基于电阻法碳布增强环氧树脂复合材料损伤自诊断的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳/环氧复合材料具有优异的力学性能、耐热性、耐腐蚀性、耐疲劳性,在航空航天、武器装备、国民经济等方面有较广泛的应用。由于碳纤维有良好的导电性,在较高碳纤维含量的碳/环氧复合材料中碳纤维之间相互接触,形成导电网络。当受到外力作用时,复合材料内部结构会发生变化,引起导电网络的变化,进而导致复合材料电阻产生变化。因此,可以利用碳纤维作为复合材料外力传感器,通过复合材料电阻变化来反映其内部结构的变化。
     本文选用在航空工业中广泛应用的G803/5224碳布增强环氧树脂预浸料为原料,按照[0/90]、[0/90/±45]、[±45]铺层方向,采用模压成型方法制备了碳纤维体积含量分别为56%、64%的碳/环氧复合材料;依据复合材料通道导电和隧道效应导电的模式,研究了温度变化对复合材料电阻的影响;研究分析了在拉伸、开孔拉伸、压缩、开孔压缩、弯曲、冲击条件下,复合材料的电阻随外力作用的变化规律,确定了复合材料损伤诊断依据;在综合分析冲击能量、冲击损伤(超声F扫描图)、剩余压缩强度、电阻变化等指标的基础上,提出了评价复合材料冲击损伤的新思路;编写了复合材料冲击损伤计算机诊断程序,构建了由复合材料、计算机、多通道数据采集器组成的复合材料冲击损伤自诊断系统,并通过试验得到了验证。
     (1)在-50℃-160℃温度范围,不同规格复合材料的电阻均逐渐下降,复合材料表现出负温度系数效应。其中,[±45]8复合材料电阻下降幅度最大,降幅为9.37%。在(-50~-20)℃、(-20~130)℃、(130~160)℃等不同温度区间,随着温度升高,复合材料电阻下降速率并不相同。其中,在(-20-130)℃区间,复合材料电阻下降速率最大。
     (2)在拉伸、开孔拉伸、压缩、开孔压缩、弯曲试验中,复合材料的破坏包括环氧树脂的普弹形变、强迫高弹形变、树脂裂纹、树脂破坏、复合材料分层、碳纤维断裂等形式,最终复合材料被破坏。在试验过程中,复合材料中的碳纤维接触状况、自由电子数目会发生变化,使得其中的导电通道、隧道导电效应产生变化从而引起电阻变化。
     (3)在拉伸和开孔拉伸试验中,当[0/90]、[0/90/±45]复合材料应变大于1.8%,[±45]复合材料应变大于1.27%时,则在复合材料内部会产生拉伸损伤;当复合材料试样的电阻增幅超过此时的电阻增幅时,则可诊断复合材料试样中存在损伤。在压缩试验中,当[0/90]7、[0/90]8复合材料试样的电阻增幅分别超过3.6%、2.6%时,则可诊断复合材料试样中存在轻微的压缩损伤;当[0/90]7、[0/90]8复合材料试样的电阻增幅分别超过10.2%、3.4%时,则可诊断在复合材料试样中存在较严重的压缩损伤。在弯曲试验中,当[0/90]7、[0/90]8复合材料试样的电阻增幅分别超过25.8%、31.3%时,则可诊断复合材料试样已经断裂;同时,不能依据复合材料电阻变化情况反映复合材料断裂之前的状况。
     (4)不同规格的复合材料冲击损伤的能量阈值和损伤容限的冲击能量阈值也各不相同。小于冲击损伤能量阈值的冲击,会使复合材料各电极点间电阻变小。大于冲击损伤能量阂值的冲击使冲击点周围的电极点电阻上升。在相同能量冲击下,不同电极点间电阻变化并不相同是因为冲击能量以冲击点为中心向四周呈放射状扩散,离冲击点越近,冲击作用越明显。大于损伤容限的冲击能量阈值的冲击不仅使复合材料电阻发生明显变化,而且复合材料会被冲击破坏。
     (5)在冲击试验中,复合材料上由4个电极点围成的长×宽为6cm×5cm区域中,只要3个电极点或不连续的2个电极点的电阻增幅都小于由复合材料损伤容限冲击能量阈值所引起的所有电极点电阻第二增幅时,冲击后的复合材料仍处“正常”状态;当电阻增幅大于第三增幅时,冲击后的复合材料处于“损伤”状态;当电阻增幅大于穿孔性损伤所引起的第三增幅时,冲击后的复合材料处于“严重损伤”状态。
Carbon fiber/epoxy-matrix composite materials have been widely used in aerospace, automobile, weapons and equipment, and national economy for their excellent mechanical properties, temperature resistance, corrosion resistance, and fatigue resistance. Due to the optimal electrical conductivity of carbon fibers, the electrical conductivity network of carbon fibers can be formed in carbon fiber/epoxy-matrix composite materials with high volume content carbon fiber by contacting tightly each other. The internal structure of composite materials will be changed by external force, which can causes the changes in conductive network and further lead to the variation of resistance of composite materials. Therefore, carbon fiber can be used as the external sensor of composite materials, which can measure the variation of internal structure by diagnosing the change of electrical resistance composites.
