纳米NiO及其复合材料的制备与电化学电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是一种新型储能装置,具有瞬间释放大电流、能量密度高、充放电效率高、循环寿命长等优点,可广泛应用于电动汽车的启动和刹车系统、移动通讯、信息技术、航空航天和国防科技等领域。氧化镍作为超级电容器电极材料,具有典型的法拉第准电容性能,并且资源丰富、价格低廉,因此成为研究的热点。本文研究了纳米氧化镍及其复合材料的制备方法,对产品的微观结构和形貌进行了分析表证,并对其电化学性能进行了系统的研究。主要内容如下:
     (1)采用配位均匀沉淀法由不同的路径成功地制备出了颗粒状和针形两种不同形貌的纳米氧化镍。研究结果表明:颗粒状氧化镍比针形氧化镍具有更小的欧姆电阻、更高的比电容。在6 mol/L KOH电解液中,前者的比电容为203.6 F/g,约为后者的两倍。氧化镍电极材料的电化学性能受到热处理温度、电解液浓度、CV扫速以及恒流充放电电流密度的影响。
     (2)通过水热法以β-环糊精为模板剂制备了纳米氧化镍,产品呈球形颗粒状,粒径约为5~8 nm。电化学测试结果表明,最佳水热反应条件为140℃下反应24 h。以β-环糊精为模板剂来制备材料,降低了产品的团聚程度,提高了产品的分散性,降低了产品电极的欧姆电阻,提高了电极的比电容。最佳条件下合成的氧化镍比电容为196.8 F/g,比非环糊精体系提高了59.6%,电极内在电阻为0.9 ?,比非环糊精体系降低了35.7%。
     (3)采用配位均匀共沉淀法制备了纳米镍钴复合氧化物,不同钴含量对材料的电化学电容性能有较大影响,当钴摩尔分数约为65%为时,复合材料的电化学性能最好,该比例的复合物具有更小的欧姆电阻(1.0 ?)、更高的比电容(286.9 F/g)、更适合在大电流下充放电。SEM、TEM测试结果还显示,掺钴之后,氧化镍的微观形貌发生了改变,由球形纳米颗粒的堆积转变成纳米线的堆积,结构更为蓬松,且具有丰富的孔结构,比表面积为192.176 m2/g(较之纯氧化镍提高了19.4%),这种结构使得复合材料更容易被电解液浸润,扩大了电化学反应的有效区域。另外,复合材料电极的内在电阻也由纯氧化镍的1.8 ?降为1.0 ?,电化学电容性能显著提高。该复合材料具有良好的循环稳定性。
     (4)以镍钴复合氧化物为正极,以活性炭为负极,组装了小型的混合电容器,实验结果表明,当正负极的质量比为1:2.7时,该混合电容器的质量比电容最大,为56.4 F/g。与对称电容器相比,该混合电容器的电位窗口提高为1.2 V,能量密度明显提高,并且具有较好的功率特性和循环稳定性。
Supercapacitors have been recognized as unique energy storage devices which can release large discharge current instantly, have high energy density and long cycle life. Based on the above, the promising application of supercapacitors in the fields such as mobile telecommunication, information technology, consumer electronics, electric vehicle, aviation, and military force, have been attracting more and more attention throughout the world. NiO is a typical electrode material for supercapacitor due to its typical faradaic pseudocapacitance behavior and low price. The study focuses on the preparation and characteristics of nano-scale NiO and composite materials for supercapacitor. The microstructures, morphologies and electrochemical properties of these materials were investigated. The main content is as follows:
     (1) Sphere-like and needle-like nano-scale NiO were successful synthesized by a new method—coordination homogeneous precipitation method. The results show that sphere-like NiO has lower resistance and higher specific capacitance. The sphere-like NiO can provide a specific capacitance of~203.6 F/g, which is nearly 2 times greater than that of needle-like NiO. Additionally, the electrochemical properties of NiO ware affected by calcination temperature, electrolyte concentration, scan rate of cyclic voltammetry and charge-discharge current density.
