冷喷涂金属/陶瓷涂层制备工艺及涂层性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空、航海技术的快速发展,对发动机、内燃机材料强度的要求不断提高,尤其是处于腐蚀环境中的部件,常规涂层和阴极保护技术无法满足其长效防护的要求,因此,耐腐蚀、耐高温及抗磨损的新型材料不断涌现,喷涂金属/陶瓷涂层是目前提高内燃机、发动机经济性和可靠性最有效的方法。
     金属/陶瓷复合涂层既有良好的隔热效果,又有耐磨、耐腐蚀及热冲击性能,在高温工作的材料中得到了广泛的应用。中间过渡层的引入缓解了因金属与陶瓷的热膨胀系数差异引起的热应力,使涂层的内聚强度和涂层与基体的结合强度都得到明显提高,从而改善涂层的抗热震性能,提高涂层的服役寿命。
     冷气动力喷涂是一种新兴的技术,该技术是一种基于空气动力学原理的材料表面改性新技术,它利用低温(〈600℃)预热高压气体携带粉末颗粒经缩放型拉瓦尔喷管形成超音速气-固双相流,以超高速在完全固态下撞击基体。在整个过程中由于喷涂温度低,粒子保持固体状态、不会发生化学反应及相变、不易发生固体粒子长大及氧化现象。在一定程度上弥补了热喷涂技术的缺陷,为改善复合涂层耐高温耐腐蚀性能开辟了新的道路。
     论文从金属/陶瓷涂层的隔热特性、热应力分析入手,用ansys有限元软件分析了不同材料组成、不同厚度、不同结构涂层的隔热特性和热应力分布,得出了涂层隔热特性及热应力与涂层材料、结构、厚度的关系,为复合涂层结构的选定提供指导。
     利用数值模拟软件Gambit、Fluent等,计算CoNiCrAlY和ZrO2颗粒在喷涂过程中由喷嘴入口至基板的撞击速度,研究不同的颗粒尺寸、气体、入口温度、压力和环境压力等工艺参数及喷嘴结构对颗粒撞击速度的影响,将冷喷涂工艺参数定为:喷涂气体选择氦气,喷涂温度:450~500℃,喷涂压力:1.5~3.0Mpa,喷涂距离:15~30mm,膨胀比:5~10。并用ANSYS/LS-DYNA软件模拟了CoNiCrAlY和ZrO2颗粒喷涂撞击过程,为冷喷涂制备金属/陶瓷复合涂层提供理论依据。
     本论文解决了复合涂层中合金粘结底层的制备工艺及其性能研究。用氦气作为主气制备了CoNiCrAlY合金涂层、ZrO2-CoNiCrAlY金属/陶瓷涂层、Al-CoNiCrAlY涂层。因氦气价格高而且用量大,使喷涂的成本较高,为了降低喷涂成本,尝试使用空气制备CoNiCrAlY合金,由数值分析可知:空气作为主气时,达不到CoNiCrAlY合金的临界速度,所以喷涂效果不是很好。在CoNiCrAlY合金里加入10%和5%的铝,用空气制备出了结构致密的Al-CoNiCrAlY合金涂层
     运用扫描电镜(SEM)、能谱分析(EDS)对制备的涂层进行表观形貌分析,发现喷涂粒子之间是通过高速碰撞发生强烈塑性变形而结合在一起,涂层内部致密性很好,喷涂过程中未发生明显氧化;通过对涂层显微硬度的测试表明,由于冷喷涂过程中喷涂粒子的喷丸强化作用,冷喷涂合金涂层的显微硬度较高,尤其是添加了ZrO2的合金涂层,这说明涂层的局部抗压、耐磨性能较好;对涂层孔隙率的分析表明,冷喷涂合金涂层的孔隙率非常低,说明涂层较致密,不存在贯穿到基体的孔隙,可以有效防止腐蚀介质的渗透;结合强度试验表明,断裂都是发生在涂层与基体之间,冷喷涂合金涂层内部的结合强度比涂层与基体之间高。抗热震性试验表明,冷喷涂合金涂层的抗热震性性能很好,添加了ZrO2的合金涂层经过12次的热震试验后发生局部剥落;添加了Al的合金涂层经过12次热震试验后涂层依然没有剥落,说明冷喷涂制备的合金涂层抗热震性能很好。海水浸泡试验和中性盐雾试验表明,冷喷涂合金涂层结构致密,孔隙率低,可以较好的阻止腐蚀介质向涂层内部及基体渗透,延长了涂层的使用寿命,有效的保护了基体。
     因为本论文是在相关文献很少的基础上用冷喷涂技术制备的金属/陶瓷涂层,并进行了冷喷涂参数的优化及涂层性能分析。整个研究需要深入涉及的内容较多,应用到实际工业生产还有许多内容需要进一步地深入和完善。
With the continuing development of aviation and navigation, the demand for the materials with higher performance for gas turbine and the internal combustion engine is increasing. Conventional coating and cathodic protection cann't meet the protection demand especially for the components in the severest corrosion environment. So the materials with high-temperature resistant and corrosion-resistant have been developed continuously, and, at present, spraying mental/ ceramic coating is the most effective way to improve the economy and reliability of the gas turbine and the internal combustion engine.