     In this thesis, carbon/epoxy composite materials were prepared by molding compression with G803/5224 carbon fabric/epoxy prepreg, which were used widely in the aviation industry. The stacking angle of prepreg was [0/90], [0/90/±45],[±45], and carbon fiber volume content was 56%,64%, respectively. Based on channel conduction and tunnel effect conduction, the influence of temperature on the resistance of composites was studied. The resistance change of composites resulted from tension, opening tension,compression, open hole compression, bending, impact conditions was studied, and the basis for damage diagnosing of composites was determined. A new idea of evaluating impact damage in composites was proposed by comprehensive analysis of the effect of impact energy, impact damage (ultrasonic F-scan images), residual compressive strength, resistance change. Computer program of diagnosing damage in composites was compiled. The system of self-diagnosing impact damage in composites was established, which was composed of composite materials, computers, and multichannel data acquisition device, and it was validated by tests.
     (1) The resistance of different specifications of composites decreased, namely negative temperature coefficient effect can be found in composites when measured in the temperature from-50℃to 160℃. Among these composites, [±45] 8 composites showed a sharp drop with the degree of 9.37%. The resistance of composites declined with different degree in different temperature range of (-50--20)℃, (-20-130)℃, (130-160)℃. In the case of (-20-130)℃, the rate of descent was the maximum.
     (2) The destruction test of composite materials was measured including epoxy elastic deformation, forced high-elastic deformation of epoxy resin, resin cracks, resin damage, composites delamination, carbon fiber fracture, etc. in the cases of tension, opening tension, compression, open hole compression, and bending test. During the test, the resistance change of composites was caused by the change of conductive channel, the tunnel effect of composite materials, resulted from the contact conditions among carbon fibers and the number change of free electrons.
     (3) In the cases of tensile and opening tension test, there was tensile damage in composites,when the strain of [0/90]、[0/90/±45]、[±45]composites was more than 1.8%、1.8%、1.27%, respectively. When the increase rate of resistance in composites was more than the rate of resistance at this time, the tensile damage can be diagnosed in composites. In the cases of compression test, when the resistance increase rate of [0/90]7、[0/90]8 composites was more than 3.6%、2.6%,, respectively, the slight compress damage can be diagnosed in composites. When the rate of was more than 10.2%、3.4%, respectively, the serious compress damage can be diagnosed in composites. In the cases of bending test, when the increases rate of resistance of [0/90]7、[0/90]8 composites was more than 25.8%、31.3%, composites may have been broken. Damage in composites was hard to diagnose by resistance change before they were broken.
