抑制性神经元上兴奋性突触的长时程可塑性依赖于靶细胞类型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经元的电活动能对皮层神经元环路中兴奋性突触传递效率进行长时程修饰。本文中我们报告这种长时程突触可塑性具有靶细胞类型依赖的特性。在大鼠体感皮层(somatosensory cortex)第二/三层(layer 2/3),锥体细胞(pyramidal cell,PC)可同时在快速放电(fast spiking,FS)和低阈值放电(low-threshold spiking,LTS)中间神经元上形成突触连接。突触前后神经元不同时序(timing)的相关性放电(correlated spiking)可以长时程增强(long-term potentiation,LTP)或减弱(long-term depression,LTD)锥体细胞到LTS细胞的突触(PC-LTS)传递。然而,不同时序和频率的相关性放电只能在锥体细胞到FS细胞的突触(PC-FS)上产生LTD。同时我们发现:相比PC-LTS突触, PC-FS突触只具有极低水平的NMDA(N-methyl-D-aspartate)亚型谷氨酸受体。进一步研究表明:在PC-LTS突触上,LTP的产生依赖NMDA受体的激活;而在两种突触上产生LTD需要代谢型(metabotropic)谷氨酸受体的激活,与NMDA受体没有关系。这种靶细胞类型特异的突触可塑性为皮层局部环路信息的差异性处理和储存提供了基础。
Spiking activity can induce persistent modification of excitatory synapses in cortical circuits. Here we report that such modification exhibits target cell-dependent properties. In layer 2/3 of the somatosensory cortex, the pyramical cell (PC) forms divergent synapses on fast spiking (FS) and low-threshold spiking (LTS) interneurons. Correlated pre- and postsynaptic spiking induced long-term potentiation (LTP) or depression (LTD) at PC-LTS synapses, depending on the timing of pre/post spiking. However, regardless the timing and frequency of spiking, correlated activity induced only LTD at PC-FS synapses, which have a much lower level of N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) than that of PC-LTS synapses. Furthermore, activation of NMDARs was required for LTP at PC-LTS synapses, whereas activation of metabotropic glutamate receptors (mGluRs) rather than NMDARs was required for LTD of both PC-LTS and PC-FS synapses. This target cell-specific synaptic plasticity allows for differential processing and storage of information in cortical local circuits.
引文
1. Zhang, L. I. & Poo, M. M. Electrical activity and development of neural circuits. Nat Neurosci 4 Suppl, 1207-14 (2001).
    2. Song, S. & Abbott, L. F. Cortical development and remapping through spike timing-dependent plasticity. Neuron 32, 339-50 (2001).
    3. Goodman, C. S. & Shatz, C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72 Suppl, 77-98 (1993) .
    4. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-9 (1993).
    5. Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23, 649-711 (2000).
    6. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213-5 (1997).
    7. Bi, G. Q. & Poo, M. M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18, 10464-72 (1998).
    8. Zhang, L. I., Tao, H. W., Holt, C. E., Harris, W. A. & Poo, M. A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37-44 (1998).
    9. Debanne, D., Gahwiler, B. H. & Thompson, S. M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol 507 ( Pt 1), 237-47 (1998).
    10. Bell, C. C., Han, V. Z., Sugawara, Y. & Grant, K. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387, 278-81 (1997).
    11. Feldman, D. E. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27, 45-56 (2000).
    12. Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M. M. & Kato, K. Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408, 584-8 (2000).
    13. Froemke, R. C. & Dan, Y. Spike-timing-dependent synaptic modification inducedby natural spike trains. Nature 416, 433-8 (2002).
    14. Tzounopoulos, T., Kim, Y., Oertel, D. & Trussell, L. O. Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci 7, 719-25 (2004).
    15. Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nat Neurosci 3 Suppl, 1178-83 (2000).
    16. Dan, Y. & Poo, M. M. Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 86, 1033-48 (2006).
    17. Fregnac, Y. & Shulz, D. E. Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning. J Neurobiol 41, 69-82 (1999).
    18. Schuett, S., Bonhoeffer, T. & Hubener, M. Pairing-induced changes of orientation maps in cat visual cortex. Neuron 32, 325-37 (2001).
