中国空中云水资源和降水效率的评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能量和水分循环是全球气候系统中的重要过程,云水作为大气水循环的重要环节,在气候变化、天气分析和人工影响天气中的作用十分关键。对云水的研究,包括云场的三维结构诊断、云水平衡和转化等基本问题,过去的研究很少。本论文利用Cloudsat云观测和再分析资料,提出了三维云场和云水场的诊断方法,对包括云水在内的大气水分收支和云水资源、降水效率等进行了计算评估分析。本论文的主要工作和初步结果包括:
     1、提出了包括水凝物在内的大气水分收支方程,提出了一定时空范围内参与大气水循环的各种水物质总量、降水效率、更新周期等概念和计算公式,提出了云水资源和空中留存云水量的概念。
     2、为了得到三维云场的分布,利用2007-2008年Cloudsat云检测产品与配套ECWMF再分析资料的相对湿度进行统计,得出我国云内外相对湿度判别阈值及其随高度变化,提出了基于再分析资料的三维云场分布监测诊断方法。研究发现,Cloudsat云检测mask值大于20的云区位置与相对湿度高值区有很好的时空对应;不同高度范围的云内相对湿度都呈单峰型分布,峰值在相对湿度100%附近,晴空相对湿度受当地大气环境影响,各地各高度都有差别;云内外累积频率交叉法和TS评分法统计得出的诊断云相对湿度阈值相差10%左右,阈值随高度均先减小后增加。
     3、基于ECMWF的云相对湿度阈值垂直分布,利用NCEP再分析资料对全国三维云场的分布进行个例诊断应用,虽然NCEP资料的时空分辨率较粗,其相对湿度诊断的云场分布比较符合实际云降水观测;云区附近的湿度梯度大,相对湿度阈值法诊断的云区总体比较稳定;诊断的云区与上升气流区对应较好,云区和晴空的分布与卫星Tbb观测大致对应,云厚即总云层数与光学厚度和地面降水的分布比较一致;诊断的云垂直分布与地面云观测比较一致,云层密实深厚的区域通常对应着地面降水;单点的云垂直结构随时间演变与当地的雷达和地面云降水观测都比较一致。
     4、为了得到三维云水场分布,利用2007-2008年Cloudsat云分类和云含水量产品,统计分析了中国云含水量和粒子有效半径的典型值及分布特征。结果表明:全国平均而言,中国地区云液水含量(LWC)在低层均最为丰沛,随高度增加而减小,平均值小于0.35g/m3;液相粒子有效半径平均值整层都在10μ m左右。云冰水含量(IWC)的平均值小于0.1g/m3,层状云IWC随高度呈增加趋势,对流云IWC随高度先增加后减小两类云中最大的IWC含量分别在中高层和7km高度附近;冰相粒子有效半径(Ice_Ref)的平均值在60-90μm之间。中国不同气候区的对流云含水量均大于层状云含水量,LWC从南向北,从东向西减少,而IWC在6km以下从西向东减小,6km以上从南向北减小。
     5、基于大气水分收支方程和三维云场的诊断识别方法,利用NCEP再分析资料,结合卫星和雷达观测及地面降水资料,对不同时空尺度的大气水分收支和降水效率进行评估。结果表明:2011年中国全年总降水量约6.58万亿吨,水汽总输入量为22.6万亿吨,全年水汽净输入2.1万亿吨,占总输入量的9%。水凝物总输入量为2万亿吨,全年水凝物净输入两千亿吨。2011年水汽和水凝物的更新周期的分别为11天和15小时,总水物质和水凝物的年降水效率分别为18%和77%,与前人的气候分析结果比较一致。大气水循环存在明显的季节和年变化特征,由于不同季节的云系发展和覆盖差异,水汽、水凝物和地面降水总量在夏季最为丰沛,冬季最少,水汽和水凝物的更新周期为夏季最短,冬季最长,水汽和水凝物的降水效率夏季最高,冬季最低。春秋季的水物质循环和转换效率居于冬夏季之间。中国地区不同时间尺度的评估表明,随时段增长,水物质输入(出)量变大,初(终)值所占比率变小;凝结量在水凝物中所占比例很大,不同区域和云系有一定差别;降水日的水物质更新速率比全年平均快。不同空间尺度范围,水凝物的通量与净凝结量相比重要性不同,同时又与研究时段内的降水情况密切相关。对于局地的对流云,水凝物主要来源于研究区域内水汽的凝结。不同降水日,大气水分收支的评估结果有很大差异。
     6、利用WRF模式对2009年4月18日的降水过程进行模拟研究,结果表明:CAMS方案对本次过程的水汽、水凝物和降水的模拟效果总体较好,与NCEP水汽场、卫星光学厚度及诊断的云场和地面降水实测结果都比较一致,能够较为真实的反应出云降水的发展和演变。其中,诊断的云区和模式预报云场总是形成于天气系统附近,并随着天气系统发展移动,云中雪花和霰等大粒子含量更为丰沛,小云粒子和冰晶含量较少。后期可细致分析此次降水过程中的大气水平衡及水分收支转换和云水资源量。
Energy and water cycle is an important process in the global climate system. Cloud plays a very important role Cloud plays a very important role in climate change, weather analysis and weather modification which is the main process in the global climate system as an important process of atmospheric water cycle.There are few research on cloud water, which includes three dimension cloud field diagnosis, cloud water balance and transformation. Based on the cloudsat observation and reanalysis data, three-dimensional cloud fields and cloud water field diagnostic methods is proposed. Water budget including hydrometeors, cloud water resource and precipitation efficiency are calculated, The main work and preliminary results of this paper are as follows.