     (4) Impact energy threshold of damage and damage tolerance of different specifications of composites were different. When the value of impact damage energy was less than the threshold, there can make the resistance value of composites between electrode points smaller. When the value of impact damage energy was greater than the threshold, there can make the resistance value of composites between electrode points bigger. The resistance change rate of different electrode points in composites was different under the same impact damage energy. It can be mainly due to the spread of impact energy from the impact point to the surrounding radially, the distance was nearer, and the impact was more obvious. When the composites were impacted by a impact greater than the impact damage tolerance energy threshold, not only the resistance of the composites was significant change, but also the composite materials was destroyed.
     (5) In the case of impact test, composites can be regarded as "normal" state in the region rounded by 4 electrode points with the length of 6 cm and the width of 5 cm, as long as the resistance increase rate of three electrode points or 2 discrete electrode points was less than the second resistance increase rate of all electrode points of impacted composites arising from the impact damage tolerance energy threshold. When the resistance increase rate was more than the third resistance increase rate, composites can be regarded as "damage" state. When the resistance increase rate was more than the third resistance increase rate of impacted composites by perforation damage, composites can be regarded as "serious damage" state.
引文
[1]赵稼祥.碳纤维在美国国防工业上的应用[J].高科技纤维与应用,2003,28(5):31~34
    [2]杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1~12
    [3]赵稼祥.碳纤维复合材料在民用航空上的应用[J].高科技纤维与应用,2003,28(3):70~76
    [4]陈绍杰.复合材料与B7E7[J].航空制造技术,2005,22(1):34~37
    [5]肖纪美.智能材料的来龙去脉[J].世界科技研究与发展,1996,9(3):120~125
    [6]王守德,刘福田.智能材料及其应用进展[J].济南大学学报,2002,24(5):97-100
    [7]余海湖,赵愚.智能材料与结构的研究及应用[J].武汉理工大学学报,2001,23(11):37~41
    [8]D.D.L. Chung. Self-monitoring structural materials[J]. Materials Science & Engineering, 2003,22(2):124-132
    [9]Amemiya.Information processing using intelligent materials[J].Journal of Intelligent Material Systems and Structures,1994,5(5):68-75
    [10]P.F.Gobin,Y.Jayet.New-trends in non-destructural evaluating in relation to the smart materials concept[J].International Journal of System Science,2000,31(11):78-86
    [1l]张卫东,徐学燕.碳纤维混凝土的特性及发展前景[J].森林工程,2002,22(1):61~63
    [12]陶宝祺.强度自适应复合材料结构[J].航空学报,1994,15(3):280~286
    [13]Luo XC, Chung D.D.L. Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites[J]. Journal of Composite materials,1999,30 (3): 227-231
    [14]Kalyon D.M.,Birinci Elvan,Yazici Rahmi, etal. Electrical properties of composites as affected by the degree of mixedness of the conductive filler in the polymer matrix[J]. Polymer Engineering and Science,2002,42 (7):1609-1617
    [15]姚武,吴科如.智能混凝土的研究现状及其发展趋势[J].新型建筑材料,2000,20(10):41~54
