一体化标识网络移动性管理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在传统互联网的协议体系中,IP地址同时具有“身份”和“位置”双重属性。IP地址的身份属性要求IP地址不随主机位置的移动而变化,以保证传输层的连接不中断;IP地址的位置属性则要求IP地址随着主机的移动而改变,以保证IP地址在新的网络拓扑中能够聚合,实现路由系统的可扩展。随着互联网规模的迅速扩大和用户数量的不断增加,IP地址双重属性的内在矛盾日益显著,不但影响路由系统的可扩展性,也不利于支持主机的移动。
     国内外研究学者建议将IP地址的身份属性和位置属性分离,这样不仅能够解决核心网路由的可扩展性问题,还可以有效地支持主机的移动。论文基于身份和位置分离的一体化标识网络,在有效支持路由可扩展性的同时,对身份与位置分离的移动性管理机制进行了深入研究。本文主要的创新工作如下:
     1.针对现有一体化标识网络移动管理方案存在的映射更新开销和切换时延都较大的问题,提出了一种基于身份与位置分离的层次移动管理机制。该机制引入了移动代理交换路由器,根据主机移动范围的不同区分域内移动和域间移动。对于域内移动,移动代理交换路由器作为域内的代理保持移动终端的映射关系不变,不需要发送映射更新消息给映射系统和通信对端节点所连接的交换路由器,减少了映射更新花费。对于域间移动,设计了一种联合的映射表,能够有效地支持域间的快速切换。为了评估该机制,从理论模型和仿真实验两个方而进行了分析。分析结果表明所提出的层次移动管理机制有较低的信令花费和切换时延,并且设计的联合映射表结构是可行的。
     2.为了降低映射更新开销和数据包阻塞概率,提出了一种基于身份与位置分离的映射转发位置管理机制。通过在移动切换中的新旧交换路由器之间建立映射转发链,保持对端交换路由器和映射服务器上移动终端的映射关系不变,降低位置更新开销。同时,不变的映射关系能保证数据包的正确转发,减少了主机移动而引起的数据包阻塞概率。为了评估该机制,建立了两个解析模型,分别给出了该机制总的费用函数和终端移动过程中由于映射缓存更新不及时导致的数据包阻塞概率。此外,与未引入映射转发链的方案进行了对比,结果表明所提出的映射转发位置管理机制能有效降低的数据包阻塞概率,并且在终端移动性比率高的情况下可以保证低的信令开销。
     3.为了减少移动过程中不必要的位置更新信令并降低移动终端能量消耗,提出了一种基于身份与位置分离的寻呼机制。在该方案中,寻呼信令不必在无线链路上传输就可以查询到移动终端的位置,能够节省无线链路的资源。通过建立解析模型,给出了信令开销的计算公式,并分析了不同系统参数对信令花费的影响。性能分析结果表明在寻呼域范围小于一定值的情况下,寻呼机制能够减少信令开销,从而增强了网络的性能。
     4.针对集中式移动性管理存在的单个移动锚点易失效和易成为网络瓶颈的问题,提出了一种基于身份与位置分离的分布式移动管理方法。映射服务器存储全局的接入标识前缀与自治系统号之间映射关系,自治系统内交换路由器组成了单跳分布式哈希表结构,利用冗余的存储机制和分布式哈希表结构的特性增强系统的生存性。为了评估该机制的性能,给出了服务阻塞概率、系统响应时间和费用函数的解析模型,研究了各种系统参数对这三方面性能的影响,并与移动IPv6和另一种分布式移动性管理方案进行了对比分析。
In the traditional Transmission Control Protocol/Internet Protocol (TCP/IP) stack, an IP address represents not only the identity of a host but also its topological location. When a node moves into a new subnet, the IP address as an identifier of a node is required to maintain invariable, in order to keep connection alive. Whereas, the IP address as a locator of a node should be aggregative in the new topology and the node has to configure a new IP address, in order to reduce the routing table entries and address the routing scalability issues. With the rapid development of Internet and the increasing number of users, the dual semantics of the IP address causes many serious problems including routing scalability and host mobility.