     (2) Hydrothermal synthesis withβ-cyclodextrin(β-CD) as template reagent has been introduced to fabricate nano-scale NiO. The major morphology of as-prepared NiO is sphere-like particles with a dimension of 5~8 nm. The results of electrochemical tests indicate that the optimal react condition is 140℃for 24 h. , The as-prepared NiO usingβ-CD exhibits slighter agglomeration, lower internal resistance and higher specific capactance. A specific capacitance approximate to 196.8 F/g could be achieved, which increase 59.6% compared to that of product without usingβ-CD. The internal resistance is 0.9 ? which decrease 35.7%.
     (3) A series of Ni-Co oxide nano-composites were prepared by thermal decomposition of the precursors obtained via coordination homogeneous co-precipitation method. The electrochemical properties of Ni-Co oxide electrodes are greatly affected by the molar ratio of Co. Results indicate that Ni-Co oxide with nCo=65% shows not only lower resistance (1.0 ?), higher specific capacitance (286.9 F/g), but also better charge-discharge properties at high current density. SEM and TEM results show that the microstructure of NiO changes from nanospheres to nanowires which aggregate to form clusters with a porous structure after the addition of cobalt element. The composite has abundant pore structure, and the surface area is 192.176 m2/g, which is 18.6% enhanced compare with pure NiO. The fluey structure of the composite makes electrolyte easily soaks into the inner surface of material, which leads to larger effective surface areas. Additionaly, the internal resistance of composite materials is 1.0 ?, while the counterpart of pure NiO is 1.8 ?. The electrochemical capacitive properties of composite materials are enhanced remarkably. The as-prepared composite electrode has good charge–discharge cycle stability.
     (4) Hybride supercapacitor was assembled, Ni-Co oxide composite and active carbon were applied to the positive and negative electrodes respectively. The effect of the mass ratio of positive electrode and negative electrode was discussed. It is proved that the maximum specific capacitance of the hybride supercapacitor reaches 56.4 F/g under the mass ratio of 1:2.7. The maximum operational voltage of the capacitor was 1.2 V, which is improved effectively,and the energy density increased obviously.It also has good power density and cycle stability.
引文
[1] Faggioli E, Rena P, Danel V, et al. Supercapacitors for the energy management of electric vehicles[J]. Journal of Power Sources, 1999, 84(2):261-269.
    [2] K?tz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15-16):2483-2498.
    [3]王晓峰,解晶莹,孔祥华,等.“超电容”电化学电容器研究进展[J].电源技术, 2001, 25(5):166-170.
    [4]张浩,程杰,曹高萍,等.电化学电容器的研究进展[J].电池, 2006, 36(2):109 -110.
    [5] Conway B E.电化学超级电容器——科学原理及技术应用[M].北京:化学工业出版社, 2005:1-625.
    [6]袁国辉.电化学电容器[M].北京:化学工业出版社, 2006:1-222.
    [7]邓梅根.电化学电容器电极材料研究[硕士学位论文].成都:电子科技大学, 2005:1-146.
    [8]李荐,钟晖,钟海云,等.超级电容器应用设计[J].电源技术, 2004, 28(6):388-391.
    [9]张娜.电化学超级电容器电极材料的研究[硕士学位论文].哈尔滨:哈尔滨工程大学, 2003:1-55.
    [10]张娜,张宝宏.电化学超级电容器研究进展[J].电池, 2003, 33(5):330-332.
    [11]张熙,贵王涛,夏保佳.一种优秀的储能器件——超级电容器[J].世界产品与技术, 2003, 8:40-42.
    [12]闪星.纳米氧化镍的制备及在超级电容器中的应用[硕士学位论文].哈尔滨:哈尔滨工程大学, 2002:1-77.
    [13] Liu Ping, Verbrugge M, Soukiazian S. Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors[J]. Journal of Power Sources, 2006, 56(2):712-718.
    [14] Toupin M, Bélanger D, Hill I R, et al. Performance of experimental carbon blacks in aqueous supercapacitors[J]. Journal of Power Sources, 2005, 140(1):203-210.