     (1) Atmospheric moisture budget equations including hydrometeors are proposed. water budget three-dimensional cloud fields and cloud water field diagnostic methods is proposed. The concepts and formulas of various water material amount, precipitation efficiency and update cycle in a certain time and space scale are proposed. The concepts of cloud water resource and atmospheric remanding cloud water are given.
     (2) In order to get the three-dimension cloud distribution, based on cloud mask and relative humidity (RH) provided by Cloudsat products from2007to2008. The cloud determining RH threshold and its vertical variation over china is statistical analyzed and the monitoring and diagnosis method on three-dimensional cloud fields distribution is proposed, based on reanalysis data. Cloud region where cloud mask, which is bigger than20,has a good space and time corresponding to the high value relative humidity region.Distribution of RH in cloud at different height range shows single peak type, and the peak is near a RH value of100%. Local atmospheric environment affects the RH distribution outside cloud, which leads to RH distribution vary in different region or different height. RH threshold used for cloud diagnostic statist through the cross of cumulative RH frequency within and outside cloud, is less than the RH threshold get from Threat score(TS) method by10%. The two threshold both increased with the height first, and then reduced.
     (3)The method is applied to a three dimension cloud diagnosis case study which based on NCEP reanalysis data, and the diagnostic cloud field is compared to satellite, radar and cloud precipitation observation on ground. It is found that, RH gradient is very high around cloud region and the cloud area which diagnosed by RH threshold method is relatively stable. Diagnostic cloud area highly corresponds to updraft region and the cloud and clear sky distribution corresponds to satellite the Tbb observations overall. Diagnostic cloud depth, or sum cloud layers distribution greatly consists with optical thickness and precipitation on ground. The cloud vertical profile reveals the relation between cloud vertical structure and weather system clearly. Diagnostic of cloud distribution corresponds to cloud observations on ground very well. Precipitation on ground usually can be observed at deep-developed cloud area. The time series of cloud vertical structure evolution at single point is well consistent with local radar and surface cloud and precipitation observations.
     (4) In order to get the three-dimension cloud water distribution, based on Cloudsat cloud classification and cloud water content products from2007to2008. cloud water content and typical value and distribution characteristics of particle effective radius over China are statistical analyzed and different cloud systems. Results showed that, as the national average. the liquid water content (LWC) is most plentiful at lower layer and decreases with altitude. The average of LWC is less than0.35g/m3, and average effective radius of the liquid phase particles is about10u m at all layers. The average ice water content (IWC) is less than0.1g/m3.The IWC in stratiform clouds increases with altitude, while which in convective cloud is first increases with altitude. The largest IWC in stratiform and convective clouds is at high level and near7km respectively. The average effective radius of the ice phase particles is between60-90μ m. In different climatic zones of china. water content of convective cloud is always greater than stratiform cloud.LWC decreases from south to north, from the east to the west, while IWC reduces from west to east under6km height and reduces from south to north over6km height.
     (5) According to technology program of monitoring and evaluation of cloud and water resources, using the reanalysis data of NCEP. combining the observations of satellite and radar and ground precipitation data. we can calculate and assess the cloud and water resources of different cloud system, different times and range, and the main conclusion can be listed as follows:The daily calculated results of cloud and water resources over the year of China in2011show that, the total annual precipitation is about658trillion tons, the total inputting water vapor content is22.6trillion tons, the annual net inputting water vapor content is2.1trillion tons, the total inputting hydrometeors content is2trillion tons, and the annual net inputting hydrometeors content is200billion tons. The annual average value of update cycle of water vapor and hydrometeors were11days and15hours. and the annual average value of precipitation efficiency of water vapor and hydrometeors were18%and77%. Atmospheric water cycle has a significant seasonal and annual variation feature, owing to development and coverage's diversity of cloud system in different season, the water vapor, hydrometeors and total ground precipitation are most abundant in summer and least in winter, the update cycle of water vapor and hydrometeors are shortest in summer and longest in winter, the precipitation efficiency of water vapor and hydrometeors are highest in summer and lowest in winter. The efficiency of water material recycling and conversion in spring and autumn is between summer and winter. The evaluation result varies in different precipitation days. The assessment result of cloud water resources is closely related to research area and period, when research period is very short, the initial stock of water material take up a larger proportion in total content of water material; when research period is very long just like the whole year, the advection of water material is particularly important and instantaneous stock has little effect on the results. With regard to local convective precipitation process, it has fast updating velocity of water material and high precipitation efficiency. The spatial and temporal scale has great impact on the accessing of atmospheric water balance and cloud water resource. The water substances initial and final value is small relative to the flux evaporation, condensation net amount and precipitation and can be ignored in long time assessing. The shorter research period, the greater the impact of the initial and final values of the water substance. The importance of hydrometeors flux compared with the net amount of condensation varies with different scales, meanwhile closely related to precipitation in research period.