     Researchers propose the Identifier/Locator separation solution. which can reduce routing entries and keep connection survivability. Universal Identifier Networks is an Identifier/Locator separation networks, and this dissertation studies the mobility management schemes of Universal Identifier Networks. The main research innovations are as follows:
     1. In the current mobility solution of Universal Identifier Networks, the mapping update overhead and the handover delay are large. To address these issues, this dissertation proposes a hierarchical mobility management scheme based on the identifier/locator separation (MMILS). MMILS distinguishes intra-domain mo-bility and inter-domain mobility by introducing an Mobility Agent Switching Router (MASR). For intra-domain mobility, the MASR keeps the Mobile Node's (MN's) identifier-to-locator mapping invariable, so it avoids sending the mapping update to the mapping system and the Switching Route (SR) of each correspon-dent node (CN). For inter-domain mobility, this dissertation designs a united mapping table in the MASR to support fast update and handover. By estab-lishing an analytical model and implementing it in our test-bed, this dissertation analyzes the efficiency of MMILS. The results demonstrate that the signaling cost and the handover delay of MMILS are low. and the united mapping table is feasible.
     2. To reduce the mapping update cost and the packet blocking probability, this dissertation proposes a Mapping Forwarding (MF) scheme for location manage-ment in the identifier/locator separation architecture. The MF scheme sets up a MF chain to keep the MN's identifier-to-locator mapping invariable. As long as the MN moves under the same MF chain, the MN's mapping in the SR of each CN does not need to be updated, thus reducing the location update signaling cost. Meanwhile, the unchanged mapping assures the correct forwarding of pack-ets, which reduces mobility-related disruption. To evaluate the MF scheme, this dissertation establishes two analytical models to formulate the mobility-related blocking probability and the total protocol cost. The performance results show the MF scheme can effectively reduce the blocking probability compared with the location management scheme without the MF strategy. Meanwhile, our analysis demonstrates that the MF scheme has a low overhead when the mobility rate is high.
     3. To reduce the location update signalling cost and save the power consumption of MNs, this dissertation proposes paging extensions scheme for Universal Identifier Networks. It is unnecessary for the paging signalling to transmit in the wireless links and CNs can acquire the MN's location information, so the scheme can save wireless resources. By developing an analytic model, this dissertation formulates the signalling cost and analyzes the influence of different factors on the signalling cost. The analytical results show that when the paging area is less than a certain value, paging scheme could reduce the total signalling cost and enhance the network performance.
     4. Centralized mobility management schemes face scalability issues due to a sin-gle mobility agent of failures and the creation of network bottlenecks. To ad-dress these issues, this dissertation proposes a Distributed Mobility Manage-ment scheme in Identifier/Locator Separation networks (DMMILS). The Map-ping Server stores global mappings between identifier prefixes and Autonomous Systems Numbers (ASNs), and the SRs in each AS constitute one-hop DHT (Distributed Hash Table) ring. The redundant storage mechanism and the char-acteristics of the DHT structure can enhance the system survivability. To evalu-ate the reliability and the efficiency of DMMLIS. this dissertation develops two analytical models to formulate the service blocking probability, the system re-sponse time and the total protocol cost. Meanwhile, this dissertation analyzes the influence of system parameters on DMMILS and compares the performance with Mobile IPv6and GHAHA (Global Home Agent to Home Agent).
引文
[1]H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, et al. A Layered Naming Architecture for the Internet, In Proceedings of ACM SIGCOMM 2004 Confer-ence on Computer Communications Review, volume 34, pages 343 - 352. 2004.
    [2]D. Meyer, L. Zhang. K. Fall. Report from the IAB Workshop on Routing and Addressing. IETF RFC 4984, September 2007.
    [3]X. Zhao, J. Dante. J. Schiller. Routing Scalability: An Operator's View. IEEE Journal on Selected Areas in Communications, 28(8):1262-1270. 2010.
    [4]GENI:Global Environment for Network Innovations. http://www.geni.net.
    [5]FIND:Futurc Internet Network Design. http : //find.isi.edu.
