller H, Olsen S C, Gooch B. Real-time video abstraction. ACM Transactions onGraphics,2006,25(3):1221–1226.
    [111] Burt P J, Adelson E H. The Laplacian pyramid as a compact image code. IEEE Transactionson Communication,1983,31(4):532–540.
    [112] Cho S, Lee S. Fast motion deblurring. ACM Transactions on Graphics,2009,28(5):Article145.
    [113] Lischinski D, Farbman Z, Uyttendaele M, et al. Interactive local adjustment of tonal values.ACM Transactions on Graphics,2006,25(3):646–653.
    [114] DeCarlo D, Santella A. Stylization and abstraction of photographs. ACM Transactions onGraphics,2002,21(3):769–776.
    [115] FFTW. http://www.ftw.org.
    [116] CUFFT. http://developer.nvidia.com/cuft.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700