    19. Yao, H. & Dan, Y. Stimulus timing-dependent plasticity in cortical processing of orientation. Neuron 32, 315-23 (2001).
    20. Vislay-Meltzer, R. L., Kampff, A. R. & Engert, F. Spatiotemporal specificity of neuronal activity directs the modification of receptive fields in the developing retinotectal system. Neuron 50, 101-14 (2006).
    21. Mu, Y. & Poo, M. M. Spike timing-dependent LTP/LTD mediates visual experience-dependent plasticity in a developing retinotectal system. Neuron 50, 115-25 (2006).
    22. Jackson, A., Mavoori, J. & Fetz, E. E. Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444, 56-60 (2006).
    23. Pouille, F. & Scanziani, M. Routing of spike series by dynamic circuits in the hippocampus. Nature 429, 717-23 (2004).
    24. Benardo, L. S. & Wong, R. K. S. Inhibition in the cortical network. In: The cortical neuron (eds. Gutnick, M. J. & Mody, I.) (Oxford, UK, 1995).
    25. Hendry, S. H., Schwark, H. D., Jones, E. G. & Yan, J. Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 7, 1503-19 (1987).
    26. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5, 793-807 (2004).
    27. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nat Neurosci 1, 279-85 (1998).
    28. Koester, H. J. & Johnston, D. Target cell-dependent normalization of transmitter release at neocortical synapses. Science 308, 863-6 (2005).
    29. Bacci, A., Rudolph, U., Huguenard, J. R. & Prince, D. A. Major differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses. J Neurosci 23, 9664-74 (2003).
    30. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7, 476-86 (1997).
    31. Sjostrom, P. J., Turrigiano, G. G. & Nelson, S. B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149-64 (2001).
    32. Bender, V. A., Bender, K. J., Brasier, D. J. & Feldman, D. E. Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. J Neurosci 26, 4166-77 (2006).
    33. Egger, V., Feldmeyer, D. & Sakmann, B. Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2, 1098-105 (1999).
    34. Coutinho, V. & Knopfel, T. Metabotropic glutamate receptors: electrical and chemical signaling properties. Neuroscientist 8, 551-61 (2002).
    35. Lopez-Bendito, G., Shigemoto, R., Fairen, A. & Lujan, R. Differential distribution of group I metabotropic glutamate receptors during rat cortical development. Cereb Cortex 12, 625-38 (2002).
    36. Sjostrom, P. J., Turrigiano, G. G. & Nelson, S. B. Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39, 641-54 (2003).
    37. McBain, C. J. & Fisahn, A. Interneurons unbound. Nat Rev Neurosci 2, 11-23 (2001).
    38. Froemke, R. C., Poo, M. M. & Dan, Y. Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434, 221-5 (2005).
    39. Letzkus, J. J., Kampa, B. M. & Stuart, G. J. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 26, 10420-9 (2006).
    40. Sjostrom, P. J. & Hausser, M. A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51,227-38 (2006).
    41. Franks, K. M. & Sejnowski, T. J. Complexity of calcium signaling in synaptic spines. Bioessays 24, 1130-44 (2002).
    42. Neveu, D. & Zucker, R. S. Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron 16, 619-29 (1996).
    43. Nyiri, G., Stephenson, F. A., Freund, T. F. & Somogyi, P. Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus. Neuroscience 119, 347-63 (2003).
    44. Goldberg, J. H., Tamas, G., Aronov, D. & Yuste, R. Calcium microdomains in aspiny dendrites. Neuron 40, 807-21 (2003).
    45. Kaiser, K. M., Lubke, J., Zilberter, Y. & Sakmann, B. Postsynaptic calcium influx at single synaptic contacts between pyramidal neurons and bitufted interneurons in layer 2/3 of rat neocortex is enhanced by backpropagating action potentials. J Neurosci 24, 1319-29 (2004).