    [6]FIA:Future Internet Architecture Project. http://www.nsts-fia.net/.
    [7]NDN:Named Data Networking. http://yww.naaed-data.net/index.html.
    [8]MobilityFirst. http://mobilityfirst.winlab.rutgers.edu/.
    [9]NEBULA. http://nebula.cis.upenn.edu/.
    [10]XIA:eXpressive Internet Architecture. http://www.cs.cmu.edu/~xia/.
    [11]FIRE:Future Internet Research and Experimentation. http://cerdis.europa.eu/ist/fet/comms-fire.htm.
    [12]AKARLArchitccture Design Project for New Generation Network. http://akari-project.nict.go.ip/eng/index2.htm.
    [13]张宏科,苏伟.新网络体系基础研究—一体化网络与普适服务.电子学报,35(4):593-598:2007.
    [14]董平,秦雅娟,张宏科.支持普适服务的一体化网络研究.电子学报,35(4):599-606,2007.
    [15]杨冬,周华春,张宏科.基于一体化网络的普适服务研究.电子学报,35(4):607-613.2007.
    [16]C. Perkins. IP Mobility Support for IPv4. IETF RFC 3344, August 2002.
    [17]D. Johnson, C. Perkins, J. Arkko. Mobility Support in IPv6. IETF RFC 3775, June 2004.
    [18]S. Gundavelli, K. Leung, V. Devarapalli, et al. Proxy Mobile IPv6. IETF RFC 5213, August 2008.
    [19]V. Devarapalli, R. Wakikawa, A. Petrescu. Network mobility (NEMO) basic support protocol. IETF RFC 3963, January 2005.
    [20]E. Perera, V. Sivaraman, A. Seneviratne. Survey on Network Mobility Support. SIGMOBILE Mobile Computing and Communications Review,8(2):7-19,2004.
    [21]R. Koodli, C. E. Perkins. Mobile IPv4 Fast Handovers. IETF RFC 4988; October 2007.
    [22]R. Koodli. Mobile IPv6 Fast Handovers. IETF RFC 5268, June 2008.
    [23]H. Soliman, C. Castelluccia. K. Malki, et al. Hierarchical Mobile IPv6 Mobility Management (HMIPv6). IETF RFC 4140, August 2005.
    [24]E. Fogelstroem, A. Jonsson, C. E. Perkins. Mobile IPv4 Regional Registration. IETF RFC 4857, June 2007.
    [25]X. Zhang, J. G. Castellanos, A. T. Campell. P-MIP:Paging Extensions for Mobile ip. Mobile Networks and Applications,7(2):127-141.2002.
    [26]J. Kempf. Problem Statement for Network-Based Localized Mobility Manage-ment (NETLMM). IETF RFC 4830, April 2007.
    [27]K. Kong. W. Lee, Y. Han, et al. Mobility Management for All-ip Mobile Net-works:Mobile IPv6 vs. Proxy Mobile IPv6. IEEE Wireless Communications, 15(2):36-45.2008.
    [28]S. Krishnan, R. Koodli, P. Loureiro. et al. Localized Routing for Proxy Mobile IPv6. IETF Draft, draft-ictf-netext-pmip-lr-07, October 2011.
    [29]F. Xia, B. Sarikaya, J. Korhonen. et al. RADIUS Support for Proxy Mobile IPv6. IETF Draft, draft-ietf-netext-radius-pmip6-06. January 2012.
    [30]C. Bernardos. Proxy Mobile IPv6 Extensions to Support Flow Mobility. IETF Draft, draft-ictf-netext-pmipv6-flowmob-02, October 2011.
    [31]Internet Engineering Task Force. http://www.ietf.org.
    [32]Internet Research Task Force Routing Research Group. http://tools.istf.org/group/irtf/trac/wiki/RoutingRssearchGroup.
    [33]D. Farinacci. V. Fuller. D. Meyer, et al. Locator/ID Separation Protocol (LISP). IETF Draft, draft-ietf-lisp-22. February 2012.
    [34]董平,杨冬,秦雅娟,et al,新一代互联网移动管理机制研究.电子学报.36(10):1916-1922,2008.