     (6) WRF model simulation study of the precipitation process on April18,2009shows that, water vapor, hydrometeors and precipitation of this event are well simulated overall by the CAMS program. The simulated results are in good consistent to NCEP water vapor field, satellite retrieval optical thickness,the diagnostic field of cloud and surface precipitation observations, which reflect the development and evolution of the real cloud and precipitation. Diagnosis cloud and simulated cloud field always form nearby the weather system and develop and move with the weather systems. There's more abundant of big particles like snowflake and graupel in cloud than little cloud particles and ice crystals. The atmospheric water balance, moisture budget and cloud water resource of this event can be analyzed later.
引文
蔡淼,周毓荃.朱彬.2010.FY2C/D卫星反演云特征参数与地面雨滴谱降水观测初步分析[J].气象与环境科学33(1):1-6.
    蔡淼,周毓荃,朱彬.2011.一次对流云团合并的卫星等综合观测分析[J].大气科学学报,34(2):170-179.
    蔡淼,周毓荃,欧建军等.2011.一次对流云团合并的卫星等综合观测分析.大气科学学报34(2):170-179.
    陈洪斌.星载微波辐射计遥感反演云水量的一个算式.遥感学报.2000,4(3):165-171
    陈秋萍,曾光平,冯宏芳等.2005.对流云总降水量和降水效率估测.应用气象学报.16(2):260-263
    陈英英,周毓荃,毛节泰,等.2007.利用FY-2C静止卫星资料反演云粒子有效半径的试验研究[J].气象,33(4):29-34.
    陈英英,唐仁茂,周毓荃,等.2009FY-2C/D卫星微物理特征参数产品在地面降水分析中的应用[J].气象,35(2):15-18.
    陈英英,武文辉,等.2011.利用Cloudsat卫星资料分析冬雨天气的云结构.气象37(6):707-713.
    陈永航,黄建平,陈长和等.西北地区空中云水资源的时空分布特征.高原气象,2005,24(6):905-912
    崔玉琴.1989.西北区1981年汛期空中水资源平衡状况.水利学报.8:30-36
    达布希拉图,朝伦巴根,苏立娟,闫宾内蒙古地区与全球云水资源分布情况研究,干旱区资源与环境,2008,22(5):165-168
    代娟,黄建华,王华荣等.襄樊市空中云水资源分布及人工增雨潜力研究.暴雨灾害,2009,28(1):79-83
    德力格尔,黄彦彬,李仑格.青海省东北部地区春季空中水资源潜力分析.高原气象.2002,21(6):622-627
    丁守国,石广玉,赵春生,利用ISCCP D2资料分析近20年全球不同云类云量的变化及其对气候可能的影响,科学通报,2004,49(11):1105-1111
    丁相毅,贾仰文,王浩等.2010.气候变化对海河流域水资源的影响及其对策.自然资源学报.25(4):604-613
    段英,吴志会.利用地基遥感方法监测大气中汽态、液态水含量分布特征的分析.应用气象学报,1999,10(1):34-40
    高歌,黄朝迎.中国水资源念经评估方法及其研究应用.应用气象学报,2005,16(增刊):105-110
    樊增全,刘春蓁.1992.1980-1987年华北地区上空水汽输送特征.大气科学.16(5):548-555
    方宗义,许建民,等.2004.中国气象卫星和卫星气象研究的回顾和发展.气象学报62(5):550-561
    冯思,黄云,许有鹏.2006.全球变暖对新疆水循环影响分析.冰川冻土.28(4):500-505
    封彩云,王式功,尚可政等.2009.中国北方水汽与云和降水的关系.兰州大学学报(自然科学 版).45(4):30-36
    龚佃利,边道相.2002.山东省空中水资源的初步分析.7(4):474-482
    郭良才,白虎志,岳虎等.2007.祁连山区空中水汽资源的分布特征及其开发潜力.资源科学.29(2):68-73
    洪光,周庆满,林滋新.1990.青岛地区大气中水汽含量及水汽输送的研究.海岸工程.1:75-80
    洪延超,李宏宇.一次锋面层状云云系结构、降水机制及人工增雨条件研究.高原气象.2011.30(5):1308-1323
    黄彦彬,德力格尔,王振会.利用地基双通道微波辐射计遥感青藏高原大气云水特征.南京气象学院学报,2001,24(3):391-397
    江志红,梁卓然,刘征宇等.2011.2007年淮河流域强降水过程的水汽输送特征分析.大气科学.35(2):361-372
    金德镇,雷恒池,谷淑芳等.机载微波辐射计测云中液态含水量.气象学报,2004,62(6):868-874
    焦德生等,1986.中国水资源评价概述
    晋玉田.四川省盆地区云水资源与开发.四川气象,1999,19(1):14-19
    李进,李栋梁,张杰.2012.黄河流域冬、夏季水汽输送及收支特征.高原气象.31(2):342-350
    李静,肖子牛等.基于MODIS和Cloudsat云产品分析降水云系特征.科技信息,2009,11:36-37.
