聚苯胺—铁氰化镍纳米复合材料的可控制备与电化学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机-无机纳米复合材料能够兼具有机材料和无机材料的优异性能,产生协同优化效应甚至新的功能,在材料科学与器件制造领域日益受到人们的关注。在众多有机-无机复合材料中,聚苯胺(PANI)与铁氰化镍(NiHCF)的复合有利于提高材料的整体性能,在超级电容器(ESC)、电催化与生物传感器等方面有广泛的研究前景。我们的工作主要包括下面两个方面的内容:
     首先,我们采用循环伏安一步共聚法在碳纳米管修饰的铂基体上制备了电活性碳纳米管/聚苯胺/铁氰化镍(CNTs/PANI/NiHCF)复合膜。用傅立叶变换红外光谱(FT-IR)、X射线能谱仪(EDS)和扫描电镜(SEM)研究了复合膜组成及其表面形貌,并用循环伏安(CV)、恒电流充放电和电化学阻抗(EIS)等测试了复合膜的循环稳定性与电化学容量性能。研究表明:复合膜为三维多孔有序的网络状结构,PANI和NiHCF以纳米颗粒形式存在并沿CNTs均匀分布;在电流密度为2 mA/cm2时,CNTs/PANI/NiHCF复合膜的比容量高达262.28 F/g,比能量为29.51 Wh/kg,电流密度为10 mA/cm2时比功率可达10228.61 W/kg;在2000次循环充放电过程中,复合膜的电容量仅衰减19.92%,电荷充放电效率一直保持在99%以上。
     再次,通过调节制备液中苯胺单体浓度对其粒径进行有效控制,合成了三种不同尺寸的PANI-NiHCF纳米复合颗粒。初步探讨纳米颗粒的形成机理并研究其组成/结构-性能的关系;通过X射线能谱仪、扫描电镜与傅立叶变换红外光谱研究纳米颗粒的组成及其微观结构;用循环伏安、电化学阻抗等技术测试纳米颗粒的电荷传递动力学与电化学性能。实验表明:PANI-NiHCF纳米颗粒均呈立方体结构,分散性较好;PANI-NiHCF-I具有较好的电荷传递动力学特征,其电荷传递系数α为0.467;经1000次循环之后,PANI-NiHCF-II的离子交换容量仅衰减8.7%,具有优异的电化学稳定性;与PANI-NiHCF-III不同,PANI-NiHCF-I与PANI-NiHCF-II均可利用电控离子交换技术(ESIX)对碱金属离子进行分析与检测。
Organic-inorganic nanocomposite materials can show synergistic effects that suppress undesirable properties of individual components and generate enhanced, even create totally new, functionalities. They have attracted more and more attention because of excellent properties in materials synthesis and device fabrication. Among the vast number of hybrid materials, the combination of polyaniline (PANI) and nickel hexacyanoferrate (NiHCF) has been extensively investigated to improve overall performances of electrochemical supercapacitor (ESC), elec-trocatalysts biosensors and so on. The main contents of our work are summarized as follows:
     Firstly, the electroactive composite films of CNTs/PANI/NiHCF were synthesized on platinum substrates modified with CNTs by one-step co-polymerization of cyclic voltammetry. The components and morphology of the composite films were characterized by fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDS), and scanning electron microscope (SEM). Cyclic voltammetry (CV), galvanostatic charge/discharge, and electrochemical impedance spectroscope (EIS) were used to study the cycling stability and electrochemical capacitive performance of the CNTs/PANI/NiHCF film. Experimental results show the three-dimensional porous network composite films with uniform distribution of both PANI and NiHCF nanoparticles along the CNTs are formed by this new method. The specific capacitance of the inorganic-organic hybrid films can reach 262.28 F/g with a specific energy of 29.51 Wh/kg at the current density of 2 mA/cm2, and the specific power is 10228.61 W/kg at the current density of 10 mA/cm2. Meanwhile, the films show that the capacity decay is only 19.92% after 2000 charge/discharge cycles and the coulombic efficiency is over 99%.
