大功率LED背光源的光学研究及其热分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着LED发光效率的提高,与传统光源相比,由于其节能、环保、响应时间短、体积小、寿命长等优势,越来越广泛地应用在背光源上。本文研究了大功率,高亮度的LED背光源,首先利用光学软件对光学系统进行设计与仿真,然后在光学设计基础上,对其进行热学分析,检验背光模组是否在额定温度下工作,以此简化系统设计的流程,缩短系统设计的周期。
     文章首先简单地阐述LED的发光原理及其特性,介绍白光LED的发光原理,并结合LED芯片封装结构的演变介绍目前国际主流白光封装技术,然后分析了LED结温对LED器件的影响。
     接着介绍了光学基本理论,光学建模的基本要素以及光学设计软件Tracepro的光线追踪原理和步骤,建立LED发光简化模型,研究了1W LED的光照度分布情况,接着推导出相应的光照度均匀分布公式。根据混光腔厚度的设计为20mm时,当背光源LED的间距20mm时光照度最均匀,并用计算机仿真模拟加以验证。然后推广到LED背光源阵列,光学均匀性达到95%。在保证相同光照度情况下,用3W的LED取代1W得LED,用计算机模拟,当LED间距为28mm,光学均匀性到85%,符合要求。
     然后介绍了LED中热的产生、热特性以及热管理、热问题的研究现状,同时介绍了光源模块及其热问题。指出ANSYS有限元分析软件在热分析中的应用。对要研究的对象建立了热阻模型,计算得到内部热阻为4.2999K/W,外部热阻为72.2367K/W,从而得到整个器件总热阻为80.691K/W。
     用数值模拟方法直观地显示了稳态条件下封装体内各个部分的温度分布,计算出的内部热阻为5.875K/W,与理论分析的结果比较接近。分析了热流密度矢量和温度梯度,接着模拟出LED内部的热应力分布,指出LED的内部应力在允许范围内。然后重分析了LED发热功率和对流交换系数对LED结温的影响。同时模拟了大功率LED光源模块的温度分布,由于各个LED之间距离较近,存在着热耦合现象,因此模块芯片比单颗芯片工作时结温高。同时分析了LED结温与分布间距之间的关系。然后模拟用3W LED取代光源模组,其温度也在额定温度下。
     文章最后设计了一个测温试验,并与理论、模拟分析的情况进行了对比,总结得出LED热分析的一种有借鉴意义的手段:通过简易方法测得特征温度,然后与模拟所得的关系式结合,进而分析得出结温和热阻。
With the improvement of LED’s lighting efficiency, compare to the conventional light resource, due to its advantage of low power consumption, environmental protection, small volume, long lifetime and so on, it is widely used in back lighting of LCD screen. This paper researchs a kind of high power, high bright LED back light resource, firstly we use ray-tracing software to model and simulate the optical system, and then based on optical design ,analysis of the thermal state, we testify whether the back light module is working in the rated temperature.By these means, we simplify the system design process and shorten the time of the design.
     Firstly, the luminous principles of LED devices and electrode structure of the chip were presented; the principle of white light LED was introduced, and the current international mainstream of white packaging technology was also introduced with the situation of evolution of LED chip packaging structure, and then analyzed the impact of junction temperature to LED devices.
     Secondly we introduce the basic measure of basic test, the basic elements of optical modeling and the optical tracing theory and steps of ray-tracing software tracepro, establish the simplified optical model of LED, research the illumination distribution of 1W LED, and then derive the formula for illumination uniform distribution. According to the design, in the case of the thickness of light mixing cavity is 20mm, when the distance between the LEDs is 20mm, the illumination of backlight is the most uniform, and it is testified by the simulation. So extend to the LED backlight ray, illumination homogeneity can got reach to 95%. Under the same illumination, replacing the 1W LED with 3W LED, the spacing of LED is 28mm, which enable the uniformity reach to 85%.
     Then we discussed the heat produced in LED, its character of thermal and thermal management. Meanwhile, LED is brought forward and its thermal problem is introduced. Then the methods that are used to analyze thermal problem are discussed, especially the ANSYS FE software. We established a thermal resistance model for our object, and get the results of inner thermal resistance is 4.2999K/W, the outer is 72.2367K/W and the total is 80.691K/W.
     Heat distribution of the package at steady condition is showed by simulating. We get the result of thermal resistance, heat flow density vector and temperature grads. Inner resistance is 5.875K/W, which is closed to the result of the theoretic analyzed. Thermal stress distribution in the LED is also simulated, which is in the allowable range. We also analyzed the relationship between the junction temperature with LED heat power and the convection coefficient. The LEDs array was also simulated by ANSYS. Due to the small space of the arrays,there are thermal coupling in LEDs,which cause the LED chip temperature rise. The effects of different LED array density on device operation were calculated. Then we replace 1W LED with 3W, the result shows that the temperature is under the rated range.
     At the end of this paper, an experiment to test the temperature is carried out and the results are compared with that of simulation. We conclude an indicative method to deal with the thermal in LED: get a character temperature by a simple method, then combined it with the relations that concluded by simulating, at last, junction temperature and thermal resistance are gained.