    李铁林,刘金华,刘艳华等.利用双频微波辐射计测空中水汽和云液水含量的个例分析.气象,2007,33(12):62-69
    李秀珍,梁卫,温之平.2010.华南秋、冬、春季水汽输送特征及其与降水异常的联系.热带气象学报.26(5):626-632
    李延兴,徐宝祥,胡新康等.2001.应用地基GPS技术遥感大气柱水汽量的试验研究.应用气象学报.12(1):61-70
    李玉林,吴万友,蔡定军等.江西省云水资源特征分析.气象科技,2010,38(5):613-619
    李玉林,杨梅.夏季对流云降水资源分析.自然灾害学报.2008,17(3):63-68
    李兴宇,郭学良,朱江,中国地区空中云水资源气候分布特征及变化趋势,大气科学,2008,32(5):1094-1106李延兴,徐宝祥,胡新康,等.应用地基GPS技术遥感大气柱水汽量的试验研究[J].应用气象学报,2001,12(1):61-69.
    梁谷,雷恒池,李燕等.机载微波辐射计云中含水量的探测.高原气象,2007,26(5):1105-1111
    廖荣伟,赵平.2011.季风湿润区冬季水汽收支年际及年代际变化特征.应用气象学报.22(6):641-653
    廖向花,周毓荃,等.2010.重庆一次超级单体风暴的综合分析.高原气象29(6):1556-1564.
    刘德,李永华,向波等.重庆市主城区近百余年水资源变化及评估.热带气象学报,2004,20(6):743-749
    刘国伟,周仪.1985.中国大陆上空水汽输送的研究.水利学报.11:1-13
    刘洪利,朱文琴,宜树华等.中国地区云的气候特征分析.气象学报,2003,61(4):466-475
    刘建朝.2011.利用卫星等遥感方法对云特征的研究.硕士论文.
    刘健,董超华,张文建.2003.利用FY-1C资料反演水云的光学厚度和粒子有效半径.红外与毫米波学报.11:436-440
    刘晓冉,杨茜,王若瑜等.2012.1980-2009年三峡库区空中水资源变化特征.自然资源学报.27(9):1550-1560
    刘旭春,王艳秋,张正禄.利用G P s技术遥感哈尔滨地区大气可降水量的分析[J].测绘通报,2006(4):10-12.
    鲁家永.阜阳市空中云水资源利用现状及对策.资源与环境科学,2010(3):316-318
    陆桂华,徐栋,何海.2012.黑河流域水汽输送及收支特征.自然资源学报.27(3):510-521
    陆渝蓉,高国栋.1983.中国大气中的水汽平均输送.高原气象.2(4):34-48
    马涛,张万诚,付睿.2011.云南空中水资源的季节变化研究.程度信息工程学院学报.26(5):486-493
    宁金花,申双和.2008.气候变化对中国水资源的影响.安徽农业科学.36(4):1580-1583
    牛生杰,马铁汉,管月娥等.宁夏夏季降水性层状云微结构观测分析.高原气象,1992,11(3):241-248
    欧建军.2011.利用探空数据分析云垂直结构的方法及其应用研究.硕士论文
    潘留杰,朱伟军,周毓荃,等.环北京地区八月风暴云的气候分布特征[J].高原气象,2010,29(6):1-9.
    彭宽军,陈勇航,王文彩等.新疆山区低层云水资源时空分布特征.水科学进展.2010,21(5):653-659
    乔云亭,罗会邦,简茂秋.2002.亚澳季风区水汽收支时空分布特征.热带气象学报.18(3):203-210
    尚博,周毓荃,刘建朝等.2012.基于Cloudsat的降水云和非降水云垂直特征.应用气象学报23(1):1-9.