    [35]P. Dong, H. Zhang, H. Luo. A Network-based Mobility Management Scheme for Future Internet. Computers and Electrical Engineering.36(2):291-302,2010.
    [36]C. Vogt. Six/One:A Solution for Routing and Addressing in IPv6. IRTF Draft, draft-vogt-rrg-six-one-02. October 2009.
    [37]E. Nordmark, M. Bagnulo. Shim6:Level 3 Multihoming Shim Protocol for IPv6. IETF RFC 5533, June 2009.
    [38]M. Menth, M. Hartmann, D. Kelin. Global locator, Local locator, and Identi-fier Split (GLI-Split). Technical Report 470, University of Wrzburg Institute of Computer Science, April 2010.
    [39]B. Quoitin, L. Iannone, C. Launois, et al. Evaluating the Benifits of the Loca-tor/Identifier Separation. In Proceedings of ACM MobiArch 2007. Kyoto, Japan, June 2007.
    [40]D. Farinacci, V. Fuller, D. Lewis, et al. LISP Moblie Node. IETF Draft, draft-meyer-lisp-mn-06, October 2011.
    [41]M. Menth, D. Klein, M. Hartmann. Improvements to LISP Mobile Node. In Proceedings of 2010 22nd International Teletraffic Congress (ITC), pages 1-8. Sepetember 2010.
    [42]V. Fuller, D. Farinacci. LISP Map Server Interface. IETF Draft, draft-ietf-Iisp-ms-16, March 2012.
    [43]V. Fuller, D. Farinacci, D. Meyer, et al. LISP Alternative Topology (LISP+ALT). IETF Draft, draft-ietf-lisp-alt-10, December 2011.
    [44]C. Sangil, K. Sangtae, K. Seokjoo. Network-based Mobility Control in LISP Networks. IETF Draft, draft-sichoi-lisp-ar-00, Sepetember 2010.
    [45]H. Chan, K. Sangtae. K. Seokjoo. Integrating PMIP into LISP Network. IETF Draft, draft-chan-lisp-pmip-00, October 2010.
    [46]R. Whittle. Ivip (Internet Vastly Improved Plumbing) Architecture. IETF Draft, draft-whittle-ivip-arch-04, September 2010.
    [47]R. Whittle, S. Russert. TTR Mobility Extensions for Core-Edge Separation Solutions to the Internet's Routing Scaling Problem. http://www.firstpr.com.au/ip/ivip/TTR-Mobility.pdf
    [48]R.Atkinson. ILNP Concept of Operations. IETF Draft. draft-rja-ilnp-intro-11. February 2011.
    [49]A. Randall, B. Saleem, H Stephe. Evolving the Internet Architecture Through Naming. IEEE Journal on Selected Areas in Communications,28(8):1319-1325, 2010.
    [50]J. Jung, E. Sit, H. Balakrishna, et al. DNS Performance and the Effectiveness of Caching. IEEE/ACM Transactions on Networking,10(5):589-603,2002.
    [51]F. Patrick. Hierachical IPv4 framework. IETF RFC 6306, April 2011.
    [52]A. Ford, C. Raiciu, M. Handley, et al. Architectural Guidelines for Multipath TCP Development. IETF RFC 6182, March 2011.
    [53]J. Pan, S. Paul. R. Jain, et al. MILS A:A Mobility and Multihoming Supporting Identifier Locator Split Architecture for Next Generation Internet. In Proceedings of IEEE GLOBECOM 2008, pages 1-6. December 2008.
    [54]J. Pan, R. Jain, S. Paul, et al. Enhance MILSA Architecture for Naming, Ad-dressing, Routing and Security Issues in the Next Generation Internet. In Pro-ceedings of IEEE International Conference on Communications,2009. ICC'09, pages 1-6. Augest 2009.
    [55]J. Pan, R. Jain, S. Paul, et al. New Evolutionary Architecture for Scalability, Mobility, and Multihoming in the Future Internet. IEEE Journal on Selected Areas in Communication,28(8):1344-1362,2010.
