聚苯胺的改性及其在超级电容器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随人口的急剧增长和社会经济的快速发展,资源和能源日渐短缺,生态环境日益恶化,人类将更加依赖洁净和可再生的新能源。超级电容器(supercapacitor)也叫做电化学电容器(electrochemical capacitor),是一种介于传统电容器和电池之间的新型储能元件,它既具有传统电容器放电功率高,又具有电池电荷储存能力大的特点。与传统电容器相比,超级电容器具有更大的容量以及更高的能量密度,其容量可达法拉(F)甚至数千法拉,而传统的电容器只有微法(μF)级;与电池相比,超级电容器具有更高的功率密度和更长的循环寿命,可实现快速充放电。电极材料是影响超级电容器性能与成本的关键因素之一。目前,超级电容器的电极材料主要有碳材料、金属氧化物和导电聚合物三种。在众多导电聚合物中,聚苯胺(polyaniline, PANI)由于具有原料易得、合成简便、成本低廉,并且具有良好的化学稳定性、导电性和高的赝电容储能等特性,使其成为了超级电容器电极材料的研究热点。
     本文采用化学氧化聚合法,以二氧化锰(MnO2)作为氧化剂,在室温条件下制备了电化学性能优异的超级电容器用PANI材料、PANI-碳纳米管(CNTs)和PANI-Co3O4复合材料。此外,还采用界面聚合法制备PANI材料,研究不同浓度的HCOOH做掺杂剂时对PANI材料形貌及电化学性能的影响。研究了所得材料电极在酸性介质中的电化学电容特性。本文主要研究内容如下:
     (1)以MnO2、过硫酸铵(APS)作为氧化剂,采用化学氧化聚合法在室温下制备得到PANI,并采用扫描电子显微镜(SEM),傅立叶变换红外光谱(FTIR)以及X-射线衍射(XRD)对其结构和形貌进行了表征。用循环伏安法、电化学阻抗和恒电流充放电技术测试了以其作为电极的超级电容器的电化学性能。结果表明,以MnO2为氧化剂制备的PANI(简称为M-PANI)在电流密度为5 mA/cm2下的单电极比容量达260 F/g,500次循环后容量仍稳定在188 F/g,比电容保持率为72.3%。比以APS作为氧化剂制备的PANI(简称为N-PANI)具有更高的比容量和更好的循环性能。
     (2)以MnO2作为氧化剂,采用化学氧化聚合法在室温下制备得到PANI-CNTs(简称为M-PC)纳米复合材料,并采用SEM、FTIR、XRD对PANI-CNTs复合材料的结构与性能进行了表征。用循环伏安法、恒电流充放电技术测试了以其作为电极的超级电容器的电化学性能。恒电流充放电实验结果表明,在不同电流密度恒流充放电时,M-PC纳米复合材料比容量随着电流密度的增大而降低;在电流密度为5 mA/cm2下单电极比容量达355F/g,500次循环后容量为306 F/g,比电容保持率为86.2%。M-PC较以APS为氧化剂制备的PANI-CNTs(简称为N-PC)具有更高的比容量和更好的循环性能。
     (3)以MnO2为氧化剂,采用化学氧化聚合法在室温下制备得到PANI-Co3O4复合材料,SEM、FTIR以及XRD技术对其进行结构、形貌表征。用循环伏安法和恒电流充放电技术测试了以其作为电极的超级电容器的电化学性能。结果表明,制备的PANI-Co3O4复合材料在电流密度为5 mA/cm2下的单电极比容量达287 F/g,500次循环后容量仍有271F/g,比电容保持率为94.4%。比M-PANI和Co3O4具有更好的循环性能和更高的比容量。
     (4)采用界面聚合法,以FeCl3作氧化剂,不同浓度的HCOOH做掺杂剂,在室温下制备了不同形貌PANI纳米材料,采用SEM、XRD对PANI的结构和形貌进行了表征。以PANI为活性物质制备电极,1 mol/L H2SO4水溶液为电解液组装超级电容器,通过循环伏安法和恒电流充放电技术研究了其电化学性能。结果表明,通过控制HCOOH的浓度可以得到不同形貌的HCOOH掺杂的PANI纳米材料;其中纤维状的PANI作为电极材料的超级电容器在15 mA/cm2放电电流下,其比电容为292 F/g,500次循环后容量仍维持在201 F/g,比电容保持率为68.8%。
With the rapid growth of population and rapid development of socio-economic, resources and energy are hard up day by day, the environment is deteriorating, and human beings will be more dependent on the new clean and renewable energy. Supercapacitor (also known as electrochemical capacitors) is a new type electrochemical energy storage device between the traditional dielectric capacitor and the battery. Compared with the conventional capacitor, supercapacitor has a larger capacity and higher energy density, its capacity can be Farah (F) or even thousands of Farah, but the capacity of the traditional capacitor is only microfarads (μF). Compared with the battery, supercapacitor has higher power density and longer cycle life, can realize high-current charging and discharging. Electrode material is one of the important factors in affecting the performance and cost of supercapacitor. Electrode material mainly includes carbon material, metal oxide and conducting polymer. Among the conductive polymer, polyaniline (PANI) is a focus due to raw material readily available, easy synthesis, low cost, good chemical stability and electrical conductivity, high pseudo-capacitance energy storage and other characteristics.