    [16]姜德生.智能材料器件结构与应用[M].武汉:武汉工业大学出版社,2000:20~23
    [17]杜善义,冷劲松,王殿富.智能材料系统和结构[M].北京:科学出版社,2001:1-11
    [18]Tapanes E E, Rossiter P I. Practically application of fibre composite materials sensors to engineered structures for real time, structural evaluation using a composite material patch[J].Journal of Composite Materials,2003,34 (5):154-161
    [19]Measure R M. Advances toward fiber optic based smart structures[J]. Journal of Optic Engineer, 1998.37(1):117-126
    [20]黄尚廉,陈伟民.光纤应变传感器及其在结构健康监测中的应用[J].测控技术,2004,23(5):60~63
    [21]梁大开,陶宝祺,朱晓荣.光纤智能复合材料结构的研究[J].仪器仪表学报,1999,20(6):582~585
    [22]Sheryl Coombs.Smart skins:information processing by lateral line flow sensors[J].Autonomous Robots,2001,11(3):53-57
    [23]L.Flandin, Y. Brechet. Electrically conductive polymer nano composite materials as deformation sensors[J]. Composites Science and Technology,2002,42(4):58-68
    [24]Qing Xinlin,Amrita Kumar.A hybrid piezoelectric/fiber optic diagnostic system for structural health monitoring[J].Smart Materials Structure,2005,46(5):72-84
    [25]梁大开.基于空心光纤的智能结构自诊断、自修复系统[J].航空维修与工程,2004,35(3):20~23
    [26]梁大开,杨红,陶宝祺.液芯光纤在机敏结构自修复功能中的初步试验[J].自然科学进展,2001,25(5):102~106
    [27]Yang Hong.A hollow-center optical fiber sense network for in-situ strain monitoring in smart structures[C].The First Asia-Pacific Workshop on Smart Materials and Structures,USA,2001
    [28]Naoyuki Tajima,Tateo Sakurai.Overview of the Japanese smart materials demonstrator program and structures system project[J].Advanced Materials,2004,13(1):72-78
    [29]张臻,沈亚鹏,王健.形状记忆合金短纤维增强弹塑性基体复合材料的力学行为[J].复合材料学报,2004,21(6):82~86
    [30]Furuya Y.Exothermic Shape Memory Ti2Ni Pins for Local Hypersermia System-An Approach to Multi-Functionaland Intelligent Materials[C].The First International Conference on Intelligent Materials, Japan,1998
    [31]P. W. Chen,D. D.L. Chung.Carbon fiber reinforced concrete as a smart material capable of structural flaw detection[J].Smart Materials and Structure,1993,12(5):38-44
    [32]Chen PW, Chung DDL. Carbon fiber reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading[J]. Journal of Ceramics Society,1995,78(3):78-85
    [33]袁慎芳.损伤自诊断自适应智能材料结构的研究[J].实验力学,1996,4(1):30~37
    [34]Victor Giurgiutiu. Recent advances in smart material rotor control actuation[C].Proceedings of the 41 IAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, and Adaptive Structures Forum,USA.2000
    [35]Ephrahim Garcia.Smart structures and actuators:past, resent, and future[C]. Industrial and Commercial Applications of Smart Structures Technologies Proceedings of SPIE,France,2002
    [36]谢建宏,张为公,梁大开.基于小波神经网络的智能复合材料损伤定位的仿真研究[J].测控技术,2004,23(9):8~10
    [37]D.D.L.Chung.Structural health monitoring by electrical resistance measurement[J].Smart Materials Structure,2001,10(1):121-130
    [38]M.Louis, S.P.Joshi.An experimental investigation of through-thickness electrical resistivity of CFRP laminates[J].Composites Science and Technology,2001,41(6):56-65
    [30]骆心怡,李顺林,王开坤等碳纤维复合材料单向层合板自传感特性[J].北京科技大学学报,2002,24(6)57~61