    [56]R. Moskowitz, P. Nikander. Host identity protocol (HIP) architecture. IETF RFC 4423. May 2006.
    [57]P. Nikander, T. Henderson, C. Vogt, et al. End-Host Mobility and Multihoming with the Host Identity Protocol. IETF RFC 5206, April 2008.
    [58]杨水根.主机标识协议的移动性管理研究[学位论文].北京交通大学.2009.
    [59]Tunneling Route Reduction Protocol (TRRP). http://bi11.herrin.us/network/trrp.html.
    [60]Tunneling Route Reduction Protocol (TRRP) Conceptual Summary and Anal-ysis for RRG. http://bill.herrin.us/network/trrp-rrg.html.
    [61]B. Zhang. V. Kambhampati, D. Massey, ct al. A Secure and Scalable Internet Routing Architecture (SIRA). In Proceedings of ACM SIGCOMM. Pisa, Italy, September 2006.
    [62]J. Adan. Tunneled Inter-domain Routing. IETF Draft, draft-adan-idr-tidr-01, November 2006.
    [63]X. Xu. Routing Architecture for the Next Generation. IETF Draft, draft-xu-rangi-01, July 2009.
    [64]V. Khare. D. Jen, X. Zhao, et al. Evolution Towards Global Routing Scalability. IEEE Journal on Selected Areas in Communications,28(8):1363-1375,2010.,
    [65]D. Jen, L. Zhang. Understand Mapping. IETF Draft, draft-jen-mapping-00, October 2009.
    [66]L. Zhang, R. Wakikawa, Z. Zhu. Support Mobility in the Global Internet. In Pro-ceedings of ACM workshop on mobile internet through cellular networks, pages 1-6. Beijing, China, September 2009.
    [67]董平.基于身份与位置分离映射的可扩展路由体系研究[学位论文].北京交通大 学.2008.
    [68]P. Dong, H. Wang, Y. Qin, et al. Evaluation of Scalable Routing Architecture Based on Locator/Identifier Separation. In Proceedings of IEEE G LOBECOM Workshops. Honolulu, Hawaii, USA,2009.
    [69]J. Xie, I. Akyildiz. A Novel Distributed Dynamic Location Management Scheme for Minimizing Signaling Costs in Mobile IP. IEEE Transactions on Mobile Computing,1(3):163-175,2002.
    [70]Y. Fang, I. Chlamtac, Y. Lin. Portable Movement Modeling for PCS Networks. IEEE Transactions on Vehicular Technology,49(4):1356-1363.2000.
    [71]G. Xie, J. Chen, H. Zheng. Handover Latency of MIPv6 Implementation in Linux. In Proceedings of IEEE GLOBECOM, pages 1780-1785. Washington, DC. USA, November 2007.
    [72]Y. Han, S. Min. Performance Analysis of Hierarchical Mobile IPv6 does it Im-prove Mobile IPv6 in terms of Handover Speed. Wireless Personal Communica-tion,48(4):463-483,2009.
    [73]S. Fu, M. Atiquzzaman. Handover Latency Comparison of SIGMA, FMIPv6, HMIPv6, and FHMIPv6. In Proceedings of IEEE GLOBECOM, pages 3809-3813. St. Louis, USA, November 2005.
    [74]The 32-bit AS Number Report,2011. http://www.potaroo.net/tools/asn32/.
    [75]2010 IPv4 Address Use Report. http://www.bgpexpert.com/addrspace2010.php.
    [76]L. Iannonc, O. Bonavcnturc. On the Cost of Caching Locator/ID Mappings. In Proceedings of 2007 ACM CoNEXT conference, pages 1-12. NY, USA, December 2007.
    [77]H. Luo, Y. Qin, H. Zhang. A DHT-based Identifier-to-Locator Mapping Approach for a Scalable Internet. IEEE Transactions on Parallel and Distributed Systems. 20(10):1790-1802,2009.
    [78]E. Karpilovsky, J. Rexford. Using Forgetful Routing to Control BGP Table Size. In Proceedings of ACM CoNEXT. pages 1-12. Lisbon, Portugal, December 2006.