     Secondly, PANI-NiHCF nanocomposite particles with three different size had been achieved by adjusting the concentration of aniline in the process of preparation. The formation mechanism of PANI-NiHCF was discussed and the composition/structure-function relationship was also studied in our Work. The composition and microstructure of nanocomposite particles were analyzed by fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, and scanning electron microscope. Cyclic voltammetry and electrochemical impedance spectroscope were used to investigate the dynamics of charge transport and its electrochemical performances. Experimental results show that PANI-NiHCF nanoparticles reveal cube-structure, and are uniform and dispersed. And PANI-NiHCF-I are characterized by high dynamics of charge transport, and the calculated value of the transfer coefficientαis 0.467. PANI-NiHCF-II has good stability, and its capacity decay is only 8.7% after 1000 cycles of potential scan. Compare with PANI-NiHCF-III, PANI-NiHCF-I and II are both detected and analyzed alkali metal cations by electrochemically controlled ion separation.
引文
[1] Coradin T, Livage J. Aqueous silicates in biological sol-gel applications: new perspectives for old precursors[J]. Accounts of Chemical Research, 2007, 40(9): 819-826.
    [2] Pang Y H, Wei F, Chen J, et al. Controlled microstructure and photochromism of inorganic-organic thin films by ultrasound[J]. Journal of Materials Science and Technology, 2007, 23(4): 477-480.
    [3] Yoshida T, Zhang J B, Komatsu D, et al. Electrodeposition of inorganic/organic hybrid thin films[J]. Advanced Functional Materials, 2009, 19(1): 17-43.
    [4] Coradin T, Allouche J, Boissiere M, et al. Sol-gel biopolymer/silica nanocomposites in biotechnology[J]. Current Nanoscience, 2006, 2(3): 219-230.
    [5]艾晓莉,胡小玲.有机-无机杂化膜的研究进展[J].化学进展, 2010, 16(4): 654-659.
    [6]王华林,史铁钧,李学良. PDMS/SiO2杂化材料研究进展[J].高分子材料科学与工程, 2000, 16(5): 5-8.
    [7] Reddy R N, Reddy R G. Sol-gel MnO2 as an electrode material for electrochemical capacitors[J]. Journal of Power Sources, 2003, 124(1): 330-337.
    [8] Choi B G, Park H, Im H S, et al. Influence of oxidation state of polyaniline on physicochemical and transport properties of nafion/polyaniline composite membrane for DMFC[J]. Journal of Membrane Science, 2010, 324(1-2): 102-110.
    [9] Nagarale R K, Gohil G S, Shahi V K, et al. Preparation and electrochemical characterization of cation-and anion-exchange/polyaniline composite membranes[J]. Journal of Colloid and Interface Science, 2004, 277(1): 162-171.
    [10] Zhang J, Kong L B, Wang B, et al. In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors[J]. Synthetic Metals, 2009, 159(3-4): 260-266.
    [11] Mahmoud A, Keita B, Nadjo L. EQCM study of the process of silicomolybdic anion doping in polyaniline films electrosynthesized in the presence of various anions[J]. Journal of Electroanalytical Chemistry, 1998, 446(1-2): 211-225.
    [12]马旭莉,郝晓刚,李永国等.脉冲电沉积制备电控离子分离NiHCF膜电极[J].中国有色金属学报, 2009, 19(7): 1294-1299.
    [13]鞠健,郝晓刚,张忠林等.电沉积NiHCF薄膜在碱土金属溶液中的电控离子分离性能[J].无机材料学报, 2008, 23(6): 1116-1120.
    [14] Kulesza P J, Miecznikowski K, Chojak M, et al. Electrochromic features of hybrid films composed of polyaniline and metal hexacyanoferrate[J]. Electrochimica Acta, 2001, 46(28): 4371-4378.
    [15] Dembinska B, Pawel J K. Multi-walled carbon nanotube-supported tungsten oxide-containing multifunctional hybrid electrocatalytic system for oxygen reduction in acid medium[J]. Electrochimica Acta, 2009, 54(20): 4682-4687.
    [16] Wang J, Xu Y L, Chen X, et al. Capacitance properties of single wall carbon nanotube/polypyrrole composite films[J]. Composites Science and Technology, 2007, 67(14): 2981-2985.
    [17] Lin Y H, Cui X L. Electrosynthesis, characterization, and application of novel hybrid materials based on carbon nanotube-polyaniline-nickel hexacyanoferrate nanocomposites[J]. Journal of Materials Chemistry, 2006, 16(6): 585-592.