    施小英,施晓辉.2008.夏季青藏高原东南部水汽收支气候特征及其影响.应用气象学报.19(1):41-46
    邵洋,郑国光.河南省春季层状云系降水的空中水资源特征分析.气象.2007,33(7):22-32
    石立新,汤达章,万蓉等.利用多普勒天气雷达估算层状云的降水效率.气象科学.2005,25(3):272-279
    宋正山,杨辉,张庆云.华北地区水资源各分量的时空变化特征.高原气象,1999,18(4):552-566
    孙仲毅,靳冰凌,王敏等.2008年6-8月河南空中云水资源分布特征.气象与环境科学,2009,32(4):55-59
    万蓉,郑国光.地基GPS在暴雨预报中的应用进展[J].气象科学,2008,28(6):697-702.
    汪会,罗亚丽,等.2011.用CloudSat/CALIPSO资料分析亚洲季风区和青藏高原地区云的季节变化特征.大气科学35(6):1117-1131.
    汪静萍,刘国纬.1995.山西上空水汽输送和水分循环研究.水科学进展.6(2):107-115
    王宝鉴,黄玉霞,王劲松等.祁连山区云河空中水汽的季节分布与演变.地球科学进展,2006,,21(9):948-955
    王洪强,陈勇航,彭宽军等.基于Aqua卫星总云量资料分析山区云水资源.自然资源学报.2011,26(1):89-96
    王胜杰,何文英,等.2010.利用CloudSat资料分析青藏高原、高原南坡及南亚季风区云高度的统计特征量.高原气象29(1):1-9.
    王帅辉,韩志刚,等.2011.基于Cloudsat资料的中国及周边地区各类云的宏观特征分析.气象学报69(5):883-899.
    王维佳.四川地区云和空中水资源分布与演变.气象科技,2002,38(1):58-65
    王维佳,赵兴炳.川西高原地基G P s遥测可降水量特征[J].干旱气象,2010,28(3):279-296
    王小亚,朱文耀,严豪键,等.地面GPS探测大气可降水量的初步结果[J].大气科学,1999,23(5):605-612.
    王以琳.山东空中水资源开发利用.中国人口资源与环境,1994,4(增刊):103-107
    魏娜,巩远发,孙娴等.2010.西北地区近50年降水变化及水汽输送特征.中国沙漠.30(6):1450-1457
    魏丽,钟强.1996.中国大陆卫星反演云参数的评估.高原气象15(2):147-156.
    魏重,林海,邹寿祥等.微波遥感海上大气可降水和云液态含水量.大气科学,1989.13(1):101-107
    吴伟,王式功,邓连堂等.2010.中国北方云量的四季分布与降水.兰州大学学报(自然科学版)46(3):32-40.
    谢义炳,戴武杰.1959.中国东部地区夏季水汽输送个例计算.气象学报.3 0(2): 173-185
    谢坤,任雪娟.2008.华北夏季大气水汽输送特征及其与夏季旱涝的关系.气象科学.28(5):508-514
    徐淑英.1958.我国的水汽输送和水汽平衡.气象学报,29(1):33-42.
    杨大生,基于星载云廓线雷达观测资料对中国地区云属性参量的时空分布特征分析,博士论,2009.
    杨大生,王普才.2012.中国地区夏季6-8月云水含量的垂直分布特征.大气科学36(1):89-101.
    杨大生,王普才.2012.中国地区夏季云粒子尺寸的时空分布特征.气候与环境研究17(4):433-443.
    宜树华,刘洪利,李维亮,刘煜,中国西北地区云时空分布特征的初步分析,气象,2002,29(1):7-11
    游来光,吴兑.层状云中的液水含量与降水条件.
    于华英,牛生杰,梁明珠等.一次强对流风暴含水量的雷达反演和数值模拟结果的对比分析.高原气象.2007,26(5):1112-1118
    袁野.2005.不同云天条件下水汽含量特征及其变化分析.气象科学,25(4):394-398.
    詹丰兴,傅敏宁,刘熙明等.地基PS/MET研究回顾与展望.气象与减灾研究.2009,32(4):8-13
    张秉翔,韩军彩,陈静等.2012.华北地区空中水汽含量与降水量的关系.干旱气象.30(2):207-214
    张佃国,郭学良,付丹红等.2007.2003年8-9月北京及周边地区云系微物理飞机探测研究.大气科学.31(4):596-610
    张佃国,樊明月,龚佃利等.一次降水性积层混合云系的微物理特征分析.大气科学学报,2010,33(4):496-503
    张焕昭,徐东亮,刘海群.黑龙江省空中云水资源开发现状分析与展望.黑龙江气象,2007,1:10-12
    张良,王式功,尚可政等.2007.祁连山区空中水资源的研究.干旱气象.25(1):14-21
    张杰,张强,田文寿等.祁连山区云光学特征的遥感反演与云水资源的分布特征分析.冰川冻土.2006,28(5):722-727
    张琪,李跃清,等.2011.近46年西南地区云量的时空变化特征.高原气象30(2):339-348.