     In this dissertation, PANI, PANI-CNTs and PANI-Co3O4 composite were prepared by chemical in-situ polymerization using manganese dioxide (MnO2) as the oxidant. In addition, PANI nano-materils with different morphology have been synthesized successfully by interfacial polymerization with FeCl3 as oxidant and different concentrations HCOOH as dopant. The electrochemical performances of the PANI, PANI-CNTs and PANI-Co3O4 in acidic media have been studied. The main points of this dissertion are summarized as follows:
     (1) PANI was prepared by chemical in-situ polymerization at ambient temperature, using MnO2 or ammonium persulphate (APS) as the oxidant. The morphology and structure of PANI were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The electrochemical performances of the supercapacitor assembled with PANI were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge. These results show that the specific capacitance of the M-PANI electrode prepared by MnO2 was about 260 F/g at the charge-discharge current density of 5 mA/cm2. After 500 charge-discharge cycles the specific capacitance of the M-PANI electrode was about 188 F/g and its capacitance retention is 72.3%. For comparison, M-PANI has better cycle performance and higher capacity than N-PANI, which was prepared by APS.
     (2) PANI-CNTs (abbr.M-PC) were prepared by chemical in-situ polymerization at ambient temperature, using MnO2 as the oxidant. The morphology and structure of M-PC were characterized by SEM, FTIR and XRD. The electrochemical performances of the supercapacitor assembled with M-PC were investigated by CV and galvanostatic charge-discharge. These results of galvanostatic charge-discharge experiment show that the specific capacitance of the M-PC decreases as the charge-discharge current density increases. The specific capacitance of the M-PC electrode is about 355 F/g at the charge-discharge current density of 5 mA/cm2. After 500 charge-discharge cycles the specific capacitance of the M-PC electrode is about 306 F/g and its capacitance retention is 86.2%. For comparison, M-PC has better cycle performance and higher capacity than N-PC, which was prepared by APS.
     (3) Co3O4 nanocubes were synthesized by solvothermal method in water and n-butanol solution, which polyethylene glycol was used as dispersant. PANI-Co3O4 composite material was prepared by chemical in-situ polymerization at ambient temperature, using MnO2 as the oxidant. The morphology and structure of PANI-Co3O4 were characterized by SEM, FTIR, and XRD. The electrochemical performances of the supercapacitor assembled with PANI-Co3O4 were investigated by cyclic voltammetry, and galvanostatic charge-discharge. These results show that the specific capacitance of the composite material of PANI-oO3O4 electrode was about 287 F/g at the charge-discharge current density of 5 mA/cm2. After 500 charge-discharge cycles the specific capacitance of the PANI-Co3O4 electrode was about 271 F/g. and its capacitance retention is 94.4%. For comparison, PANI-Co3O4 has better cycle performance and higher capacity than M-PANI.