引文
[1]张留洋.宽色域自适应LED背光源研究[D].宁波:中国海洋大学,2007.
    [2] LED背光产业动态解读[EB/OL].http://www.wangchao.net.cn/bbsdetail_720481.html
    [3] LED点亮液晶电视[EB/OL]. http://www.pcworld.com.cn/column/1/2005/0808/147. shtml
    [4]雪生.用于LCD的LED背光源[J].现代显示.2005.07(53).
    [5]李炳乾.1W级大功率白光LED发光效率研究.Semiconductor Optoelectronics.
    [6] Seyno Sluyterman,动态扫描背光使LCD电视呈现活力[J].现代显示.第63期,2006.
    [7]刘敬伟,王刚等.大尺寸液晶电视用LED背光的设计和制作.液晶与显示.2006.10(5).
    [8] LED背光源电视品牌增多[EB/OL].http://it.sohu.com/20090817/n266028069.shtml
    [9] E.Fred Schuber. Light-Emitting Diodes. Cambridge Press(2003),1-132
    [10]半导体二极管[EB/OL].http://www.pim.tsinghua.edu.en/gj/photonies/eai/eh5PI.htm.
    [11]柴天恩.平板显示器件原理及应用[M].北京:机械工业出版社,1996.10.
    [12]潘天明.半导体光电器件及其应用[M].北京:冶金工业出版社,1985.1.20.
    [13]刘静:LED照明系统的研究与设计[D] .延安:延安大学信息与信号处理
    [14]日本照明学会.照明手册[M].北京:中国建筑工业出版社,1985.
    [15]徐建华.LED生产过程中的质量控制[J].电子工艺技术,2003,24(4):172-176
    [16] Daniel A. Steigerwald, Jerome C. Bhat, Dave Collins. Illumination With Solid State Lighting Technology. IEEE Journal on Selected Topic in Quantum Electronics,2002,l8(2):310-320
    [17] James Petroski , GELcore. Thermal Challenges Facing New Generation Light Emitting(LEDs) for Lighting Applications. Proc. of SPIE,2002,4776:215-222
    [18] Carl Zweben. New Material Options for Light Emitting Diode Packaging. Proc. Of SPIE,2004,5366:173-182
    [19]沈培宏.照明级大功率LED技术[J].灯与照明,2006,30(1):42-42,56
    [20]马泽涛.白光高亮度发光二极管封装研究[D].武汉:华中科技大学(大功率白光)
    [21] Cree Company press release,http://www.cree.com
    [22]刘行仁,薛胜蔽,黄德森等.白光LED现状和问题[J].光源与照明,2003,(3):4-8.
    [23]徐建华.LED技术应用与前景展望[J].科技情报开发与经济,2003,13(7)287-288.
    [24] Tsunemasa Tangehi. Present status and future Prospect of system and design in White LED lighting technologies. Proc. SPIE 5530:7-16(2004).
    [25] K.Murakmai,T.Taguehi,M.Yoshino. White illumination characteristics of ZnS-based Phosphor materials exited by InGaN-based ultraviolet 1ight-emitting diode. Proc. SPIE 4079:126-132(2000).
    [26] Y.Uehida,T.Setomoto,T.Taguehi and K.Miyazaki.Charaeteristies of high-effieieney InGNa-based white LED lighting .Proc. SPIE 4079:120-125(2000).
    [27]蒋大鹏,赵成久,侯风勤等.白光发光二极管的制备技术及主要特性[J].发光学报,2003,24(3):385-390.
    [28]张万路.功率型LED热学模型与结温测试分析[D].上海:复旦大学,硕士研究生论文2009
    [29]茹考斯卡斯.固体照明导论[M],化学工业出版,2006:34
    [30] D. A. Steigerwald, J. C. Bthat, D.Collins, et al. Illumination With Solid State Lighting Technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002,8(2):310-320
    [31] S.Narendran, L.Deng, R.M.Pysar, et al. Performance characteristics of high-Power light-emitting diodes[J]. In:3rd International Conference on Solid-State-Lighting ,2004:267-275.
    [32]周跃平,郭霞,王海玲. GaN基发光二极管寿命测试及失效分析[J].半导体光电,2007,28(3):345-348.
    [33]郑代顺,钱可元,罗毅.大功率发光二极管的寿命试验及其失效分析[J].半导体光电,2005,26(2):87-91.
    [34]张以谟,应用光学[M].机械工业出版社,134-189.
    [35]郁道银,谈恒英.工程光学[M].机械工业出版社, (2001),64-89.
    [36] Almah E.F.Taylor ,“Illumination Fundamentals”Lighting Research Center ,http://www.lrc.com.
    [37]胡红蕾. LED照明光学系统的设计及其阵列光照度分析[D].福州:福建师范大学,2005
    [38] TracePro Users Manual Release3.0.Lambda Research Corporation.2002.
    [39] Edward R.Freniere, G.. Groot Gregory,Riehard C.Chase. Interactive Software forptomechanica Modeling. Proc. SPIE 3130:128-133(1997).