    [18] Li L, Sheng Q L, Zheng J B, et al. Facile and controllable preparation of glucose biosensor based on prussian blue nanoparticles hybrid composites[J]. Bioelectrochemistry, 2008, 74(1): 170-175.
    [19] Ma Y F, Zhang J M, Zhang G. J, et al. Polyaniline nanowires on Si surfaces fabricated with DNA templates[J]. Journal of the American Chemical Society, 2004, 126(22): 7097-7101.
    [20] Martin C R. Nanomaterials: a membrane-based synthetic approach[J]. Science, 1994, 266(5193): 1961-1966.
    [21] Ding Y, Hu Y L, Gu G, et al. Controllable synthesis and formation mechanism investigation of prussian blue nanocrystals by using the polysaccharide hydrolysis method[J]. Journal of Physical Chemistry A, 2009, 113(33): 14838-14843.
    [22] Sheng X P, Wu S K, Liu Y, et al. Morphology syntheses and properties of well-defined prussian blue nanocrystals by a facile solution approach[J]. Journal of Colloid and Interface Science, 2010, 329(1): 188-195.
    [23]蔡称心,陈静,包建春等.碳纳米管在分析化学中的应用[J].分析化学, 2004, 32(3): 381-387.
    [24]王光灿,师真,朱光辉等.碳纳米管修饰电极在分析化学中的应用[J].理化检验-化学分册, 2008, 44(8): 801-806.
    [25] Hu Z A, Xie Y L, Wang Y X, et al. Polyaniline/SnO2 nanocomposite for supercapacitor applications[J]. Materials Chemistry and Physics, 2009, 114(2-3): 990-995.
    [26] Koysuren O, Du C, Pan N, et al. Preparation and comparison of two electrodes for supercapacitors: PANI/CNT/Ni and PANI/alizarin-treated nickel[J]. Journal of Applied Polymer Science, 2009, 113(2): 1070-1081。
    [27]邓梅根,杨邦朝,胡永达等.基于碳纳米管-聚苯胺纳米复合物的超级电容器研究[J].化学学报, 2005, 63(12): 1127-1130.
    [28]吕进玉,林志东.超级电容器导电聚合物电极材料的研究进展[J].材料导报, 2007, 21(3): 29-31.
    [29] Frackowiak E, Beguin F. Carbon materials for the electro-chemical storage of energy in capacitors[J]. Carbon, 2001, 39(6): 937-950.
    [30] Yoon S, Lee J, Hyeon T. Electric double-layer capacitor performances of a new mesoporous carbon[J]. Journal of the Electrochemical Society, 2000, 147(7): 2507-2012.
    [31] Wu N. Nanocrystalline oxide supercapacitor[J]. Materials chemistry and physics, 2002, 75(1-3): 6-11.
    [32] Ryu K S, Wu X L, Lee Y G, et al. Electrochemical capacitor composed of doped polyaniline and polymer electrolyte membrane[J]. Journal of Applied Polymer Science, 2003, 85(5): 1300-1304.
    [33] Conway B E. Transition from“supercapacitor”to“battery”behavior in electrochemical energy storage[J]. Journal of the Electrochemical Society, 1991, 138(6):1539-1548.
    [34] Park B O, Lokhande D C, Park H S, et al. Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes-effect of film thickness[J]. Power Sources, 2004, 134(1): 148-152.
    [35] Kyung W N, Kwang B K. A study of the NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism[J]. Journal of the Electrochemical Society, 2002, 149(3A): 346-354.
    [36] Kazaryan S A, Razumov S N, Litvinenko S V, et al. Mathematical model of heterogeneous electrochemical capacitors and calculation of their parameters[J]. Journal of the Electrochemical Society, 2006, 153(A): 1655-1671.
    [37]戴珍,李燕芳,刘海云等.分子水平上有机-无机杂化的聚有机硅倍半氧烷材料研究进展[J].中国材料进展, 2009, 28(2): 1-7.
    [38]刘镇,吴庆银,钟芳锐.无机-有机杂化材料的研究进展[J].石油化工, 2008, 37(7): 649-655.
    [39]石智强,刘晓蕾,刘孝波.有机-无机纳米复合材料的研究进展[J].合成化学, 2004, 12(3): 251-254.
    [40]魏建红,余剑英,马会茹等.聚合物-无机纳米复合材料的制备[J].粘结, 2001, 22(3): 1-3.