    46. Schinder, A. F., Berninger, B. & Poo, M. Postsynaptic target specificity of neurotrophin-induced presynaptic potentiation. Neuron 25, 151-63 (2000).
    47. Whittaker, V. P. Thirty years of synaptosome research. J Neurocytol 22, 735-42 (1993).
    48. Vrensen, G. & Cardozo, J. N. Changes in size and shape of synaptic connections after visual training: an ultrastructural approach of synaptic plasticity. Brain Res 218, 79-97 (1981).
    49. Murthy, V. N., Schikorski, T., Stevens, C. F. & Zhu, Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 673-82 (2001).
    50. Angulo, M. C., Rossier, J. & Audinat, E. Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. J Neurophysiol 82, 1295-302 (1999).
    51. Ali, A. B., Deuchars, J., Pawelzik, H. & Thomson, A. M. CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices. J Physiol 507 ( Pt 1), 201-17 (1998).
    52. Christie, B. R., Franks, K. M., Seamans, J. K., Saga, K. & Sejnowski, T. J. Synaptic plasticity in morphologically identified CA1 stratum radiatum interneurons and giant projection cells. Hippocampus 10, 673-83 (2000).
    53. Cowan, A. I., Stricker, C., Reece, L. J. & Redman, S. J. Long-term plasticity at excitatory synapses on aspinous interneurons in area CA1 lacks synaptic specificity. J Neurophysiol 79, 13-20 (1998).
    54. Laezza, F., Doherty, J. J. & Dingledine, R. Long-term depression in hippocampal interneurons: joint requirement for pre- and postsynaptic events. Science 285, 1411-4 (1999).
    55. Lamsa, K., Heeroma, J. H. & Kullmann, D. M. Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination. Nat Neurosci 8, 916-24 (2005).
    56. Lei, S. & McBain, C. J. Distinct NMDA receptors provide differential modes of transmission at mossy fiber-interneuron synapses. Neuron 33, 921-33 (2002).
    57. Maccaferri, G., Toth, K. & McBain, C. J. Target-specific expression of presynaptic mossy fiber plasticity. Science 279, 1368-70 (1998).
    58. Mahanty, N. K. & Sah, P. Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394, 683-7 (1998).
    59. McMahon, L. L. & Kauer, J. A. Hippocampal interneurons express a novel form of synaptic plasticity. Neuron 18, 295-305 (1997).
    60. Perez, Y., Morin, F. & Lacaille, J. C. A hebbian form of long-term potentiation dependent on mGluR1a in hippocampal inhibitory interneurons. Proc Natl Acad Sci U S A 98, 9401-6 (2001).
    61. Toth, K., Suares, G., Lawrence, J. J., Philips-Tansey, E. & McBain, C. J. Differential mechanisms of transmission at three types of mossy fiber synapse. J Neurosci 20, 8279-89 (2000).
    62. Geiger, J. R., Lubke, J., Roth, A., Frotscher, M. & Jonas, P. Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18, 1009-23 (1997).
    63. Miles, R. Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro. J Physiol 428, 61-77 (1990).
    1. Douglas, R. J., Martin, K. A. C. & Whitteridge, D. A canonical microcircuit for neocortex. Neural Computation 1, 480-8 (1989).
    2. Douglas, R. J., Markram, H. & Martin, K. A. C. Neocortex: The Synaptic Organisation of the Brain (ed. Shepherd, G. M.) (Oxford University Press, New York/Oxford, 2004).
    3. Jones, E. G. Cellular Components of the Cerebral Cortex (eds. Peters, A. & Jones, E. G.) (Plenum, New York, 1984).
    4. DeFelipe, J. & Farinas, I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39, 563-607 (1992).
    5. White, E. L. Cortical Circuits. Synaptic Organization of the Cerebral Cortex (Birkhauser, Boston, 1989).
    6. Beaulieu, C. Numerical data on neocortical neurons in adult rat, with special reference to the GABA population. Brain Res 609, 284-92 (1993).