     Mental/ceramic coatings have been widely used in the high temperature environment for its good thermal insulation, corrosion resistant and wear resistant properties. The interlayer is introduced into the mental/ceramic coating to decrease the high thermal stress caused by the mismatch of the thermal expansion coefficient, it is able to improve the combination, thermal-shock resistance and service life of coating.
     First, the ansys software was used to implement the theoretical calculation of temperature fields and thermal stress fields in the mental/ceramic coating. The influence of the material, structure and thickness on the thermal insulation and thermal stress of the coating was studied.
     Second, the accelerating behaviors of the CoNiCrAlY and ZrO2 particals were simulated through Gambit and Fluent software. The influence of different process parameters and nozzle structure on the accelerating behaviors was investigated, the appropriate spray parameters were obtained, gas temperature: 450~500℃, gas pressure: 1.5~3.0Mpa, spray distance: 15~30mm, expansion ratio:5~10. The impinging simulation in the spray process of the CoNiCrAlY and ZrO2 particals was also studied through the ansys software.
     Third, the coatings were prepared with the appropriate spray parameters, CoNiCrAlY , ZrO2-CoNiCrAlY and Al-CoNiCrAlY coatings are prepared with helium gas. Because the helium gas is very expensive, the CoNiCrAlY coating with air gas was studied for decreasing spray cost, though it was difficult at the beginning, and finally, the Al-CoNiCrAlY coating was prepared successfully with air gas.
     At last, the performances of the coatings were also studied. The apperarance of coating was observed through SEM and EDS. The results showed that the coating was deposited through intensive plastic deformation of the spray particles by high-speed impact, and no oxidation phenomena discovered in the cold spray process. The microhardness of the coating is high because of the shot peening strengthening in the cold spray. With optical microscopy, it is found that the coating has lower porosity, and can avoid crrosive medium penetrating into the coating. The combination test showed that the adhesion strength between coatings is higher than that between coating and substrate, and the coating combined physically to the substrate through the plastic deformation of spray particles.
     The thermal shock resistance test showed that the coating has high thermal shock resistance, particle spalling occurred for the ZrO2-CoNiCrAlY coating after 12 times thermal shock resistance test, the Al-CoNiCrAlY coatings endured 12 times thermal shock were perfect without any defects, such as crack and spalling. In order to study the corrosion resistance of the coating, the seawater corrosion resistance test and the neutral salt spray test were performed. The results indicated that the steel can be effectively protected by the cold-sprayed coating.
     In order to put this process into industrial use, there are still many problems waiting for further research and improvement.