    [40]J.C. Abry, S.Bochard.In situ detection of damage in CFRP laminates by electrical resistance measurements[J].Composites Science Technology,1999,39(6):123-128
    [41]Ingo Weber, Peter Schwartz.Monitoring bending fatigue in carbon-fiber/epoxy composite strands:a comparison between mechanical and techniques[J].Composites Science and Technology,2001,61(6): 849-855
    [42]Keiji Ogi,YoshihiroTakao.Characterization of piezo-resistance behavior in a CFRP unidirectional laminate[J].Composites Science and Technology,2005,65(3):231-2391
    [43]Angelidis N,Wei CY,Irving PE.The electrical resistance of continuous carbon fibre composite laminates to mechanical strain[J].Composites:PartA,2004,35(8):1135-1147
    [44]汤浩,陈欣方.复合型导电高分子材料导电机理研究及电阻率计算[J].高分子材料科学与工程,1996,14(2):1-7
    [45]张滇军.碳纤维水泥基复合材料导电特性及其应用研究[D].大连:大连理工大学,2005
    [46]张彭涛,孙丽萍.高分子导电复合材料的导电机理及其电磁屏蔽作用分析[J].林业机械与木工设备,2006,34(6):24~26
    [47]Chen Bing,Wu Keru,YaoWu.Conductivity of carbon fiber reinforced cement based composites[J]. Cement and Concret Composites,2004,26(4):291-297
    [48]Wen Si hai,Chung D.D.L.Carbon fiber reinforced cement as a strain sensing coating[J].Cement and Concrete Research,2001,31(5):665-667
    [49]Jia W,Tchoudakov R, Joseph R, etal. The conductivity behavior of mufti-component epoxy,metal particle.0carbon black, carbon fibril composites[J]. Journal of Applied Polymer Science,2002,85 (8): 1706-1713
    [50]于杰,王继辉,王钧.碳纤维/树脂基复合材料导电性能研究[J].武汉理工大学报,2005,27(5):24~26
    [51]沈烈,益小苏.一个单向碳纤维增强树脂基复合材料导电结构模型[J].复合材料学报,1998,15(3):67~71
    [52]杨小平.碳纤维导电复合材料的电学性能研究[J].材料工程,2000,30(9):25-28
    [53]Sathyanarayana D N,Rao Pane Swapna. Inverted emulsion cast electrically conducting polyaniline-polystyrene blends[J]. Journal of Applied Polymer Science,2002,85(5):1163-1171
    [54]Matthew L.Clingerman,Julia A.King,Kirk H.Schulz,et al. Evaluation of electrical conductivity models for conductive polymer composites[J]. Journal of Applied Polymer Science,2002,85(6):1341-1356
    [55]姚武,陈兵,吴科如.碳纤维水泥基材料的机敏性研究[J].复合材学报,2002,19(2):49~53
    [56]毛起超,赵斌元.水泥基碳纤维复合材料压敏性研究[J].复合材料学报,1998,15(4):25~28
    [57]王建军,宋显辉,李卓球.碳纤维水泥涂层的温敏性研究[J].武汉理工大学学报,2005,27(3):56~58
    [58]杨小利,王钧,付杰等.导电复合材料的研究[J].纤维复合材料,1997,27(3):46~51
    [59]Lianxi Shen, Jackie Li b, Benjamin M,et al.Modeling and analysis of the electrical resistance measurement of carbon fiber polymer-matrix composite materials[J]. Composites Science and Technology,2007,67(12):2513-2520
    [60]Z.H. Xia a, W.A. Curtin. Modeling of mechanical damage detection in CFRPs via electrical resistance[J]. Composites Science and Technology,2007,67(4):1518-1529
    [61]龙卧云,丁晓坤,杨晓华等.碳纤维增强树脂基复合材料的性能研究[J].理化检验—物理分册,2006,42(10):495~497+501
    [62]梅启林.纳米碳纤维的表面处理及其聚合物复合材料的性能研究[D].武汉:武汉理工大学,2008
    [63]姚武,王瑞卿.基于隧道效应的CFRC材料的导电模型[J].复合材料学报,2006,23(5):121-125
    [64]肖军,李勇.复合材料层合板面内压阻效应层合理论研究[J].固体力学学报,1999,20(2):157~162
    [65]Chung D.D.L.Strain sensors based on the electrical resistance change accompany the reversible pull out of conducting short fiber in a less conducting matrix[J].Smart Materials. Structure,1995,35(4): 59-61