     (4) Formic acid-doped PANI nanomaterils with different morphology had been synthesized successfully by interfacial polymerization with FeCl3 as oxidant and HCOOH as dopant. The morphology and structure of PANI were characterized by SEM, FTIR and XRD. Symmetric redox supercapacitor was assembled with the PANI as active electrode material and 1 mol/L H2SO4 aqueous solution as electrolyte. The electrochemical performances of the supercapacitor were investigated by CV and galvanostatic charge-discharge. These results show that PANI with different morphology depends on the concentration of HCOOH. PANI with fiber morphology has better power characteristic and cycle performance in the application of supercapacitor, whose specific capacitance is about 292 F/g at the current density of 15 mA/cm2. After 500 charge-discharge cycles its specific capacitance was about 201 F/g and its capacitance retention is 68.8%.
引文
[1]Elzbieta F, Takashi B. Carbon materials for the electrochemical storage of energy in capacitors [J]. Carbon,2001,39(7):937-941.
    [2]Huggins R A. Supercapacitors and electrochemical pulse sources [J]. Solid State Ionics,2000, 134(1-2):179-195.
    [3]Kotz R, Carlen M. Principles and applications of electrochemical capacitors [J]. Electrochimica Acta,2000,45(15-16):2483-2498.
    [4]朱磊,吴伯荣,陈晖,等.超级电容器研究及其应用[J].稀有金属,2003,27(3):385-390.
    [5]Ko J M, Song R Y, Yu H J, et al. Capacitive performance of the composite electrodes consisted of polyaniline and activated carbons powder in a solid-like acid gel electrolyte [J]. Electrochimica Acta,2004,50(2-3):873-876.
    [6]Ryu K S, Hong Y S, Park Y J, et al. Polyaniline doped with dimethylsulfate as a polymer electrode for all solid-state power source system [J]. Solid State Ionics,2004,175(1-4): 759-763.
    [7]宋旭春,杨娥,郑遗凡,等.α-MnO2和β-MnO2纳米棒的制备和催化性能研究[J].无机化学学报,2007,23(5):919-922.
    [8]江明,府寿宽.高分子科学的近代论题[M].上海:复旦大学出版社,1998,216.
    [9]张娜,张宝宏.电化学超级电容器研究进展[J].电池,2003,5(33):130-132.
    [10]Bao S J, He B L, Liang Y Y, et al. Synthesis and electrochemical characterization of amorphous MnO2 for electrochemical capacitor [J]. Materials Science and Engineering A, 2005,397(1):305-309.
    [11]Wu N L. Nanocrystalline oxide supercapacitors [J]. Material Chemistry and Physics,2002, 75(1):6-11.
    [12]Wang Y G, Zhang X G Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites [J]. Electrochimica Acta,2004,49(12):1957-1962.
    [13]Hu C C, Tsou T W. Capacitive and textural characteristics of hydrous manganese-oxide prepared by anodic deposition [J]. Electrochimica Acta,2002,47(21):3523-3532.
    [14]Kalakodimi R P, Norio M. Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors [J]. Electrochemistry Communications,2004,6 (10):1004-1008.
    [15]毛定文.超级电容器用聚苯胺/活性炭复合材料的研究[D].北京:北京化工大学.2007.
    [16]蔡玉冬.纳米碳材料用作电化学超级电容器电极材料的研究[D].唐山:西南交通大学.2007.
    [17]杨娇萍.超级电容器用多孔活性炭材料的研究[D].北京:北京化工大学.2005.
    [18]杨红生,周啸,姜翠玲,等.电化学电容器最新研究进展Ⅱ氧化还原电容器[J].电子元件与材料,2003,22(3):38-42.
    [19]Pell W G, Conway B E, Adams W A, Oliveira J. Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications [J]. Journal of Power Sources,1999,80(1-2):134-141.
    [20]唐致远,徐国祥.电子导电聚合物在电化学电容器中的应用[J].化工进展,2002,21(9):652-655.
    [21]王晓峰,孔祥华,解晶莹,等.高分子聚合物超电容器研究[J].电子元件与材料,2001,20(5):24-27.
    [22]Yos H A. Suiface technology for electric double-layer capacitors [J]. Japanese Surface Technology,1997,48(12):1163-1168.
    [23]Celzard A, Collas F, Mareche J F, et al. Porous electrodes-based double-layer supe-rcapacitors:pore structure versus series resistance [J]. Journal of Power Sources,2002,108 (1-2):153-162.