引文
[1] Padture NP, Gell M, Jordan E H. Science, 2002, 296: 280
    [2]周长华,张孝彬.热喷涂技术的现状和发展[J].材料科学与工程,1998,16(4):7173
    [3] Wang Q M, Wu Y N, Guo M H, Ke P L, Gong J, Sun C, Wen L S.Surf Coat Technol, 2005, 197:68
    [4] Nicholls J R, Simms N J, Chan W Y, Evans H E. Surf Coat Technol,2002, 149: 23
    [5]刘丽荣,张所信.金属/陶瓷梯度热障涂层的研究进展[J].连云港化工高等专科学校学报,2001,14(4):10~13
    [6]王学兵,张幸红,杜善义.梯度热障涂层的研究现状[J].中国表面工程,2004,3: 5~12
    [7]徐惠彬,宫声凯,刘福顺.航空发动机热障涂层材料体系的研究[J].航空学报.2000, 21(1):7~12
    [8] Mendelson M L, et al. Graded Thermal Barrier Coatings: evaluation [J]. Ceramic Engineering and Science Processing, 1994, 15(14):555~562
    [9]唐达培,高庆.梯度热障涂层的设计和性能与失效研究[J].宇航材料工艺,2006,5:12~15
    [10] Guo Hongbo, Gong Shengkai, Xu Huibin. Evaluation of hot-fatigue behaviors of EB-PVD gradient thermal barrier coatings[J]. Mater. Sci. Eng, 2002, A325: 261~269
    [11] Khor K A, Gu YW, Thermal p roperties of plasma-sprayed functionally graded thermal barrier coatings. Thin SolidFilms, 2000; 372: 104~113
    [12]谢兵,张本,刘杰,肖金生.陶瓷/金属梯度热障涂层动态设计软件的研制[J].武汉理工大学学报,2001,25(1):75~78
    [13] Zhang L M, Liu J, Yuan R z-et a1. Properties of TiC/Ni3A1 Composites and Structural Optimization of TiC/Ni3A1 FGM[J]. Mater Sci and Eng. 1995, 203(2): 272~275
    [14]张志焜,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000
    [15]徐滨士,马世宁,朱绍华,等.表面工程与再制造工程的进展[J].中国表面工程,2001,14(1):8~14
    [16]师昌绪,徐滨士,张平,等.21世纪表面工程的发展趋势[J].中国表面工程,2001,14(1):2~7
    [17]张显程,徐滨士,王海斗,吴毅雄.ZrO2-CoNiCrAlY功能梯度涂层残余应力分析[J].材料热处理学报,2005,26(2):86~93
    [18]郭洪波,宫声凯,徐惠彬.梯度热障涂层的设计[J].航空学报,2002,23(5):467~472
    [19]李永,张志民,马淑雅.耐热梯度功能材料的热应力研究进展[J].力学进展,2000, 30(4):571~580
    [20]刘筱薇,万新,吴护林.高温陶瓷复合涂层的组成与设计[J].重庆工业专科学校学报,2000,15(1):75~78
    [21]孙涛.材料表面改性粉末超音速冷喷涂实验研究:[大连理工大学硕士学位文].大连:大连理工大学,2002
    [22]陈全.EB-PVD制备NiCrAlCo高温合金薄板高温氧化行为研究:[哈尔滨工业大学硕士学位论文].哈尔滨:哈尔滨工业大学,2006
    [23] Y.H. Sohn, J.H. Kim, E.H. Jordan, M. Gell. Thermal cycling of EB-PVD MCrAlY thermal barrier coatings: I.Microstructural development and spallation mechanism [J]. Surface and Coatings Technology 146–147 2001,70~78
    [24]黎文献,张刚,赖延清,等.梯度功能材料的研究现状与展望[J].材料导报,2003,(17): 222~232
    [25] Erickson L C, Hawthorne H M, Troczynski T. Correlations between microstructural parameters, micromechanical properties and wear re-sistance of plasma sprayed ceramic coatings [J]. Wear, 2001, 250: 569~575
    [26]付永信,王建江,杜心康,张龙,叶明惠.热喷涂技术制备功能梯度材料涂层的发展状况[J].材料保护,2006,39(6):41~44
    [27] Leonardo Ajdelsztajn, Josep A. Picas, George E. Kim, Fernando L.Bastian, Ju8lie Schoenung. V. Provenzano. Oxidation behavior of HVOF sprayed nanocrystalline NiCrAlY powder [J]. Material Science and Engineering, 2002, A338 : 33~43.