    7. Ren, J. Q., Aika, Y., Heizmann, C. W. & Kosaka, T. Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons. Exp Brain Res 92, 1-14 (1992).
    8. Peters, A. & Sethares, C. Organization of pyramidal neurons in area 17 of monkey visual cortex. J Comp Neurol 306, 1-23 (1991).
    9. Toledo-Rodriguez, M., Gupta, A., Wang, Y., Wu, C. Z. & Markram, H. The Handbook of Brain Theory and Neural Networks. (ed. Arbib, M. A.) (MIT Press, Cambridge, Massachusetts, 2003).
    10. Lund, J. S. Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta). J Comp Neurol 147, 455-96 (1973).
    11. LeVay, S. Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi preparations. J Comp Neurol 150, 53-85 (1973).
    12. Feldmeyer, D., Lubke, J., Silver, R. A. & Sakmann, B. Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J Physiol 538, 803-22 (2002).
    13. Thomson, A. M. Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro. J Physiol 502 ( Pt 1), 131-47 (1997).
    14. Thomson, A. M., West, D. C., Wang, Y. & Bannister, A. P. Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. Cereb Cortex 12, 936-53 (2002).
    15. Bannister, N. J., Nelson, J. C. & Jack, J. J. Excitatory inputs to spiny cells in layers 4 and 6 of cat striate cortex. Philos Trans R Soc Lond B Biol Sci 357, 1793-808 (2002).
    16. Stratford, K. J., Tarczy-Hornoch, K., Martin, K. A., Bannister, N. J. & Jack, J. J. Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature 382, 258-61 (1996).
    17. Markram, H., Lubke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol 500 ( Pt 2), 409-40 (1997).
    18. Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat Neurosci 9, 534-42 (2006).
    19. Letzkus, J. J., Kampa, B. M. & Stuart, G. J. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 26, 10420-9 (2006).
    20. Sjostrom, P. J. & Hausser, M. A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51, 227-38 (2006).
    21. Yoshimura, Y., Dantzker, J. L. & Callaway, E. M. Excitatory cortical neurons form fine-scale functional networks. Nature 433, 868-73 (2005).
    22. Kampa, B. M., Letzkus, J. J. & Stuart, G. J. Cortical feed-forward networks for binding different streams of sensory information. Nat Neurosci 9, 1472-3 (2006).
    23. Peters, A. Synaptic Functions (eds. Edelman, G. M., Gall, W. E. & Cowan, W. M.) (Wiley, New York, 1987).
    24. Fairen, A., DeFelipe, J. & Regidor, J. Cellular Components of the Cerebral Cortex (eds. Peters, A. & Jones, E. G.) (Plenum, New York, 1984).
    25. DeFelipe, J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in theneocortex. J Chem Neuroanat 14, 1-19 (1997).
    26. Somogyi, P., Tamas, G., Lujan, R. & Buhl, E. H. Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26, 113-35 (1998).
    27. DeFelipe, J. Cortical interneurons: from Cajal to 2001. Prog Brain Res 136, 215-38 (2002).
    28. DeFelipe, J. Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cereb Cortex 3, 273-89 (1993).
    29. Cauli, B. et al. Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 17, 3894-906 (1997).
    30. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273-8 (2000).
    31. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7, 476-86 (1997).
    32. McBain, C. J. & Fisahn, A. Interneurons unbound. Nat Rev Neurosci 2, 11-23 (2001).
    33. Thomson, A. M. & Deuchars, J. Temporal and spatial properties of local circuits in neocortex. Trends Neurosci 17, 119-26 (1994).
    34. Freund, T. F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347-470 (1996).
    35. Steriade, M. Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101, 243-76 (2000).
    36. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5, 793-807 (2004).
    37. Gilbert, C. D. Circuitry, architecture, and functional dynamics of visual cortex. Cereb Cortex 3, 373-86 (1993).
    38. Somogyi, P. Neuronal Mechanisms of Visual Perception (eds. Lamm, D. K. & Gilbert, C. D.) (Portfolio, Woodlands, Texas, 1989).