    [1] Cottineau T, Toupin M, Delahaye T, et al. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors[J]. Journal of Applied Physics, 2006, 82(4): 599-606.
    [2] Reddy R N, Reddy R G. Sol-gel MnO2 as an electrode material for electrochemical capacitors[J]. Power Sources, 2003, 124(1): 330-337.
    [3]杜冰,江奇,赵晓峰等.基于静电吸附作用制备PPy/CNTs复合材料[J].物理化学学报, 2009, 25(3): 513-518.
    [4] Zhao G Y, Li H L. Preparation of polyaniline nanowire arrayed electrodes for electrochemical supercapacitors[J]. Microporous and Mesoporous Materials, 2008, 110(2-3): 590-594.
    [5] Zhang J, Kong L B, Wang B, et al. In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors[J]. Synthetic Metals, 2009, 159(3-4): 260-266.
    [6]陈洁,黄可龙,刘素琴.球形纳米Fe3O4的制备及超级电容器的研究[J].无机化学学报, 2008, 24(4): 621-626.
    [7] Frackowiak E, Béguin F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons[J]. Carbon, 2002, 40(10): 1775-1787.
    [8]邓梅根,杨邦朝,胡永达等.基于碳纳米管?聚苯胺纳米复合物的超级电容器研究[J].化学学报, 2005, 63(12): 1127-1130.
    [9] Koysuren O, Du C, Pan N, et al. Preparation and comparison of two electrodes for supercapacitors: PANI/CNT/Ni and PANI/alizarin-treated nickel[J]. Journal of Applied Polymer Science, 2009, 113(2): 1070-1081.
    [10]杨红生,周啸,张庆武.以多层次聚苯胺颗粒为电极活性物质的超级电容器的电化学性能[J].物理化学学报, 2005, 21(4): 414-418.
    [11] Li W K, Chen J, Zhao J J, et al. Application of ultrasonic irradiation in preparing conducting polymer as active materials for supercapacitor[J]. Materials Letters, 2005, 59(7): 800-803.
    [12]赖延清,卢海,张治安等.聚苯胺纳米纤维的界面聚合法合成及电化学电容行为[J].中南大学学报, 2007, 38(6): 1110-1114.
    [13]王杰,徐友龙,孙孝飞等.多次聚合法制备多孔聚吡咯厚膜及其电化学容量性能[J].物理化学学报, 2007, 23(6): 877-882.
    [14] Mi H, Zhang X, Yang S, et al. Polyaniline nanofibers as the electrode material for supercapacitors[J]. Materials Chemistry and Physics, 2008, 112(1): 127-131.
    [15] Palaniappan S, Devi S L. Novel chemically synthesized polyaniline electrodes containing a fluoroboric acid dopant for supercapacitors[J]. Journal of Applied Polymers Science, 2008, 107(3): 1887-1892.
    [16] Liu F J. Electrodeposition of manganese dioxide in three-dimensional-poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonic acid)–polyaniline for supercapacitor[J]. Journal of Power Sources, 2008, 182(1): 383-388.
    [17] Skunik M, Chojak M, Rutkowska I A, et al. Improved capacitance characteristics during electrochemical charging of carbon nanotubes modified with polyoxometallate monolayers[J]. Electrochimica Acta, 2008, 53(11): 3862-3869.
    [18] Zelikman E, Narkis M, Siegmann A, et al. Polyaniline/multiwalled carbon nanotube systems: dispersion of CNT and CNT/PANI interaction[J]. Polymer Engineering and Science, 2008, 48(10): 1872-1877.
    [19] Hu Z A, Xie Y L, Wang Y X, et al. Polyaniline/SnO2 nanocomposite for supercapacitor applications[J]. Materials Chemistry and Physics, 2009, 114(2-3): 990-995.
    [20]王杰,徐友龙,陈曦等.掺杂离子对聚吡咯膜的电化学容量性能的影响[J].物理化学学报, 2007, 23(3): 299-304.
    [21] Wang J, Xu Y, Chen X, et al. Capacitance properties of single wall carbon nanotube/polypyrrole composite films[J]. Composites Science and Technology, 2007, 67(14): 2981-2985.
    [22] Hao X G, Schwartz D T. Tuning intercalation sites in nickel hexacyanoferrate using lattice nonstoichiometry[J]. Chemistry of Materials, 2005, 17(23): 5831-5836.