    [28] W. Brandl, G. Marginean, D. Maghet, D. Utu.Effects of specimen treatment and surface preparation on the isothermal oxidation behaviour of the HVOF-sprayed MCrAlY coatings. Surface & Coatings Technology, 2004, 188–189:20~26
    [29] Chang-Jiu Li, Wen-Ya Li, Effect of sprayed powder particle size on the oxidation behavior of MCrAlY materials during high velocity oxygen-fuel deposition. Surface and Coatings Technology 2002, 162: 31~41
    [30] Strosnijder M F, Mevrel R, Bennett M J,The interaction of surface engineering and high temperature corrosion protection [J]. Mater at High Temperatures, 1994, 12(1):53
    [31]吴涛,朱流,郦剑,王幼文.热喷涂技术现状与发展[J].国外金属热处理,2005,26( 4):2~6
    [32]张玉娟,孙晓峰,金涛,韩松,断绪海,赵乃仁,管恒荣,胡壮麟.爆炸喷涂NiCrAlTaY涂层的微观组织分析[J].金属学报,2003,39(2):185~188
    [33]许磊,张春华,张松,等.爆炸喷涂研究的现状及趋势[J].表面改性技术,2004,29 (2) :21~25
    [34]鲍泽斌.冷喷涂纯铜涂层工艺优化设计及其性能研究:[辽宁工程技术大学硕士学位论文].辽宁:辽宁工程技术大学,2004
    [35]熊天英,吴杰,金花子,等.一种新喷涂技术—冷气动力喷涂[J].腐蚀科学与防护技术,2001,13(5):267~269
    [36] Alkhimov A.P., Kosarev V.F. et al. Method of Applying Coatings [P]. Russian Patent: 1618778, 1990
    [37] Alkimov A.P., Kosarev V F, Papyrin A N. A method of cold gas dynamic deposition. Dokl Akad Nauk SSSR, 1990,315 (5)
    [38] Alkhimov A.P., Kosarev V.F., and Papyrin A.N. A Method of Cold Gas-Dynamic Deposition. Sov.Phys. Dokl, 1990, 35 (12): 1047~1049
    [39] Alkhimov A.P., Papyrin A.N., Kosarev V.F., Nesterovich N.I., and Shushpanov M.M., Gas Dynamic Spraying Method for Applying a Coating [P]. U. S. Patent: 302,414, 1994, Reexamination Certificate, 1997
    [40]王佳杰,王吉孝,张颖,左文轩.冷喷涂Cu涂层过程中粒子速度的影响因素分析[J].焊接,2006,22~25
    [41]李文亚.粒子参量对冷喷涂层沉积行为、组织演变与性能影响的研究:[西安交通大学博士学位论文].西安:西安交通大学,2005
    [42] Van Steenkiste T.H. et al., Kinetic Spray Coating [J]. Surface and CoatingsTechnology, 1999,(111): 62~71
    [43]李文亚,李长久.冷喷涂特性[J].中国表面工程,2002,15(1):12~16
    [44] Li C J, Li W Y, Wang Y Y. Effect of Spray Angle on Deposition Characteristics in Cold Spraying. Moreau C, Marple B. Thermal Spray 2003: Advancing the Science and Applying the Technology [C]. OH: ASM International, 2003. 91~96.
    [45] T. Novoselova, P. Fox, R. Morgan, W. O’Neill, Experimental study of titanium/aluminium deposits produced by cold gas dynamic spray[J]. Surface & Coatings Technology,2006, 200: 2775~2783
    [46]熊天英.国内外冷喷涂领域的最新进展.热加工,2003(9):10~12
    [47]孙涛.材料表面改性粉末超音速冷喷涂实验研究:[大连理工大学硕士学位论文].大连:大连理工大学, 2002
    [48]梁秀兵,徐滨士.先进的冷喷涂技术[J].中国设备工程,2001,19~21
    [49]吴杰,金花子,吴敏捷,熊天英.冷气动力喷涂技术研究进展[J].材料导报,2003,1(17):59~62
    [50] J. Vleck, H. Huber, H. Voggenreiter, A. Fischer, E. Lugscheider, H. Hallen, G. Pache, in: C.C. Berndt, K.A. Khor, E.F. Lugscheider (Eds.), Thermal Spray 2001: New Surfaces for a New Millennium, ASM International, Materials Park, OH, 2001, 356
    [51]李文亚,李长久,王洪涛,等.关于冷喷涂粒子临界速度[C].上海:第十一次全国焊接会议,2005:287~289
    [52]侯根良,王汉功,袁晓静,苏勋家.基于超音速火焰喷涂技术的冷喷涂技术实现与流场分析[J].材料科学与工程学报,2005,23(12):160~162
    [53] Karthikeyan J, Kay C M, Lindeman J, et al .Cold spray processing of titanium powder. Proceedings of the 1st Intemational Thermal Spray Conference.Montreal, Canada,2000, 255~262