    [66]Kaddour A S,Al-Salehi F A R,Hinton M. J.Electrical resistance measurement technique for detecting failure in CFRP materials at high strain rates[J].Composites Science and Technology,1994,51(3): 377-385
    [67]刘志华.高分子/炭黑复合材料流变行为-导电功能的相关性研究[D].杭州:浙江大学,2008
    [68]杨小平,荣浩鸣,陆泽栋等.碳纤维导电复合材料的电学性能研究[J].材料工程,2000,19(9):11-14
    [69]Purnendu B.et al.Electrical conductivity of sho rt carbon fiber reinfo reed polychloroprene rubber and mechanism of conduction[J].Polymer Engineering and Science,1992,32 (6):448-451
    [70]史宇正,方斌,杨钧等.炭黑填充聚乙烯材料电阻-温度特性研究[J].功能高分子学报,1998,11(1):55~59
    [71]王钧,杨小利,刘东.碳纤维增强复合材料电阻率-温度特性研究[J].武汉理工大学学报,2001,23(12):5-8
    [72]姚武,王婷婷.碳纤维水泥基材料的温阻效应及其测试方法[J].同济大学学报(自然科学版),2007,35(4):511-514
    [73]姚武,徐晶晶.碳纤维水泥基材料电阻的非线性研究[J].功能材料,2006,37(4):632-634
    [74]刘东,王钧.碳纤维导电复合材料的研究与应用[J].玻璃钢/复合材料,2001,31(6):18~20
    [75]胡永明,益小苏.交变载荷下复合材料的电学响应:一个新的材料结构研究方法[J].材料工程,2001,22(2),40-42+46
    [76]宋显辉,刘冬,吕泳,李卓球.碳纤维树脂基复合材料的传感特性研究[J].工程塑料应用,2007,25(2),48-51
    [77]梁晓怿,凌立成.炭纤维/ABS树脂复合材料的导电性研究[J].功能材料,2000,31(6):654~656
    [78]K.Schulte, C.Baron.Load and failure analysis of CFRP laminates by means of electrical resistivity measurements[J].Composites Science and Technology,1999,46(1):63-69
    [79]J.C.Abray, S.Bochard, In-situ detection of damage in CFRP laminates by electrilcal resistance measurements[J]. Composites Science and Technology,1999,59(6):925-931
    [80]毛亚琴,于运花,张荣成.电阻法检测单向碳纤维复合材料的拉伸破坏行为[J].高分子材料科学与工程,2005,21(4):248~251
    [81]苏小萍,晏石林,胡高平.碳纤维增强树脂基复合材料的电阻~应变特性[J].武汉理工大学学报,2005,27(12):14-17
    [82]王翔,王钧,钟龄.碳纤维复合材料的电阻—应变传感特性研究[J].玻璃钢/合材料,2004,34(4):43-47
    [83]M.kupke, K.Schulte, R.Schuler. Non-destructive testing of FRP by d. c. and a. c electrical methods[J]. Composites Science and Technology,2001,61(6):837-843
    [84]Wang.Xiaojun,Wang.Shoukai,D.D.L.Chung.Sensing damage in carbon fiber and its polymer-matrix and carbon-matrix composite materials by electrical resistance measurement[J].Journal of Materials Science,1999,34(6):82-89
    [85]毛亚琴,武德珍,杨小平.电阻法研究炭纤维树脂基复合材料结构健康监控[J].高分子材料科学与工程,2005,21(3):67~70
    [86]K.Schulte,C.Baron. Damage analysis of carbon fiber composites result from low energy impact by means of electrical resistivity measurements[J].Composites Science and Technology,1998,38(1):51-57
    [87]H.Wittich,K.Schulte,M.Kupbe.The measurement of electrical properties of CFRP for damage detection and strain recording[C]. Proc and ECCMCTS,Germany,1998
    [88]B.Large-Toumi,M.Salvia,L.Vincent.Fiber/matrix interface effect on monotonic and fatigue behavior of unidirectional carbon/epoxy composite materials[C]. Sprag, LT.Drzal editors,Fibe、Matrix、and Interface properties,USA,1996
    [89]莫淑华.电阻法预报CFRP层合板疲劳损伤演变过程[J].材料科学与工艺,2004,12(2):186~189
    [90]By.Deborah, D.D.L.Chung.Fibrous composite materials interfaces studied by electrical resistance measurement[J]. Advanced Engineering Materials,2000,2(12):788-794
    [91]T.Prasse, F.Michel, GMook. A comparative investigation of electrical resistance and acoustic emission during cyclic loading of CFRP laminates[J]. Composites Science and Technology,2001,61(6),831-837