    张琪,李跃清,陈权亮,任景轩(2011).近46年西南地区云量的时空变化特征.高原气象30(2):10
    张泽中,黄强,齐青青等.云水资源及其计算方法.水利学报,2007,10(增刊):428-431
    赵柏林,尹宏,李慧心,等.微波遥感大气层结的原理和实验.中国科学,1980,(9):874-882.
    赵柏林,傅强,杜金林,等.微波遥感大气特征及天气变化.中国科学(B),1990,4:440-448.
    赵从龙,蔡化庆,宋玉东,等.对流层水汽和液态水的地基微波遥感探测.应用气象学报,1991,2(2):200-207.
    赵凤生,丁强,孙同明等.2002.利用NOAA-AVHRR观测数据反演云辐射特性的一种迭代方法.气象学报,60:594-601.
    赵瑞霞,吴国雄.长江流域水分收支以及再分析资料可用性分析.气象学报.2007,65(3):416-427
    赵瑞霞,吴国雄,张宏.2008.夏季风期间长江流域的水汽输送状态及其年际变化.地球物理学报.51(6):1670-1681
    赵姝慧,周毓荃.利用多种卫星研究台风“艾云尼”宏微观结构特征.高原气象,2010,29(5):1254-1260
    赵增亮,毛节泰,魏强等.西北地区春季云系的垂直结构特征飞机观测统计分析.气象,2010,36(5):71-77
    赵增亮,毛节泰,王磊等.201 1.一次典型层积云的飞机观测结果及其与卫星资料的对比分析.气象学报.69(3):521-527
    郑淑贞,冯玲,曾光平.南方夏旱期积云含水量和降水效率的云模式估算.应用气象学报.2003,14(增刊):99-109
    钟水新,王东海,等.2011.基于Cloudsat资料的冷涡对流云带垂直结构特征.应用气象学报22(3):257-264.
    仲凌志(2010).星载毫米波测云雷达在研究冰雪天气形成的云物理机制方面的应用潜力.气象学报68(5):705-716.
    周长艳,蒋兴文,李跃清.2009.高原东部及邻近地区空中水汽资源的气候变化特征.高原气象.28(1):55-63
    周德平,宫福久,张淑杰等.辽宁云水资源分布特征及开发潜力分析.自然资源学报,2005,20(5):644-651
    周非非,洪延超,赵震.一次层状云系水分收支和降水机制的数值研究.气象学报.2010,68(2):182-194
    周非非,周毓荃,等.2010.FY-2卫星反演的云顶高度与多普勒雷达回波顶高的关系初探.气象36(4):43-50.
    周珺,雷恒池,魏重等.机载微波辐射计反演云液水含量的云物理方法.大气科学,2008,32(5):1071-1082
    周秀骥.大气微波辐射计及遥感原理.北京:气象出版社,1982.
    周毓荃,陈英英,等.2008.用FY-2C/D卫星等综合观测资料反演云物理特性产品及检验.气象34(2):27-37.
    周毓荃,赵姝慧.2008CloudSat卫星及其在天气和云观测分析中的应用.南京气象学院学报31(5):603-613.
    周毓荃,潘留杰,张亚萍.2009TITAN系统的移植开发及个例应用[J].大气科学学报.32(6):752-764.
    周毓荃,欧建军.2010.利用探空数据分析云垂直结构的方法及其应用研究.气象.36(11):50-58
    卓东奇,郑益群,李炜等.2006.江淮流域夏季典型旱涝年大气中的水汽输送和收支.气象科学.26(3):244-251
    邹进上,刘蕙兰.1983.我国大陆上空平均水汽含量及其季节变化.气象科学.1:32-40
    Andrew J.Heymsfield, Larry M.Miloshevich, Evaluation of liquid water measuring instruments in cloud clouds sampled during FIRE. Journal of atmospheric and oceanic technology,1989,6:378-388
    A.R. Jameson. Using multiparameter radars to estimate the attenuation and water content of clouds. Journal of applied meteorology.1995,34:2046-2059
    Benton, G.S and M. A.1954. Estoque, water-vapor transfer over the North American Continent. Jour. Met.11:462-477
    Bevi M, Businger S, Herring T A, et al. GPS meteorology:Remote sensing of atmospheric water vapor using the global positioning system [J]. J Geophys Res,1992,97:15787-15801.
    Bevis M, Businger S, ChiswellS, et al. GPS Meteorology:Mapping zenith wet delays onto precipitable water [J]. J Appl Meteor,1994,33 (3):379-386.
    Bing Lin, W. B. R.1994. "Observations of cloud liquid water path over oceans:Optical and microwave remote sensing methods." JOURNAL OF GEOPHYSICAL RESEARCH 99(D10):907-926.