    [54] Vicek J. et al. Kinetic Powder Coppaction Applying the Cold Spray Process. A Study on Parameters, Thermal Spray, 2001,417~422
    [55] Gilmore D L, Dykhuizen R C, Neiser R A, Roemer T J, Smith M F. Particle Velocity and Deposition Efficiency in the Cold Spray Process.Journal of Thermal Spray Technology[J], 1999, 8(4): 576~582
    [56]王晓放,黄钟岳,王德真,杨凤珍,孙涛.新型材料改性方法-常温超音速冷喷涂制备功能涂层[J].机械工程材料,2002,26(5):30~33
    [57]赵惠.镁合金表面锌铝合金冷喷涂涂层的磨损和腐蚀行为:[辽宁工程技术大学硕士学位论文].辽宁:辽宁工程技术大学,2004
    [58] R.C.Dykhuizen, M.F.Smith. Gas Dynamic Principles of Cold Spray[J]. Journal of Thermal Spray Technology, 1998(7):205~212
    [59]吕家顺.冷气动力喷涂Al-Pb合金涂层的研究:[辽宁工程技术大学硕士学位论文].辽宁:辽宁工程技术大学,2003
    [60] T.Stoltenhoff, H. Kreye, H.J. Richter. J. Thermal Spray. Technol, 2002, 11 (4) :542~550
    [61] Dykhuizen R.C. and Smith M.F., Gas Dynamic Principles of Cold Spray [J], Journal of Thermal Spray Technology, 1998, Volume 7(2): 205~212
    [62] Dykhuizen R.C. et al., Impact of High Velocity Cold Spray Particles[J], Journal of Thermal Spray Technology, 1998, 8(4): 561
    [63] Stoltenhoff T., Voyer J. and Kreye H. Cold Spraying- State of the Art and Applicability. Thermal Spray, (2002),366~374
    [64]高荣发.热喷涂[M],第一版.北京:化学工业出版社,1992.142
    [65] D.Zhang, P.H.Shipway, D.G.McCartney.Particle-Substrate Interactions in Cold Gas Dynamic Spraying. Thermal Spray, 2003,45~52
    [66]沈金文,吕广庶,马壮,等.在热震试验中热障涂层的裂纹形成和扩展[J].新技术新工艺,2002(4): 39~41
    [67] Alkimov A P, Klinkov S V, Kosarev V F. Thermophysics and Aeromechanics, 2000,7(3):375
    [68]熊天英,李铁藩,吴杰,等.中国专利,CN 01128225.8,2004
    [69]平浚.射流理论基础及应用.北京:宇航出版社,1995,34~127
    [70]熊天英,吴杰,刘志文,金花子,刘星.用冷喷涂法制备PTC陶瓷的Al电极[J].表面技术,2002,31(5):4
    [71]王以飞,王晓放,黄钟岳,王德真.冷喷涂工艺中射流过程的数值模拟研究[J].表面技术,2003,32(1):28
    [72] ANSYS 8.0热分析教程与实例解析.北京:中国铁道出版社,2005
    [73] Zhang Xiancheng, Gong Jianming, Tu Shandong.Effects of spraying condition and material properties on the residual stress in plasma spraying [J]. Journal Materials Science and Technology , 2004 ; 20 (2) : 149~153.
    [74]张显程,徐滨士,王海斗,吴毅雄.ZrO2-CoNiCrAlY功能梯度涂层残余应力分析[J].材料热处理学报,2005,26:86~90
    [75] Y. Ichikawa, K. Sakaguchi, K. Ogawa, T. Shoji. Deposition Mechanisms of Cold Gas Dynamic Sprayed MCrAlY Coatings [J]. Thermal Spray 2007: Global Coating Solutions, 2007,54~59
    [76] Qiang Zhang, Chang-Jiu Li, Cheng-Xin Li , Guan-Jun Yang , Siu-Ching Lui. Study ofoxidation behavior of nanostructured NiCrAlY bond coatings deposited by cold spraying [J]. Surface & Coatings Technology, 2008
    [77] P.Poza, P.S.Grant. Microstructure evolution of vacuum plasma sprayed CoNiCrAlY Coatings after heat treatment and isothermal oxidation, Surface and coatings Technology, 2006, 201: 2887~2896.
    [78] J.Karthikeyan, T.Laha, K.Balani, A.Agarwal, N.Munroe. Microstructural and Electrochemical Characterization of Cold-sprayed 1100 Aluminum Coating, ITSC' 2004,341~346

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700