    [24]Qu D, Shi H. Studies of activated carbons used in double-layer capacitors [J]. Journal of Power Sources,1998,74(1):99-107.
    [25]田淦顺次.电极用固体活性炭的开发和应用[J].化学工业,1992,(7):21-27.
    [26]Babel K, et al. Electrical capacitance of fibrous carbon composites in supercapacitors. [J]. Fuel Processing Technology,2002, (77-78):181-189.
    [27]Sallger R, Pischer U. High surface area carbon aerogels for supercapacitors [J]. Non-Crys-talline Solids,1998,225:81-85.
    [28]Adhyapak P V, Maddanimath T, Sushama P, et al. Application of electrochemically prepared carbon nanofibers in supercapacitors [J]. Journal of Power Sources,2002,109(1):105-110.
    [29]Frackowiak E, Beguin F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons [J]. Carbon,2002,40:1775-1787.
    [30]Frackowiak E, Jurewicz K, et al. Nanotubular materials for supercapacitors [J]. Journal of Power Sources,2001, (97-98):822-825.
    [31]王晓峰,王大志,等.碳基电化学双层电容器的研制[J].研究与设计,2002,26(增):225-227.
    [32]Conway B E. Electrochemical Supercapacitors [M], New York:Kluwer Academic/Plenum Publishers,1999:1-9.
    [33]Guterl C V, Saadallah S, Jurewicz K, et al. Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure [J]. Materials Science and Engineering B,2004,108(1-2):148-155.
    [34]Panidolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors [J]. Journal of Power Sources,2006,157(1):11-27.
    [35]田艳红,付旭涛,吴伯荣.超级电容器用多孔炭材料的研究进展[J].电源技术,2002,26(6):466-479.
    [36]张丹丹,姚宗干.大容量储能密度电化学电容器的进展[J].电子元件与材料,2000,19(1):34-37
    [37]张艳魁.超级电容器产业化受重视市场前景广阔.中国仪表展览网.2008.
    [38]朱磊,吴伯荣,陈晖,等.超级电容器研究及其应用[J].稀有金属,2003,27(3):385-390.
    [39]卢海.聚苯胺纳米纤维的界面聚合法制备及电化学电容特性研究[D].长沙:中南大学.2007.
    [40]Takeshi M, Kazuya H, Yasuhiro S. Development and current status of electric [J]. Materials Research Society Symposium Proceedings,1995,393:397-411.
    [41]Jurewicz K, Babel K A, Ikowski Z, Wachowska H. Ammoxidation of active carbons for improvement of supercapacitor characteristics [J], Electrochimica Acta,2003,48: 1491-1498.
    [42]左晓希,李伟善.超级电容器用活性炭电极的制备及电化学性能研究[J].华南师范大学学报,2005(1):77-81.
    [43]李庆余,方明,李泽胜,王红强.KOH活化MCMB制备超级电容器材料[J].应用化学,2009(26):406-409.
    [44]Hang S. Activated carbons and double layer capacitance [J]. Electrochimica Acta,1996,41: 1633-1639.
    [45]郑俊生,张新胜,隋志军,衰渭康.纳米碳纤维电极电化学性能初步研究[A].见:第十三次全国电化学会议论文摘要集(下集)[C].广州:中国化学化电化学委员会,2005:756-757.
    [46]牛强,张孝彬,程继鹏,刘芙,周胜名,聂安民,谭俊军,崔白雪,周丽娜.多孔纳米碳纤维的制备及其在超级电容器中的应用研究[J].功能材料,2009(40):314-321.
    [47]Tanahas I, Yoshida A, Nishino A. Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors [J]. Electrochemical Society, 1990,137(10):3052-3057.
    [48]Chen J H, Li W Z, Wang D Z, et al. Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors [J]. Carbon,2002(40):1193-1197.
    [49]马仁志,魏秉庆,徐才录,等.基于碳纳米管的超级电容器[J].中国科学:E辑,2004,30(2):112-1165.
    [50]陈人杰,吴锋,徐斌,等.室温熔盐在碳纳米管电化学电容器中的应用[J].电子元件与材料,2007,26(4):11-14.