    [15] Fang Baizeng, Binder L. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors[J]. Journal of Power Sources, 2006, 163(1):616-622.
    [16]邓梅根,卢云,张治安,等.超级电容器碳纳米管及其复合电极材料最新研究进展[J].材料导报, 2004, 18(2):89-91.
    [17] Hu Chichang, Chang Kwanghuei. Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical supercapacitors: effects of the chloride precursor transformation[J]. Journal of Power Sources, 2002, 112(2):401-409.
    [18]杨红生,周啸,张庆武.以多层次聚苯胺颗粒为电极活性物质的超级电容器的电化学性能[J].物理化学学报, 2005, 21(4):414-418.
    [19] Gupta V, Miura N. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline[J]. Materials Letters, 2006, 60(12):1466-1469.
    [20]苏岳锋,吴锋.新型非对称电化学电容器的电极匹配研究[J].电化学, 2004, 10(2):190-196.
    [21]殷金玲,张宝宏.超级电容器工作电解质的研究概况[J].应用科技, 2004, 31(10):46-48.
    [22]周鹏伟,李宝华,康飞宇.超级电容器用有机电解液的研究[J].电池, 2005, 35(2): 98-100.
    [23]毛立彩,吴锋,苏岳锋,等.超级电容器准固态聚合物电解质膜的研究[J].现代化工, 2005, 25(6):44-47.
    [24]张丹丹,姚宗干.大容量高储能密度电化学电容器的研究进展[J].电子元件与材料, 2000, 19(1):34-37.
    [25]刘彦芳.电化学超级电容器电极材料的研究[硕士学位论文].哈尔滨:哈尔滨工程大学, 2004:10-15.
    [26]韩丹丹.氧化镍的制备、掺杂改性及其电容性能研究[硕士学位论文].哈尔滨:哈尔滨工程大学, 2007:15-20.
    [27] Wu N L. Nanocrystalline oxide supercapacitors[J], Materials Chemistry and Physics, 2002, 75:6-11.
    [28]林志东,刘黎明,张万荣.超级电容器氧化物电极材料研究进展[J].武汉化工学院学报, 2005, 27(2):40-44.
    [29] BeckerH. US Patent. 2800616. 1957-07-23.
    [30]方勤,杨邦朝.超级电容器用中孔炭的研究[J].功能材料, 2004, 36(12):1890-1892.
    [31]苏岳锋,吴锋,赵淑红,等.纳米炭材料改善电化学电容器性能研究[J].功能材料, 2004, 35(2):188-191.
    [32]赵家昌,赖春艳,戴扬,解晶莹.模板法制备超级电容器中孔炭电极材料[J].中国有色金属学报, 2005, 15(9):1421-1425.
    [33] Cathie Vix-Guterl, Elzbieta Frackowiak, Krzysztof Jurewicz, et al. Electrochemical energy storage in ordered porous carbon materials[J]. Carbon, 2005, 43(6):1293-1302.
    [34]刘希邈,詹亮,滕娜,等.超级电容器用沥青焦基活性炭的制备及其电化学性能[J].新型炭材料, 2006, 21(1):48-53.
    [35] Babel K, Jurewicz K. KOH activated carbon fabrics as supercapacitor material[J]. Journal of Physics and Chemistry of Solids, 2004, 65(2-3):275-280.
    [36]张治安,邓梅根,汪斌华,等.超级电容器用纳米炭黑电极的电化学性能[J].功能材料, 2005, 36(2):304-307.
    [37]吴锋,徐斌.碳纳米管在超级电容器中的应用研究进展[J].新型炭材料, 2006, 21(2):176-184.
    [38]王晓峰.碳纳米管超级电容器的研制和应用[J].电源技术, 2005, 29(1):27-31.
    [39] Jun Li, Xianyou Wang, Qinghua Huang, Sergio Gamboa and P.J. Sebastian. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor[J]. Journal of Power Sources, 2006, 158(1):784-788.
    [40]王琴,沈军,周斌,等.碳气凝胶的充放电性能研究[J].材料导报, 2004, 18(2):273-274.