    [23] Hao X G, Guo J X, Liu S B, et al. Electrochemically switched ion exchange performances of capillary deposited nickel hexacyanoferrate thin films[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(3): 556-561.
    [24] Hao X G, Li Y G, Pritzker M. Pulsed electrodeposition of nickel hexacyanoferrate films for electrochemically switched ion exchange[J]. Separation and Purification Technology, 2008, 63(2): 407-414.
    [25] Chen W, Xia X H. Highly stable nickel hexacyanoferrate nanotubes for electrically switched ion exchange[J]. Advanced Functional Materials, 2007, 17(15): 2943-2498.
    [26] Chen J, Huang K L, Liu S Q. Insoluble metal hexacyanoferrates as supercapacitor electrodes[J]. Electrochemistry Communications, 2008, 10(12): 1851-1855.
    [27] Chen W, Tang J, Xia X H. Composition and shape control in the construction of functional nickel hexacyanoferrate nanointerfaces[J]. Journal of Physical Chemistry, 2009, 113(52): 21577-21581.
    [28] Shahrokhian S, Ghalkhani M, Adeli M, et al. Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: application to sensitive voltammetric determination of thioridazine[J]. Biosensors and Bioelectronics, 2009, 24(11): 3235-3241.
    [29] Lisowska-Oleksiak A, Nowak A P. Impedance spectroscopy studies on hybrid materials consisting of poly(3,4-ethylenedioxythiophene) and iron, cobalt and nickel hexacyanoferrate[J]. Solid State Ionics, 2008, 179(1-6): 72-78.
    [30] Lisowska-Oleksiak A, Nowak A P. Metal hexacyanoferrate network synthesized inside polymer matrix for electrochemical capacitors[J]. Journal of Power Sources, 2007, 173(2): 829-836.
    [31] Makowski O, Kowalewska B, Szymanska D, et al. Controlled fabrication of multilayered 4-(pyrrole-1-yl) benzoate supported poly(3,4-ethylenedioxythiophene) linked hybrid films of Prussian blue type nickel hexacyanoferrate[J]. Electrochimica Acta, 2007, 53(3): 1235-1243.
    [32] Kulesza P J, Skunik M, Baranowska B, et al. Fabrication of network films of conducting polymer-linked polyoxometallate-stabilized carbon nanostructures[J]. Electrochimica Acta, 2006, 51(11): 2373-2379.
    [33] Skunik M, Kulesza P J. Phosphomolybdate-modified multi-walled carbon nanotubes as effective mediating systems for electrocatalytic reduction of bromate[J]. Analytica Chimica Acta, 2009, 631(2): 153-160.
    [34] Kulesza P J, Miecznikowski K, Malik M A, et al. Electrochemical preparation and characterization of hybrid films composed of prussian blue type metal hexacyanoferrate and conducting polymer[J]. Electrochimica Acta, 2001, 46(26): 4065-4073.
    [35] Lin Y H, Cui X J. Electrosynthesis, characterization, and application of novel hybrid materials based on carbon nanotube–polyaniline–nickel hexacyanoferrate nanocomposites[J]. Journal of Materials Chemistry, 2006, 16(6): 585-592.
    [36] Zhan S, Tian Y, Cui Y, et al. Effect of process conditions on the synthesis of carbon nanotubes by catalytic decomposition of methane[J]. China Particuology, 2007, 5(3): 213-219.
    [37] Pile D L, Hillier A C. Electrochemically modulated transport through a conducting polymer membrane[J]. Journal of Membrane Science, 2002, 208(1-2): 119-131.
    [1]戴珍,李燕芳,刘海云等.分子水平上有机-无机杂化的聚有机硅倍半氧烷材料研究进展[J].中国材料进展, 2009, 28(2): 1-7.
    [2]石智强,刘晓蕾,刘孝波.有机/无机纳米复合材料的研究进展[J].合成化学, 2004, 12(3): 251-254.
    [3] Hong S F, Hwang S C, Chen L C. Deposition-order-dependent polyelectrochromic and redox behaviors of the polyaniline-prussian blue bilayer[J]. Electrochimica Acta, 2008, 53(21): 6215-6227.