    39. Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z. & Markram, H. Anatomical, physiological, molecular and circuit properties of nest basket cells inthe developing somatosensory cortex. Cereb Cortex 12, 395-410 (2002).
    40. Marin-Padilla, M. Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. Brain Res 14, 633-46 (1969).
    41. Cajal, S. R. Histology Due Systeme Nerveux de Homme et des Vertebrates (Maloine, Paris, 1909).
    42. Kisvarday, Z. F. & Eysel, U. T. Cellular organization of reciprocal patchy networks in layer III of cat visual cortex (area 17). Neuroscience 46, 275-86 (1992).
    43. Szentagothai, J. Central Processing of Visual Information, B. Visual Centers in the Brain (ed. Jung, R.) (Springer, Berlin, 1973).
    44. Kisvarday, Z. F., Martin, K. A., Whitteridge, D. & Somogyi, P. Synaptic connections of intracellularly filled clutch cells: a type of small basket cell in the visual cortex of the cat. J Comp Neurol 241, 111-37 (1985).
    45. Somogyi, P. A specific 'axo-axonal' interneuron in the visual cortex of the rat. Brain Res 136, 345-50 (1977).
    46. Fairen, A. & Valverde, F. A specialized type of neuron in the visual cortex of cat: a Golgi and electron microscope study of chandelier cells. J Comp Neurol 194, 761-79 (1980).
    47. Ganter, P., Szucs, P., Paulsen, O. & Somogyi, P. Properties of horizontal axo-axonic cells in stratum oriens of the hippocampal CA1 area of rats in vitro. Hippocampus 14, 232-43 (2004).
    48. Wang, Y. et al. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J Physiol 561, 65-90 (2004).
    49. Braitenberg, V. & Schüz, A. Cortex: Statistics and Geometry of Neural Connectivity (Springer, Heidelberg, 1998).
    50. Peters, A. Cellular Components of the Cerebral Cortex (eds. Peters, A. & Jones, E. G.) (Plenum, New York, 1984).
    51. Peters, A. & Harriman, K. M. Enigmatic bipolar cell of rat visual cortex. J Comp Neurol 267, 409-32 (1988).
    52. Peters, A. The axon terminals of vasoactive intestinal polypeptide (VIP)-containing bipolar cells in rat visual cortex. J Neurocytol 19, 672-85 (1990).
    53. Bayraktar, T. et al. Co-localization of vasoactive intestinal polypeptide, gamma-aminobutyric acid and choline acetyltransferase in neocortical interneurons of the adult rat. Brain Res 757, 209-17 (1997).
    54. DeFelipe, J., Hendry, S. H., Hashikawa, T., Molinari, M. & Jones, E. G. A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience 37, 655-73 (1990).
    55. Somogyi, P. & Cowey, A. Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey. J Comp Neurol 195, 547-66 (1981).
    56. Somogyi, P. & Cowey, A. Cellular Components of the Cerebral Cortex (eds. Peters, A. & Jones, E. G.) (Plenum, New York, 1984).
    57. Jones, E. G. Cellular Components of the Cerebral Cortex (eds. Peters, A. & Jones, E. G.) (Plenum, New York, 1984).
    58. Gray, E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93, 420-33 (1959).
    59. Peters, A. & Jones, E. G. Classification of cortical neurons (eds. Peters, A. & Jones, E. G.) (Plenum Press, New York, 1984).
    60. Feldman, M. L. Morphology of the neocortical pyramidal neuron (eds. Peters, A. & Jones, E. G.) (Plenum Press, New York, 1984).
    61. Trevelyan, A. J. & Jack, J. Detailed passive cable models of layer 2/3 pyramidal cells in rat visual cortex at different temperatures. J Physiol 539, 623-36 (2002).
    62. Megias, M., Emri, Z., Freund, T. F. & Gulyas, A. I. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527-40 (2001).
    63. Buhl, E. H. et al. Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. J Neurophysiol 71, 1289-307 (1994).
    64. Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75-8 (1995).