    [41]刘玲,盂庆函.体型酚醛树脂复合活性炭电极的制备及性能研究[J].炭素技术, 2005, 24(2):9-11.
    [42] Pekala R W, Farmer J C, Alviso C T, et al. Carbon aerogels for electrochemical applications[J]. Journal of Non-Crystalline Solids, 1998, 225(1):74-80.
    [43] Zheng J P, Cygan P J, Jow T R. Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors[J]. Journal of The Electrochemical Society, 1995, 142: 2699-2703
    [44] Subramanian V, Hall S C, Smith P H, et al. Mesoporous anhydrous RuO2 as a supercapacitor electrode material[J]. Solid State Ionics, 2004, 175(1-4):511-515.
    [45] Fang Weichuan, Huang Jinhua, Chen Lichyong, et al. Effect of temperature annealing on capacitive and structural properties of hydrous ruthenium oxides[J]. Journal of Power Sources, 2006, 160(2):1506-1510.
    [46] Jeong Y U, Manthiram A. Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes[J]. Journal of The Electrochemical Society, 2002, 149:1419-1422.
    [47] Reddy N R, Reddy G R. Sol–gel MnO2 as an electrode material for electrochemical capacitors[J]. Journal of Power Sources, 2003, 124:330-337.
    [48] Nagarajan N, Cheong M, Zhitomirsky I. Electrochemical capacitance of MnOx films[J]. Materials Chemistry and Physics, 2007, 103: 47-53.
    [49] Liu K C, Anderson M A. Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors[J]. Journal of The Electrochemical Society, 1996, 143:124-130.
    [50] Srinivasan V, Weidner J W. An Electrochemical Route for Making Porous Nickel Oxide Electrochemical Capacitors[J]. Journal of The Electrochemical Society, 1997, 144:210-213.
    [51] Nam K W, Kimz K B. A Study of the Preparation of NiOx Electrode via Electrochemical Route for Supercapacitor Applications and Their Charge Storage Mechanism[J]. Journal of The Electrochemical Society, 2002, 149(3):346-354.
    [52] Srinivasan V, Weidner J W. Capacitance studies of cobalt oxide films formed via electrochemical precipitation[J]. Journal of Power Sources, 2002, 108:15-20.
    [53] Lee H Y, Goodenough J B. Ideal Supercapacitor Behavior of Amorphous V2O5·nH2O in Potassium Chloride (KCl) Aqueous Solution[J]. Journal of Solid State Chemistry, 1999, 148:81-84.
    [54] KOZAWAA.二氧化锰手册[M].夏熙,译.成都:四川科技出版社, 1994:79-80.
    [55] Arbizzani C, Mastragostio N M, Meneghell O L . Characterization by impedance spectroscopy of a polymerbased supercapacitors[J] . Electrochimica Acta, 1995, 40(13-I4):2223-2228.
    [56] Shirakaw H, Louis E J, Macdiarmid A G, et al. Synthesis of electrically conducting organic polymers: halogen derivativea of polyacetylene, (CH)x[J]. Journal of the Chemical Society, Chem ical Communication, 1977, 16:578-580.
    [57]蔡志江.导电聚合物材料在电化学器件中的应用及发展[J].电池技术, 2006, 30 (1):74-78.
    [58] Gouérec P, Talbi H, Miousse D, et al. Preparation and Modification of Polyacrylonitrile Microcellular Foam Films for Use as Electrodes in Supercapacitors. Journal of TheElectrochemical Society, 2001, 148 (1):A94-A101.
    [59] Yamamoto T, Sanechika K, Yamamoto A. Preparation of thermostable and electric-conducting poly(2,5-thienylene)[J]. Journal of Polymer Science: Polymer Letters Edition, 1980, 18(1):9-12.
    [60] Fan Lizhen, Maier J. High-performance polypyrrole electrode materials for redox supercapacitors[J]. Electrochemistry Communications, 2006, 8:913-916.
    [61] Zhou Haihui, Chen Hong, Luo Shenglian, et al. The effect of the polyaniline morphology on the performance of polyaniline supercapacitors[J]. Journal of Solid State Electrochemistry, 2005, 9:574-580.