    [4]刘镇,吴庆银,钟芳锐.无机-有机杂化材料的研究进展[J].石油化工, 2008, 37(7): 649-655.
    [5] Nagarale R K, Gohil G S, Shahi V K, et al. Preparation and electrochemical characterization of cation-and anion-exchange/polyaniline composite membranes[J]. Journal of Colloid and Interface Science, 2004, 277(1): 162-171.
    [6] Vaillant J, Lira-Cantu M, Cuentas-Gallegos K, et al. Chemical synthesis of hybrid materials base on PANI and PEDOT with polyoxometalates for electrochemical supercapacitors[J]. Progress in Solid State Chemistry, 2006, 34(2-4): 147-159.
    [7] Zhang J, Kong L B, Wang B, et al. In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors[J]. Synthetic Metals, 2009, 159(3-4): 260-266.
    [8] Mahmoud A, Keita B, Nadjo L. EQCM study of the process of silicomolybdic anion doping in polyaniline films electrosynthesized in the presence of various anions[J]. Journal of Electroanalytical Chemistry, 1998, 446(1-2): 211-225.
    [9] Weidlich C, Mangold K M, Juttner K. Continuous ion exchange process based on polypyrrole as an electrochemically switchable ion exchanger[J]. Electrochimica Acta, 2005, 50(25-26): 5247-5254.
    [10] Masdarolomoor F, Innis P C, Wallace G G. Electrochemical synthesis and characterization of polyaniline/poly(2-methoxyaniline-5-sulfonicacid) composites[J]. Electrochimica Acta, 2008, 53(12): 4146-4155.
    [11] Hao X G, Li Y G, Pritzker M. Pulsed electrodeposition of nickel hexacyanoferrate filmsfor electrochemically switched ion exchange[J]. Separation and Purification Technology, 2008, 63(2): 407-414.
    [12] Chen J, Huang K L, Liu S Q. Insoluble metal hexacyanoferrates as supercapacitor electrodes[J]. Electrochemistry Communications, 2008, 10(12): 1851-1855.
    [13]马旭莉,郝晓刚,李永国等.脉冲电沉积制备电控离子分离NiHCF膜电极[J].中国有色金属学报, 2009, 19(7): 1294-1299.
    [14]鞠健,郝晓刚,张忠林等.电沉积NiHCF薄膜在碱土金属溶液中的电控离子分离性能[J].无机材料学报, 2008, 23(6): 1116-1120.
    [15] Chen W, Tang J, Cheng H J, et al. A simple method for fabrication of sole composition nickel hexacyanoferrate modied electrode and its application[J]. Talanta, 2009, 80(2): 539-543.
    [16] Pahal S, Deepa M, Bhandary S, et al. Electrochromism and redox switching of cobalt hexacyanoferrate-polyaniline hybrid films in a hydrophobic ionic liquid[J]. Solar Energy Materials and Solar Cells, 2010, 94(6): 1064-1075.
    [17] DeLongchamp D M, Hammond P T. Multiple-Color electrochromism from layer-by-layer-assembled polyaniline/prussian blue nanocomposite thin films[J]. Chemistry of Materials, 2004, 16(23): 4799-4805.
    [18] Wang J Y, Yu C M, Hwang S C, et al. Influence of coloring voltage on the optical performance and cycling stability of a polyaniline-indium hexacyanoferrate electrochromic system[J]. Solar Energy Materials and Solar Cells, 2008, 92(2): 112-119.
    [19] Zou Y J, Sun L X, Xu F. Biosensor based on polyaniline-prussian blue/multi-walled carbon nanotubes hybrid composites[J]. Biosensors and Bioelectronics, 2007, 22(11): 2669-2674.
    [20] Garjonyte R, Malinauskas A. Amperometric glucose biosensors based on prussian blue-and polyaniline-glucose oxidase modied electrodes[J]. Biosensors and Bioelectronics, 2000, 15(9-10): 445-451.
    [21] Ernst A, Makowski O, Kowalewska B, et al. Hybrid bioelectrocatalyst for hydrogen peroxide reduction: immobilization of enzyme within organic-inorganic film of structured prussian blue and PEDOT[J]. Bioelectrochemistry, 2007, 71(1): 23-28.
    [22] Zou Y G, Sun L X, Xu F. Prussian blue electrodeposited on MWCNTs-PANI hybridcomposites for H2O2 detection[J]. Talanta, 2007, 72(2): 437-442.