    [92]J.C.Abry, Y.k.Choi, In-situ monitoring of damage in CFRP laminates by means of AC and DC measurements[J].Composites Science and Technology,2001,61 (6):855-861
    [93]S. WANG, X. SHUI.Early fatigue damage in carbon-fibre composite materials observed by electrical resistance measurement[J]. Journal of Materials Science,1998,33(7):3875-3884
    [94]D.D.LChung, Structural health monitoring by electrical resistance measurement[J].Smart Materials Structure,2001,10 (1):624-632
    [95]Matsuzaki, Ryosuke.Wireless detection of internal delamination cracks for carbon/epoxy composite using electrical resistance method and oscillating frequency change [J].Transactions of the Japan Society of Mechanical Engineers, Part A,2005,71(3):528-535
    [96]S. WANG, D. D. L. CHUNG.Self-sensing of damage in carbon fiber polymer-matrix composite by measurement of the electrical resistance or potential away from the damaged region[J]. Journal of Materials Science,2005,40(5):4246-4253
    [97]S.WANG,D. D. L.Self-sensing of Damage in Carbon Fiber Polymer-Matrix Composite Cylinder by Electrical Resistance Measurement[J]. Journal of Intelligent Material Systems and Structures, 2006,17(1):57-62
    [98]D.J. Wang,Shoukai Wang. Sensitivity of the two-dimensional electric potential/resistance method for damage monitoring in carbon fiber polymer-matrix composite[J]. Journal of Materials Science,2006, 41(8):4839-4846
    [99]N.Muto, Y.Arai.Hybrid composite materials with self-diagnosing function for preventing fatal fracture[J].Composites Science and Technology,2005,45(3):131-136
    [100]Xiaojun Wang, D.D.L. Chung, Continuous Carbon Fiber Epoxy-Matrix Composite as a Sensor of Its Own Strain[J]. Smart Materials Structure,2003,26(5):87-95
    [101]Ruediger Schueler,Shiv Joshi.Damage detection in CFRP by electrical conductivity mapping[J]. Composites Science and Technology,2004,44(2):73-79
    [102]Hou. J.P,Petrinic.N,Ruiz.C,etal.Prediction of impact damage in composit eplates[J].Composites Science and Technolnogy,2000,60(3):273-281.
    [103]温卫东,徐颖,崔海坡.低速冲击下复合材料层合板损伤分析[J].材料工程,2007,25(7):6~11
    [104]童明波,陈普会,曾建江.低能量冲击损伤复合材料飞机结构的强度性能研究[J].航空学报,1998,19(2):232~235
    [105]Chen Puhui, Shen Zhen. Design of impact damage to lerant composite laminates[C]. Proc of SM&S, Australia,1997
    [106]崔海坡,温卫东,崔海涛.复合材料层合板冲击损伤及剩余强度研究进展[J].材料科学与工程学报,2005,23(3):466~472
    [107]陈普会,沈真,聂宏.复合材料层压板冲击后压缩剩余强度的统计分析与可靠性评估[J].航空学报,2004,25(6):573~576.
    [108]G. C. Papanicolaou,Chr. D. Sravropoulos. New Approach for Residual Compressive Strength Prediction of Impacted CFRP Laminates [J]. Journal of Composite Materials,1995,26(3):517-523.
    [109]王小永,钱华.先进复合材料中的主要缺陷与无损检测技术评价[J].无损探伤,2006,30(4):1~7
    [110]张立功,张佐光.先进复合材料中主要缺陷分析[J].玻璃钢/复合材料,2001,31(2):42~45
    [111]陈绍杰.复合材料结构修理指南[M].北京:化学工业出版社,2001.19~20
    [112]郑宇军,王侃.C#语言程序设计基础[M].北京:清华大学出版社,2008,1~25
    [113]董勇.C#应用开发[M].北京:清华大学出版社,2008,32-56
    [114]韩小祥,刘志军.C#程序设计[M].北京:中国人民大学出版社,2009,112~130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700