    [62]苏凌浩,范少华. MnO2/PbO2复合电极的电化学电容行为[J].电源技术, 2005, 29(7):462-465.
    [63] Lee J Y, Liang Kui, An K H, et al. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance[J]. Synthetic Metals, 2005, 150:153–157.
    [64] Fan Zhen, Chen Jinhua, Cui Kunzai, et al. Preparation and capacitive properties of cobalt–nickel oxides/carbon nanotube composites[J]. Electrochimica Acta, 2007, 52: 2959–2965.
    [65] Bin Dong, Ben-Lin He, Cai-Ling Xu, Hu-Lin Li. Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor[J]. Materials Science and Engineering:B, 2007, 143:7-13.
    [66]梁逵.碳纳米管及氧化镍超级离子电容器的研究[博士学位论文].电子科技大学, 2002:10-12.
    [67]王晓峰,孔祥华,刘国庆,等.新型化学储能器件——电化学电容[J].化学世界, 2001, 42(2):103-108.
    [68]王晓峰,孔祥华,刘庆国,等.氧化镍超电容器的研究[J].电子元件与材料, 2000, 19(5):26-28.
    [69]闪星,张密林.纳米氧化镍在超大容量电容器中的应用[J].功能材料与器件学报, 2002, 8(1):35-39.
    [70]方勤.沉淀转化法制备的纳米NiO超级电容器研究[J].电子元件与材料, 2005, 24(12):8-10.
    [71] Wang Yonggang, Xia Yongyao. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15[J]. Electrochimica Acta, 2006, 51:3223–3227.
    [72] Xing Wei, Li Feng, Yan Zifeng, et al. Synthesis and electrochemical properties of mesoporous nickel oxide[J]. Journal of Power Sources, 2004, 134:324–330.
    [73] Kalu E E, Nwoga T T, Srinivasan V, et al. Cyclic voltammetric studies of the effect of time and temperature on the capacitance of electrochemically deposited nickel hydroxide[J]. Journal of Power Sources, 2001, 92(1-2):163-167.
    [74] Nam K W, Yoon W S, Kim K B. X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors[J]. Electrochimica Acta, 2002, 47(19):3201-/3209.
    [75] Zheng Yanzhen, Zhang Milin, Gao Peng. Preparation and electrochemical properties of multiwalled carbon nanotubes–nickel oxide porous composite for supercapacitors[J]. MaterialsResearch Bulletin, 2007, 42:1740–1747.
    [76]刘献明,张以河,张校刚,等. Ni-Ru复合氧化物的超电容特性研究[J].物理化学学报, 2004, 20(4):417-420.
    [77] He Kuanxin, Wu Quanfu, Zhang Xiaogang, et al. Electrodeposition of Nickel and Cobalt Mixed Oxide/Carbon Nanotube Thin Films and Their Charge Storage Properties[J]. Journal of The Electrochemical Society, 2006, 153(8) :A1568-A1574.
    [78]郑言贞,张密林,陈野. Dy掺杂NiO电极电化学性能的研究[J].电池, 2006, 36(6):414-416.
    [79]韩丹丹,陈野,张密林,等.掺钇纳米NiO的制备及其超大电容性能研究[J].电化学, 2006, 12(3):333-337.
    [80]邓梅根,冯义红,方勤,等.基于沉淀转化法制备的纳米NiO混合电容器研究[J].功能材料, 2006, 37(6):898-901.
    [81] Yuan Changzhou, Zhang Xiaogang, Wu Quanfu, et al. Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte [J]. Solid State Ionics, 2006, 177(13-14):1237-1242.
    [82]杨军,解晶莹,王久林.化学电源测试原理与技术[M].北京:化学工业出版社,2006:1-346.
    [83] S.J.格雷格, K.S.W.辛.吸附、比表面与孔隙率[M].北京:化学工业出版, 1989:1-305.
    [84]杨晨.纳米金属氧化物的制备及其超级电容特性研究[硕士学位论文].哈尔滨:哈尔滨工程大学,化工学院, 2004:10-17.