    Braham R RJr. The water and energy budgets of the thunderstorm and their relation to thunderstorm development. J Meteor.1952,9:227-242
    Businger S, Chiswel R, Bevis M, et al. The promise of GPS in atmospheric monitoring [J].Bull Amer Met Soc,1997,77 (1):5-7.
    Caniaux,G, Redelsperger J L,Lafore JP. A numerical study of the stratiform region of a fast-moving squall line.Part I:general description and water and heat budgets. J Atomos Sci.1994,51:2046-2074
    C.G. Michael,1986. Journal of atmospheric and oceanic technology,3,周景林译.一个改进的机载爱根核计数器.
    Charlies Cohen,Eugene W. McCaul JR. Further results on sensitivity of Simulated storm precipitation efficiency to environmental temperature. Monthly weater review.2007,135:1671-1684
    Chester W.Newton. On the movements of convective storms, with emphasis on size discrimination in relation to water-budget requirements. Journal of applied meteorology.1964,3(6):651-668
    Chong M,Hauser D. A tropical squall line observed during the COPT 81 experiment in West Africa,Part II:Water budget. Mon Wea Rev,117:728-744
    Colle B A,Garvert M F,W olfe J B, et al. The 13-14 December 2001 IMPROVE-2 Event.Part III Simulated microphysical budgets and sensititity studies.J Atomos Sci,2005,62:3535-3558
    Daniele Hauser, Paul Amayenc. Retrieval of cloud water and water vapor contents from Doppler radar data in a tropical squall line. Journal of atmospheric sciences.1986,43(8):823-838
    Dorothy L.Bradbury. Moisture analysis and water budget in three differnt types of storms. Journal of meteorology.1956,14:559-565
    Emardson T R, Derks H J P. On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere [J]. Meteor Appl,2000,7(1):61-68.
    Essenwanger,O.,and G.H.Haggard,1962:Frequency of clouds in height layers for Berlin (Tempelhof) J. Appl.Meteor.,1,560-569
    Eun-Kyong Seo, Guosheng Liu.Determination of 3D cloud ice water contents by combing multiple data sources from satellite, groud radar and a numerical model. Journal of applied meteorology and climatology.2006,45:1494-1504
    Frank Roux, Sun Ju. Single-Doppler observations of a West African squall line on 27-28 May 1981 during COPT 81:kinematics, thermodynamics and water budget. Monthly weather review. 1990,118:1826-1854
    Hanan N.Karam, Rafael L. Bras. Climatological Basin-scale Amazonian evapotranspiration estimated through a water budget anylysis. Journal of hydrometeorology.2008,9:1048-1060
    Heggli Mark, Rauber Robert M, Snider J B. Field evaluation of a dual2channel microwave radiometer designed for measurement of integrated water vapour and cloud liquid water in the atmosphere. J.Atmos. Ocean. Technol.1987,4:204~213.
    Henri Sauvageot. Retrieval of vertical profiles of liquid water and ice content in mixed clouds from Doppler radar and microwave radiometer measurements. Journal of applied meteorology.1996,15:14-23
    Hobbs P V,Matejka T J,Herzegh P H, et al. The mesoscale and microscale struture and organization of clouds and pricipitation in midlatitude cyclones I :a case study of a cold front. J Atmos Sci.1980,37:568-596
    Huang J, L in B, M innis P, et al. Satellite- bas ed assessment of possible dust aerosols semi direct effect on cloud water path over East Asia. Geophys. Re s. L ett.,2006, 33, doi:10. 1029/2006GL026561
    Hu Chengda. Research on Microwave Remote Sensing of Atmospheric Water. Acta Scientiarum Naturalium,Universitatis Pekinensis,1997,33(3):355-358
    Hutching, J.W.,1957. Water vapor flux and flux divergence over southern England summer 1954. Quart. J. R. Met. Soc.83:30-48
    I.P.Mazin, A.V.Korolev, A.Heymsfield et al. Thermodynamics of icing cylinder for measurements of liquid water content in supercooled clouds. Mazin. Journal of atmospheric and oceanic technology.2001,18:543-558
    John F. Gamache, Robbert.Houze,JR. Water budget of a mesoscale convective system in the tropics. Journal of atmospheric sciences.1983,40:1835-1850
    Lawrence D.Carey, Jianguo Niu, Ping Yang.et al. The vertical profile of liquid and ice water content in midlatitude mixed-phase altocumulus clouds. Notes and correspondence.2008,47:2487-2495
    Marchand, R., G. G. Mace, et al.2008. "Hydrometeor Detection Using Cloudsat—An Earth-Orbiting 94-GHz Cloud Radar." Atmos. Oceanic Technol 25:519-533.
    Michel Chong, Daniele Hauser. A tropical squall line observed during the COPT 81 experiment in West Africa. Part II:water budget. Monthly weather review.1989,117:728-744
    Nakajima. T., King. M.D.1990. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I:Theory. Journal of the Atmospheric Sciences.47:1878-1893.