    [79]BGP Routing Table Analysis Reports,2011. http://bgp.po
    [80]C. Makaya, S. Pierre. Location Tracking with Distributed HLR's and Pointer Forwarding. IEEE Transactions on Vehicular technology,47(1):58-64,1998.
    [81]W. Ma, Y. Fang. Two-Level Pointer Forwarding Strategy for Location Manage-ment in PCS Networks. IEEE Transactions on Mobile Computing,1(1):32-45. 2002.
    W. Ma, Y. Fang. Dynamic Hierarchical Mobility Management Strategy for Mobile IP Networks. IEEE Journal on Selected Areas in Communications, 22(4):664-676:2004.
    [83]M. Yi, C. Hwang. A Pointer Forwarding for Minimizing Signing Cost in Hierar-chical Mobile IPv6 Networks. In Proceedings of the EUC 2004. August 2004.
    [84]S. Pack. B. Lee, T. Kwon, et al. A Pointer Forwarding Scheme with Mobility-aware Binding Update in Mobile IPv6 Networks. Computer Communications, 31(5):873-884:2008.
    [85]M. Yi, J. Choi, J. Choi, et al. A Pointer Forwarding Scheme for Minimizing Signaling Costs in Proxy Mobile IPv6 Networks. In Proceedings of 2010 7th IEEE Consumer Communications and Networking Conference (CCNC), pages 1-5. August 2010.
    [86]Z. Yan, H. Zhou, H. Zhang. A Forwarding-chain based Mobile Multicast Scheme with Management Support. In Proceedings of Global Telecommunications Con-ference (GLOBECOM 2010), pages 1-6. November 2010.
    [87]Y. Li, I. Chen. Design and Performance Analysis of Mobility Management Schemes Based on Pointer Forwarding for Wireless Mesh Networks. IEEE Trans-actions on Mobile Computing,10(3):349-361,2011.
    [88]D. Saucez. Mechanisms for interdomain Traffic Engineering with LISP. Ph.D. thesis. Louvain School of Engineering Universit'e catholique de Lou vain,2011.
    [89]L. Shou-Chih, L. Guanling, C. Wen-Tsuen. et al. Architecture for Mobility and QoS Support in All-IP Wireless Networks. IEEE Journal on Selected Areas in Communications,22(4):691-705,2004.
    [90]I. F. Akyildiz. J. S. M. Ho, Y.-B. Li. Movement-based Location Update and Selective Paging for PCS Networks. IEEE/ACM Transactions on Networking, 4(4):629-638.1996.
    [91]R.-H. Liou, Y.-B. Lin. S.-C. Tsai. An Investigation on LTE Mobility Manage-ment. IEEE Transactions on Mobile Computing,2011. Accepted, publish online.
    [92]K. Hong. H. Jung, S. Lee. Cost-Effective IP Paging for Wireless Internet. In Proceedings of IEEE Globecom 2007. pages 1982-1986. December 2007.
    [93]H. T. Do, Y. Onozato. A Comparison of different Paging Mechanisms for Mobile IP. Wireless Networks,13(3):379-395,2007.
    [94]J. Xie. User Independent Paging Scheme for Mobile IP. Wireless Nehworks, 12(2):145-158:2006.
    [95]C. Rose. R. Yates. Minimizing the Average Cost of Paging under Delay Con-straints. ACM-Baltzer Journal of Wireless Networks (WINET), pages 211-219, 1995.
    [96]J. Lee, T. Chung, S. Pack, et al. Shall We Apply Paging Technologies to Proxy Mobile IPv6. In Proceedings of the 3rd international workshop on Mobility in the evolving internet architecture, pages 37-42. Augest 2008.
    [97]S. Jin, C. Yoon, S. Choi. A Simple Remedy for Idle Mode via Proxy MIP. IEEE Communications Letters,12(6):423-425,2008.
    [98]S. Yang, Y. Qin, H. Luo, et al. P-HIP:Paging Extensions for Host Identity Protocol. In Proceedings of IEEE International Conference on Communications (ICC 2008). October 2008.