    65. Miles, R., Toth, K., Gulyas, A. I., Hajos, N. & Freund, T. F. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16, 815-23 (1996).
    66. Gulledge, A. T. & Stuart, G. J. Excitatory actions of GABA in the cortex. Neuron37, 299-309 (2003).
    67. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338-41 (1999).
    68. Chance, F. S., Abbott, L. F. & Reyes, A. D. Gain modulation from background synaptic input. Neuron 35, 773-82 (2002).
    69. Mitchell, S. J. & Silver, R. A. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38, 433-45 (2003).
    70. Trevelyan, A. J. & Watkinson, O. Does inhibition balance excitation in neocortex? Prog Biophys Mol Biol 87, 109-43 (2005).
    71. Buhl, E. H., Halasy, K. & Somogyi, P. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368, 823-8 (1994).
    72. Thomson, A. M., West, D. C., Hahn, J. & Deuchars, J. Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. J Physiol 496 ( Pt 1), 81-102 (1996).
    73. Tamas, G., Lorincz, A., Simon, A. & Szabadics, J. Identified sources and targets of slow inhibition in the neocortex. Science 299, 1902-5 (2003).
    74. Benardo, L. S. Separate activation of fast and slow inhibitory postsynaptic potentials in rat neocortex in vitro. J Physiol 476, 203-15 (1994).
    75. Thomson, A. M. & Destexhe, A. Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices. Neuroscience 92, 1193-215 (1999).
    76. Kim, U., Sanchez-Vives, M. V. & McCormick, D. A. Functional dynamics of GABAergic inhibition in the thalamus. Science 278, 130-4 (1997).
    77. Bowery, N. G. et al. International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 54, 247-64 (2002).
    78. Dutar, P. & Nicoll, R. A. A physiological role for GABAB receptors in the central nervous system. Nature 332, 156-8 (1988).
    79. Fritschy, J. M. et al. GABAB-receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localization. Eur J Neurosci 11, 761-8 (1999).
    80. Kulik, A. et al. Distinct localization of GABA(B) receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus. Eur J Neurosci 15, 291-307 (2002).
    81. Li, J. L. et al. Immunocytochemical localization of GABA(B) receptors in mesencephalic trigeminal nucleus neurons in the rat. Neurosci Lett 315, 93-7 (2001).
    82. Lopez-Bendito, G. et al. Expression and distribution of metabotropic GABA receptor subtypes GABABR1 and GABABR2 during rat neocortical development. Eur J Neurosci 15, 1766-78 (2002).
    83. Mody, I., De Koninck, Y., Otis, T. S. & Soltesz, I. Bridging the cleft at GABA synapses in the brain. Trends Neurosci 17, 517-25 (1994).
    84. Wonders, C. P. & Anderson, S. A. The origin and specification of cortical interneurons. Nat Rev Neurosci 7, 687-96 (2006).
    85. Qian, N. & Sejnowski, T. J. When is an inhibitory synapse effective? Proc Natl Acad Sci U S A 87, 8145-9 (1990).
    86. Freund, T. F. Interneuron Diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci 26, 489-95 (2003).
    87. Kosaka, T., Katsumaru, H., Hama, K., Wu, J. Y. & Heizmann, C. W. GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus. Brain Res 419, 119-30 (1987).
    88. Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844-8 (2003).
    89. Szabadics, J. et al. Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311, 233-5 (2006).
    90. Hughes, D. I., Bannister, A. P., Pawelzik, H. & Thomson, A. M. Double immunofluorescence, peroxidase labelling and ultrastructural analysis of interneurones following prolonged electrophysiological recordings in vitro. J Neurosci Methods 101, 107-16 (2000).
    91. Tamas, G., Somogyi, P. & Buhl, E. H. Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J Neurosci 18, 4255-70 (1998).
    92. Tarczy-Hornoch, K., Martin, K. A., Jack, J. J. & Stratford, K. J. Synaptic interactions between smooth and spiny neurones in layer 4 of cat visual cortex in vitro. J Physiol 508 ( Pt 2), 351-63 (1998).