    [85]杨娇萍.超级电容器用多孔活性炭的研究[硕士学位论文].北京:北京化工大学, 2005:1-66.
    [86] Huang Q H, Wang X Y, Li J. Characterization and performance of hydrous manganese oxide prepared by electrochemical method and its application for supercapacitors[J]. Electrochimica Acta, 2006, 52:1758-1762.
    [86] Srinivasan V, Weidner J W. Studies on the Capacitance of Nickel Oxide Films: Effect of Heating Temperature and Electrolyte Concentration[J]. Journal of The Electrochemical Society, 2000, 147(3):880-885.
    [87]李胜,丁士华,梁逵,等.真空烧结制备氧化镍及其超级电容器特性的研究[J].西华大学学报·自然科学版, 2007, 26(3):9-12.
    [88] Wang Xingyan, Wang Xianyou, Huang Weiguo, et al. Sol–gel template synthesis of highly ordered MnO2 nanowire arrays[J]. Journal of Power Sources, 2005, 140:211–215.
    [89]张飞豹.水热法制备低维纳米材料及氧化镍电极电容器性质研究[硕士学位论文].兰州大学, 2004:8-9.
    [90]刘育,李莉.超分子体系中的分子识别——环糊精为受体的分子识别和分子组装研究最新进展[J].自然科学进展, 2000, 10(11):961-968.
    [91] Han B H, Polarz S, Antonietti M. Cyclodextrin-based Porous Silica Materials as in Situ Chemical“Nanoreactors”for the Preparation of Variable Metal?Silica Hybrids[J]. Chemistry of Materias, 2001, 13(11):3915-3919.
    [92] Li L D, Sun X H, Yang Y L, et al. Synthesis of Anatase TiO2 Nanoparticles with-Cyclodextrin as a Supramolecular Shell[J]. Chemistry-An Asian Journal, 2006, 1(5):664-668.
    [93]孙晓红,郑春明,章福祥,等.β-环糊精作为超分子壳制备BaTiO3纳米晶体[J].无机化学学报, 2008, 24(1):93-97.
    [94]王来军,文明芬,杨栋,等.以环糊精为模板剂制备不同粒径CeO2纳米粒子[J].分子催化, 2006, 20(2):179-181.
    [95] Zheng Yanzhen, Ding Haiyang, Zhang Milin. Preparation and electrochemical properties of nickel oxide as asupercapacitor electrode material[J]. Materials Research Bulletin, 2009, 44:403-407.
    [96]谢中伟.镍电极快速充电研究[J].电源技术, 1998, 22(1):12-14.
    [97]周辉,任小华,蒋文全,等.制备工艺对球形氧化镍结构和性能的影响[J].电源技术, 1999, 23(增刊):67-69.
    [98] Streinz C C., Hertman A P., Motupally S, et al. The Effect of Current and Nickel Nitrate Concertration on the Deposition of Nickel Hydroxide Films[J]. Journal of The Electrochemical Society, 1995, 142(4):1084-1089.
    [99] S.J.格雷格, K.S.W.辛.吸附、比表面与孔隙率[M].北京:化学工业出版, 1989:1-305.
    [100] Hu Chichang, Cheng Chenyi. Ideally Pseudocapacitive Behavior of Amorphous Hydrous Cobalt-Nickel Oxide Prepared by Anodic Deposition[J]. Electrochemical and Solid-State Letters, 2002, 5:43-46.
    [101]王晓峰,王大志,梁吉.氧化镍/碳纳米管复合型超级电容器的研制[J].无机化学学报, 2003, 19(2):137-141.
    [102] Jin Weihong, Cao Genting, Sun Jingya. Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution[J]. Journal of Power Sources, 2008, 175:686-691.
    [103] Ma S B, Nam K W, Yoon W S, et al. A novel concept of hybrid capacitor based on manganese oxide materials[J]. Electrochemistry Communications, 2007, 9:2807-2811.
    [104]于立娟,杨萍,张宝宏.有机电解液MnO2/AC混合电容器的研究[J].电子元件与材料. 2007, 26(2):58-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700