    [99]H. Chan. Requirements of distributed mobility management. IETF Draft, draft-chan-dmm-requirements-00. March 2012.
    [100]Distributed Mobility Management (DMM) Group. http://datatracker.ietf.org/wg/dmr
    [101]R. Kuntz, D. Sudhakar. R. Wakikawa, et al. A Summary of Distributed Mobility Management. IETF Draft, draft-kuntz-dmm-summary-01, August 2011.
    [102]P. Bertin, S. Bonjour, J. Bonnin. Distributed or Centralized Mobility. In Pro-ceedings of IEEE Global Telecommunications Conference, pages 1-6. November 2009.
    [103]P. Thubert, R. Wakikawa. V. Devarapalli. Global HA to HA Protocol. IETF Draft, draft-thubert-mext-global-haha-01. July 2009.
    [104]R. Wakikawa. G. Valadon, J. Murai, et al. Global HA to HA Protocol Specifica-tion. IETF Draft, draft-wakikawa-mext-global-haha-spec-02, September 2011.
    [105]R. Wakikawa, G. Valadon, J. Murai. Migrating Home Agents Towards Internet-scale Mobility Deployments. In Proceedings of the 2006 ACM CoNEXT confer-ence, pages 1-10. December 2006.
    [106]G. Fabio, O. Antonio, J. Carlos. Flat Access and Mobility Architecture:an IPv6 Distributed Client Mobility Management Solution. In Proceedings of IEEE IN-FOCOM Workshop on Mobility Management in the Networks of the Future World, pages 361-366. April 2011.
    [107]C. Bernardos, F. Giust. A IPv6 Distributed Client Mobility Management Ap-proach using Existing Mechanisms. IETF Draft, draft-bernardos-mext-dmm-cmip-00, March 2011.
    [108]M. Fisher, F. Antonio, A. Kopsel, et al. A Distributed IP Mobility Approach for 3G SAE. In Proceedings of 19th International Symposium on Personal, Indoor and Mobile Radio Communications, pages 1-6. September 2008.
    [109]Z. Zhu, R. Wakikawa, L. Zhang. SAIL:A Scalable Approach for Wide-Area IP Mobility. In Proceedings of 2011 IEEE Conference on Computer Communica-tions Workshops (INFOCOM WKSHPS), pages 367-372. April 2011.
    [110]Y. Zhai, Y. Wang, I. You, et al. A DHT and MDP-based Mobility Management Scheme for Large-Scale Mobile Internet. In Proceedings of IEEE INFOCOM Workshop on Mobility Management in the Networks of the Future World, pages 379-384. April 2011.
    [111]C. Bernardos, A. Oliva, F. Giust, et al. A PMIPv6-based Solution for Distributed Mobility Management. IETF Draft, draft-bernardos-dmm-pmip-00, January 2012.
    [112]C. Bernardos. J. Zuniga. Pmipv6-based distributed anchoring. IETF Draft, draft-bernardos-dmm-distributed-anchoring-00, March 2012.
    [113]S. Koh, J. Kim, H. Jung, et al. Use of Proxy Mobile IPv6 for Distributed Mobility Control. IETF Draft, draft-jikim-dmm-pmip-00, March 2012.
    [114]M. Gohar, S. Koh. Network-Based Distributed Mobility Control in Localized Mobile LISP Networks. IEEE Communications Letters,16(1):104-107,2012.
    [115]H. Poul. T. Kishor. Network Survivability Modeling. Computer Networks, 53(8):1215-1234.2009.
    [116]K. John, L. Wei, K. Demetrios. A Generalized Model for Network Survivability. In Proceedings of the 2003 conference on Diversity in computing.2003.
    [117]F. Shaojian. A. Mohammed. Survivability Evaluation of SIGMA and Mobile IP. Computer Networks,43(3):933-944,2007.
    [118]C. Makaya, S. Pierre. An Analytical Framework for Performance Evaluation of IPv6-Based Mobility Management Protocols. IEEE Transactions on Wireless Communications,7(3):972-983.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700