    93. Kisvarday, Z. F. & Eysel, U. T. Functional and structural topography of horizontal inhibitory connections in cat visual cortex. Eur J Neurosci 5, 1558-72 (1993).
    94. Galarreta, M. & Hestrin, S. Electrical synapses between GABA-releasing interneurons. Nat Rev Neurosci 2, 425-33 (2001).
    95. Gibson, J. R., Beierlein, M. & Connors, B. W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75-9 (1999).
    96. Galarreta, M. & Hestrin, S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72-5 (1999).
    97. Tamas, G., Buhl, E. H., Lorincz, A. & Somogyi, P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 3, 366-71 (2000).
    98. Galarreta, M. & Hestrin, S. Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292, 2295-9 (2001).
    99. Zhang, S. & Trussell, L. O. A characterization of excitatory postsynaptic potentials in the avian nucleus magnocellularis. J Neurophysiol 72, 705-18 (1994).
    100. Otmakhov, N., Shirke, A. M. & Malinow, R. Measuring the impact of probabilistic transmission on neuronal output. Neuron 10, 1101-11 (1993).
    101. Major, G., Larkman, A. U., Jonas, P., Sakmann, B. & Jack, J. J. Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J Neurosci 14, 4613-38 (1994).
    102. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159-63 (2001).
    103. Adrian, E. D. The Basis of Sensation: The Action of the Sense Organs (W.W. Norton, New York, 1928).
    104. Rieke, F., Warland, D., de Ruyter van Steveninck, R. & Bialek, W. Spikes: Exploring the Neural Code (MIT Press,, Cambridge, Massachusetts/London, UK, 1997).
    105. Dayan, P. & Abbott, L. F. Theoretical Neurosciences: Computational and Mathematical Modeling of Neural Systems (MIT Press, Cambridge, Massachusetts/London, UK, 2001).
    106. Pouille, F. & Scanziani, M. Routing of spike series by dynamic circuits in thehippocampus. Nature 429, 717-23 (2004).
    107. Beierlein, M., Gibson, J. R. & Connors, B. W. Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90, 2987-3000 (2003).
    108. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nat Neurosci 1, 279-85 (1998).
    109. Maccaferri, G., Roberts, J. D., Szucs, P., Cottingham, C. A. & Somogyi, P. Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. J Physiol 524 Pt 1, 91-116 (2000).
    110. Pawelzik, H., Hughes, D. I. & Thomson, A. M. Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus. J Comp Neurol 443, 346-67 (2002).
    111. Wilson, R. I., Kunos, G. & Nicoll, R. A. Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 31, 453-62 (2001).
    112. O' Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, Oxford, UK, 1978).
    113. Buzsaki, G. Theta oscillations in the hippocampus. Neuron 33, 325-40 (2002).
    114. Ylinen, A. et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15, 30-46 (1995).
    115. Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A. & Buzsaki, G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving Rat. J Neurosci 19, 274-87 (1999).
    116. Traub, R. D. et al. Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis. Rev Neurosci 13,
    =1-30 (2002).
    117. Goldman-Rakic, P. S. Handbook of Physiology, The Nervous System (Am. Physiol. Soc., Bethesda, 1987).
    118. Fuster, J. M. The Prefrontal Cortex (Raven,, New York, 1988).
    119. Goldman-Rakic, P. S. Cellular basis of working memory. Neuron 14, 477-85 (1995).
    120. Wang, X. J. Synaptic reverberation underlying mnemonic persistent activity.Trends Neurosci 24, 455-63 (2001).
    121. Wang, X. J., Tegner, J., Constantinidis, C. & Goldman-Rakic, P. S. Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proc Natl Acad Sci U S A 101, 1368-73 (2004).
    122. Tan, E. M. et al. Selective and quickly reversible inactivation of mammalian neurons in vivo using the Drosophila allatostatin receptor. Neuron 51, 157-70 (2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700