    Nicolas Gaussiat,Henri Sauvageot, Anthony J.Illingworth.Cloud liquid water and ice content retrieval by multiwavelength radar. Journal of atmospheric and oceanic technology.2003,20:1264-1275
    Poore K, J Wang, W B Rossow. Cloud layer thicknesses from a combination of surface and upper air observations[J]. J Climate,1995,8:550-568.
    QingYuan Han,William B.Rossow,JoYCE Chou et al. Validation of satellite retrievals of cloud microphysics and liquid water path using observations from FIRE. Journal of the atmospheric science,1995,52(23):4183-4195
    QingYuan Han,William B.Rossow,JoYCE Chou et al.Global survey of the relationships of cloud Aledo and liquid water path with droplets size using ISCCP. Journal of climate,1999,7(11):1516-1528
    Ralph J.Donaldson. The measurement of cloud liquid-water content by radar. Journal of meteorology. 1995,7:238-144
    R.D.Elliott.1958.California storm characteristics and weather modification, meterology.15(6).
    Robert Wood,Paul.Field. Relationships between total water, condensed water, and cloud fraction in stratiform clouds examined using aircraft data. Journal of the atmospheric sciences,2000,7(57):1888-1905
    Rocken C, Hove T V, Johnson J, et al. GPS/STORM-GPS sensing of atmospheric water vapor for meteorology [J].J Atmos Oceanic Technol,1995,12:468-478.
    Rosenfeld, D., Gutman, G.,1994. Retrieving microphysical properties near the tops of potential rain clouds by multi-spectral analysis of AVHRR data. Atmospheric Research..34:259-283.
    Rosenfeld D, Lensky IM.1998. Satellite-based in sights in to precipitation form ation processes in continental and maritime convective clouds. Bulletin of American Meteorological Society,79:2457-2476.
    Rosenfeld D, Woodley W L, Lerner A, et a.l 2008. Satellite detection of severe convective storm s by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J Geophysics Res,113,D04208, do:i 101 1029/2007 JD008600.
    Rossow, R. A. S. W. B.1991. "ISCCP Cloud Data Products." American Meteorological Society 72(1): 2-20.
    Rossow, W. B., A. W. Walker, et al.1993. "Comparison of ISCCP and Other Cloud Amounts." Climate 6:2394-2416.
    Scott.Braun. High-resolution simulation of hurricane Bonnie(1998). Part II:water budget. Journal of the atmospheric science.2006,63:43-64
    Sterphane Oury, Xiankang Dou, Jacques Testud. Estimate of precipitation from the Dual-Beam airborne radars in TOGA COARE. Part II Precipitation efficiency in the 9 February 1993 MCS. Journal of applied meteorology.2000,39:2371-2384
    Stephens, G. L., D. G. Vane, et al.2002. "THE CLOUDSAT MISSION AND THE A-TRAIN A New Dimension of Space-Based Observations of Clouds and Precipitation." Bull. Amer. Meteor. Soc.83: 1771-1790.
    Stephens, G.L.,Vane, D.G.,Tanelli, S.,Im, E.,Durden, S.,Rokey, M.,Reinke, D.,Partain, P.,Mace, G.G.,Austin, R.. CloudSat mission: Performance and early science after the first year of operation [J]. J. Geophys. Res,2008, C5:D00.
    Sui C H, Lau K M, Tao W K, et al. The tropical water and energy cycles in a cumulus ensemble model. Part I:equilibrium climate. J Atmos Sci.1994,51:711-728
    Sun Wong, Eric J.Fetzer, Brian H,Kahn et.al. Closing the global water vapor budget with AIRS water vapor, MERRA reanalysis, TRMM and GPCP precipitation, and GSSTF surface Evaporation. Journal of climate.2011,24:6307-6321
    Tao W K, Simpson J, et al. Heating, moisture, and water budgets of tropical and midlatitude squall line:Comarisions and sensitivity to longwave radeation. J Atmos Sci.1993,50:673-690
    Warner J and Fdrake J. Field fests of an airforce remote sensing technique form easuring the distribution of liquid water in convective cloud. J. Atmos Ocean. Technol,1988,5:833-843.
    William B.Rossow,Robert A.Schiffer. ISCCP Cloud Data Products.Bulletin American Meteorological Society,1991,72(1):2-20
    Wolfe D E, Gutman S I. Developing an operational, surface-based, GPS, water vapor observing system for NOAA:Network design and results [J]. J Atmos Oceanic Technol,2000,17 (4):426-440.
    Winker, D.M.,Hunt, W.H.,McGill, M.J.. Initial performance assessment of CALIOP [J]. Geophysical Research Letters,2007,19:L19803.
    Wang J, W B Rossow. Determination of cloud vertical structure from upper-air observations [J]. J Appl Meteor,1995,34:2243-2258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700