    [23]臧杨,郝晓刚,王忠德等.碳纳米管/聚苯胺/铁氰化镍复合膜的电化学共聚制备与电容性能[J].物理化学学报, 2010, 26(2): 291-298.
    [24] Lisowska-Oleksiak A, Nowak A P. Metal hexacyanoferrate network synthesized inside polymer matrix for electrochemical capacitors[J]. Journal of Power Sources, 2007, 173(2): 829-836.
    [25] Kulesza P J, Miecznikowski K, Chojak M, et al. Electrochromic features of hybrid films composed of polyaniline and metal hexacyanoferrate[J]. Electrochimica Acta, 2001, 46(28): 4371-4378.
    [26] Fiorito P A, Cordoba de Torresi S I. Hybrid nickel hexacyanoferrate/polypyrrole composite as mediator for hydrogen peroxide detection and its application in oxidase-based biosensors[J]. Journal of Electroanalytical Chemistry, 2005, 581(1): 31-37.
    [27] Dembinska B, Kulesza P J. Multi-walled carbon nanotube-supported tungsten oxide-containing multifunctional hybrid electrocatalytic system for oxygen reduction in acid medium[J]. Electrochimica Acta, 2009, 54(20): 4682-4687.
    [28] Wang J, Xu Y L, Chen X, et al. Capacitance properties of single wall carbon nanotube/polypyrrole composite films[J]. Composites Science and Technology, 2007, 67(14): 2981-2985.
    [29] Li L, Sheng Q L, Zheng J B, et al. Facile and controllable preparation of glucose biosensor based on prussian blue nanoparticles hybrid composites[J]. Bioelectrochemistry, 2008, 74(1): 170-175.
    [30] Zou Y J, Sun L X, Xu F. Biosensor based on polyaniline-prussian blue/multi-walled carbon nanotubes hybrid composites[J]. Biosensors and Bioelectronics, 2007, 22(11): 2669-2674.
    [31] Uemura T, Kitagawa S. Prussian blue nanoparticles protected by poly(vinylpyrrolidone)[J]. Journal of the American Chemical Society, 2003, 125(26): 7814-7815.
    [32] Wu S K, Shen X P, Cao B S, et al. Shape- and size-controlled synthesis of coordination polyme{[Cu(en)2][KFe(CN)6]}n nano/micro-crystals[J]. Journal of Materials Science,2009, 44(23): 6447-6450.
    [33] Lin Y H, Cui X L. Electrosynthesis, characterization, and application of novel hybrid materials based on carbon nanotube-polyaniline-nickel hexacyanoferrate nanocomposites[J]. Journal of Materials Chemistry, 2006, 16(6): 585-592.
    [34] Li Z H, Zhang J L, Mu T C, et al. Preparation of polyvinylpyrrolidone-protected prussian blue nanocomposites in microemulsion[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 243(1-3): 63–66.
    [35] Pile D L, Hillier A C. Electrochemically modulated transport through a conducting polymer membrane[J]. Journal of Membrane Science, 2002, 208(1-2): 119–131.
    [36] Shen X P, Wu S K, Liu Y, et al. Morphology syntheses and properties of well-defined prussian blue nanocrystals by a facile solution approach[J]. Journal of Colloid and Interface Science, 2009, 329(1):188-195.
    [37] Chen W, Xia X H. Highly stable nickel hexacyanoferrate nanotubes for electrically switched ion exchange[J]. Journal of Advanced Functional Materials, 2007, 17(15): 2943-2948.
    [38] Mi H Y, Zhang X G, Yang S D, et al. Polyaniline nanofibers as the electrode material for supercapacitors[J]. Materials Chemistry and Physics, 2008, 112(1): 127-131.
    [39]邓梅根,杨邦朝,胡永达等.基于碳纳米管?聚苯胺纳米复合物的超级电容器研究[J].化学学报, 2005, 63(12): 1127-1130.
    [40]李胜,邱于兵,郭兴蓬.不同状态下聚吡咯膜的电化学阻抗[J].物理化学学报, 2010, 26(3): 601-609.
    [41]齐亮,谢晓峰,金宝舵等.直接甲醇燃料电池的交流阻抗谱分析[J].化学进展, 2008, 20(12): 2083-2092.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700