    [51]Scherer D W. Polymers Fractals and Ceramic materials [J]. Science,1989,243:1023-1027.
    [52]Pekala R W. Low density resorcinol-formaldehyde aerogels [P]. US Patent,4997804,1991.
    [53]Scherer D W, Beaucage G, Pekala R W. Origin of porosity in resorcinol-formaldehyde aerogels [J]. Journal of Non-Crystalline Solids,1995,186:159-167.
    [54]Pekala R W, Kong F M. Resorcinol-formaldehyde aerogels and their carbonized derivatives [J]. Polymeric Preprints,1989,30(1):221-223.
    [55]王俊冰,吴丁财,符若文.常压干燥法制备的炭气凝胶的电化学性能研究[J].功能材料,2008,5(39):751-753.
    [56]赵海霞,朱玉东,李文翠,胡浩权.RF炭气凝胶孔结构的控制及其电化学性能研究[J].新型炭材料,2008,23(4):361-366.
    [57]Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrode material for elelctrochemical capacitors [J]. Journal of the Electrochemical Society,1995,142(8): 2699-2703.
    [58]Zheng J P, Jow T R. Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruhtenium oxide [J]. Journal of the Electrochemical Society,1998,145 (1):49-52.
    [59]Chen Y S, Hu C C,Wu Y T. Capacitive and textural characterisitics of manganeseoxide prepared by anodic deposition:effects of manganese precursors and oxide thickness[J]. Journal of Solid State Electrochemistry,2004,8(7):467-473.
    [60]Khomenko V, Raymundo P E, Beguin F. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium [J]. Journal of Power Sources,2006,153(1):183-190.
    [61]Ravinder N R, Ramana G R. Sol-gel MnO2 as an electrode material for electrochemical capacitors [J]. Journal of Power Sources,2003,124 (1):330-337.
    [62]张莹,刘开宇,张伟,王洪恩.二氧化锰超级电容器的电极电化学性质[J].化学学报,2008,66(8):909-913.
    [63]Ravinder N. Reddy, Ramana G Reddy. Sol-gel MnO2 as an electrode material for electrochemical capacitors [J]. Journal of Power Sources,2003, (124):330-337.
    [64]韩恩山,张小平,许寒.纳米二氧化锰超级电容器电极材料的制备及改性[J].无机盐工业,2008,40(6):34-36.
    :65]刘献明,张校刚.热解温度对MnO2电容行为的影响[[J].无机材料学报,2003,(5):1022-1026.
    [66]赖延清,卢海,张治安,等.聚苯胺纳米纤维的界面聚合法合成及电化学电容行为[J].中南大学学报(自然科学版),2007,38(6):1111-1114.
    [67]徐浩,延卫,冯江涛.聚苯胺的合成与聚合机理研究进展[J].化工进展,2008,27(10):1561-1568.
    [68]黄美荣,李新贵,杨海军.高含量聚苯胺水性微乳液的制备[[J].涂料工业,2005,35(3):1-6.
    [69]贡长生.现代工业化学[M].武汉:湖北科学技术出版社,2001.
    [70]贺举.导电高分子聚苯胺的合成及其应用[J].科技信息,2008,18:391-392.
    [71]郝吉明,王书肖,陆永琪.燃煤电厂二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001.
    [72]Diaz A F, Logan J A. Electroactive polyaniline film [J]. Journal of Electroanalytical Chemistry,1980,111 (1):111-114.
    [73]宋桂贤,吴雄岗.聚苯胺的合成及应用研究进展[J].安徽化工,2008,34(5):1-4.
    [74]张淑玲.新型导电聚苯胺的合成及其性能研究[D].扬州:扬州大学,2006.
    [75]Jin C C, Macdiarmid A G. Polyaniline:protonic acid doping of the emeraldine form to the metallic regime [J]. Synthetic Metals,1986,13:193-205.
    [76]杨洪生,周啸,张庆武,等.以多层次聚苯胺颗粒为电极活性物质的超级电容器的电化学性能[J].物理化学学报,2005,21(4):414.