    [40]安连生,王自强,照明光学系统的CAD建模[J].灯与照明,1999,23(6):29-31.
    [41]安连生,李国栋,照明光学系统照度分布的计算机模拟分析[J].光学技术,1998,(5):45-48.
    [42] David Jenkins, Mark kmainski. Using computer design non-imaging illumination system. Proc. SPIE 3130:196-203(1997).
    [43]颜峻,于映.基于蒙特卡罗模拟方法的光源LED封装光学结构设计发光学报.2004.2,Vol.25.N0.1.
    [44]魏选平,卞树檀蒙特卡罗法仿真实例及结果分析[R].上海航天.2002.2
    [45]史永胜,魏文君,王秀峰.基于Trace-Pro软件的LCD导光板网点分布仿真与研究[J].液晶与显示,2007(8):463-467.
    [46]蒋金波,杜雪,李荣杉,等.用于手机背光模组的轮廓渐变V槽形自由曲面结构的新颖设计[J].液晶与显示,2005(6):178-184.
    [47]郭连俊.液晶电视主要性能参数的影响分析及优化[D].苏州:苏州大学机电学院,硕士研究生论文2008.
    [48] I.Moreno,“Configurations of LED arrays for uniform illumination”,“Proceedings of HP LEDs for solid Lighting”,IMAPS(2003).
    [49] Ivan Moreno,Rumen I.Tzonchev,“Effects on illumination uniformity due to dilution on arrays of LEDs”,Proceedings of SPIE Vol.5529(2004),268-275.
    [50]杨光,照明灯具中白光LED阵列的排列及配光[J].灯与照明,2008(3)
    [51]郝少华,叶邦彦,HDTV平板液晶屏背光源的调光设计[J].微型电脑应用,2009(12):35-38
    [52]赵镇南.传热学[M].北京:高等教育出版社,2002.1-29.
    [53]李季.大功率发光二极管及其光源模块的热分析[D].上海:复旦大学,硕士研究生论文2009.
    [54] S.Moghaddama,M.Radaa,A.Shooshtaria,et al. Evaluation of analytieal models for thermal Analysis and design of electronic Packages[J]. Microelectronics journal ,2003:223-230.
    [55] Mehmet Arika,Charles Beekerb,Stanton Weaverb,et al. Thermal Management of LEDs: Package to System[J].Proc. of SPIE,2004,5187:64-75.
    [56]曹玉生,于海平,施法中.3DMCM热分析技术的研究[J].微计算机信息(嵌入式与SOC),2006,22(4-2):191-193.
    [57] Koymada K,Yamada Y,Nishio T,et al. Modeling Approach Using Genetic Algorithms for Aceurate Thermal Simulation[J]. Heat Transfer-Asian Research,2002,30:28-39.
    [58]余彬海,方福波,一种计算大功率LED光源模块器件结温的方法[J].高技术通讯,2005,15(9):49-52.
    [59] LEE T H, Kim L, et al. Thermal analysis of GaN-based LEDs using the finite element method and unit temperature profile approach[J]. Phys Stat Sol(B), 2004,241(12):2681-2684
    [60] Mat Web[EB/OL] www.matweb.com
    [61] Hu J Z, Yang L Q, Hwang W J,et al. Thermal and mechanical analysis of delimitation in GaN-based light emitting diode Packages[J]. Journal of Crystal Growth , 2006 ,288:157-161.
    [62]周孑民,王锡范,黄学章等.高密度电子封装器件的温度分布研究[J].珠洲工学院学报,2002,16(6):61~65.
    [63] L.Kim,M.W.Shin.Thermal resistance measurements of LEDs with multi-chip packages,Proceedings of the XXII-nd SEMI-THERM Symposium,San Jose,CA,USA,12-16 March 2006:186~190.
    [64] T.Treuernie,V.Lammens.Thermal management in color variable multi-chip LED modules,Proceedings of the XXII-nd SEMI-THERM Symposium,San Jose,CA,USA,12-16 March 2006:100~104.
    [65] D. Faulkner, M.Khotan, R. Shekarriz. Practical design of a 1000 W/cm2 cooling system. In: Proc.19th Annual IEEE Semiconductor Thermal Management Symposium,CA,2003.11~13.
    [66] EIA/JEDEC Standard JESD51-1. Integrated Circuits Thermal Measurement Method/Electrical Test Method(single Semiconductor Device).USA: Electronic IndustriesAlliance.1995.3~7.
    [67] Liu Wei-hua , LiYou-qun , FangWen-qing , Mo Chun-lan , et al. The Junction-temperature Characteristic of GaN Light-emitting Diodes on Si Substrate. Chinese Journal of LuminescenceI.2006,27(2):211~214.
    [68]马春雷,鲍超.一种高功率L ED热阻的测试方法[J].光学仪器,2005,27(2):13~17.
    [69] Xi Y,Schubert E F.Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method.Appl.Phys.Let,2004,85(12):2163~2165.
    [70]陈华,8W白光LED多芯片组件的热分析[D].武汉:华中科技大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700