    [77]Raman G, Sangaraju S, Aharon G. Pulsed sonoelectrochemical synthesis of polyaniline nanoparticles and their capacitance properties [J]. Synthetic Metals,2008,158(21-24): 848-853.
    [78]陈宏,陈劲松,周海晖.纳米纤维聚苯胺在电化学电容器中的应用[J].物理化学学报,2004,20(6):593-597.
    [79]焦树强.纳米纤维状导电聚苯胺的制备与应用研究[D].长沙:湖南大学,2003.
    [80]Zhou Y K, He B L, Zhou W J, et al. Electrochemical capaeitance of well coated single-walled(arbon nanotube with polyaniline composite [J]. Electrochimica Acta,2004, 49:257.
    [81]Vinay G, Norio M. Influence of the microstructure on the supercapacitive behavior of polyaniline/single wall carbon nanotube composites [J]. Journal of Power Sources,2006, 157:616.
    [82]丛博文,张宝宏,喻应霞.聚苯胺修饰碳电极电容性能的研究[J].哈尔滨工程大学学报,2004,25(6):809.
    [83]李晶,赖延清,李颉.导电聚苯胺电极材料在超级电容器中的应用及研究进展[J].材料导报,2006,20(12):20-27.
    [84]Chen W C, Wen T C. Electrochemical and capacitance properties of polyaniline-implanted porous carbon electrode for supercapacitors [J]. Journal of Power Sources,2003,117(1-2): 273-282.
    [85]Jang J S, Bae Choi T, M J, Yoon S H. Fabrication and character-rization of polyaniline coated carbon nanofiber for supercapacitor [J]. Carbon,2005 (43):2730-2736.
    [86]王韶旭.无极纳米粒子/导电聚苯胺纳米复合材料的研究[D].大连:中国科学院大连化学物理研究所,2005.
    [87]金鑫,王新生,顾大伟,等.聚苯胺/纳米ZrO复合材料电容的制备及性能研究[J].科技资讯,2008(1):2-3.
    [88]吕进玉,林志东,曾文.RuO2/聚苯胺复合材料电极的制备及电化学性能表征[J].武汉工程大学学报,2008,30(1):62-65.
    [89]生瑜,陈建定,朱德钦,等.二氧化锰化学氧化法合成导电聚苯胺[J].功能高分子学报,2002,15(4):383-390.
    [90]Zeng X R, Ko T M. Structures and properties of chemically reduced polyaniline [J]. Polymer,1998,39(5):1187-1195.
    [91]杨晓芳.基于纳米碳管的超级电容器[D].浙江:浙江大学.2004.
    [92]王杨勇,井新利,强军锋.聚苯胺/碳纳米管的原位复合[J].复合材料学报,2004,21(3):38-43.
    [93]邓梅根,杨邦朝,胡永达,汪斌华.基于CNT-聚苯胺纳米复合物的超级电容器研究[J].化学学报,2005,63(12):1127-1130.
    [94]Yi J Y, Bo C, Zhi H S, et al. Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion [J]. Synthetic Metals,2005,150:271-277.
    [95]黄可龙,曾雯雯,杨幼平,刘素琴,刘人生.溶剂热法合成纳米立方状Co3O4及其电容特性研究[J].无机化学学报,2007,(99):1555-1560.
    [96]白锋,王树林,苏丹,等.超级电容器MnO/活性炭复合电极的研究[J].中国粉体技术,2007,4(20):1-3.
    [97]袁安保,章庆林.超级电容器材料纳米Co3O4的固相法制备及电化学性能[J].功能材料与器件学报,2007,13(1):1-6.
    [98]江奇,瞿美臻,张伯兰,等.电化学超级电容器电极材料的研究进展[J].无机材料学报,2002,17(4):649-654.
    [99]苏碧桃,慕红梅,左显维,等.不同形貌掺杂态聚苯胺纳米半导体材料的界面法合成[J].西北师范大学学报(自然科学版),2008,44(3):57-60.
    [100]陈华,周祚万,黄艳,等.聚苯胺网状纳米结构的合成与表征[J].功能材料,2008,39(5):877-880.
    [101]丁杭军,朱长进,周智明,等.氯化铁氧化掺杂的聚苯胺纳米纤维团簇[J].高分子学报,2007,(5):464-465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700