层状介质中瑞利面波波场特征分析和反演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于瑞利(Rayleigh)面波波速与横波波速Vs相近且具有速度频散等运动学特性,而被广泛应用于各种地下调查领域,如天然地震研究领域、石油地震勘探领域。近年来,随着计算机技术的飞速发展及工程勘察的需要,人工激发的瞬态瑞利面波法广泛应用于大型土木工程和环境地质方面,如场地分层,岩溶洞穴分布范围勘查,以及在建筑工程的抗震设计等。
     传统对瑞利面波的研究和应用主要是对主动源瑞利面波速度频散特征(运动学特征)的研究和应用。速度频散曲线的提取方法主要是利用频率-波数(F-K)变换或慢度-频率(P-F)变换。为提取速度频散曲线,需要在观测时布置较多个数的检波器和较长的排列,且勘探深度与排列尺度成正比。因此,以观测速度频散特征(运动学特征)为主的传统瑞利面波法,在具体应用中容易受场地等限制,如不适合于人口稠密、空间狭小的城市地区。
     为了解决传统瑞利面波法在实际应用中遇到的困难,探索面波应用的新基理,应从面波的基础理论着手,加强对瑞利面波动力学特征的研究。1989年,Nakamura提出了被动源面波地脉动信息的单点谱比法——H/V谱比(HVSR,面波水平分量与垂直分量的频谱比)法,2004年,H.Arai和K.Tokimatsu利用地脉动H/V谱比对场地Vs结构成功进行反演。该方法利用的则是面波的动力学特征,但是,由于被动源面波法地脉动信息所包含波的主要成分一直具有争议,并且地脉动信息的场源具有随机性和复杂性,使得对地脉动随机波场的正演数值模拟和理论研究仍不完备。
     根据以上所述,从解决传统瑞利面波法应用瓶颈问题出发,本论文提出了两种解决途径,其一,提出了采用少量检波器和短排列方式采集瑞利面波的方法,为此展开了对水平层状介质中瑞利面波波场运动学特征(速度频散特征)的正演数值模拟,讨论了利用窄带滤波或小波包滤波及互相关计算从短排列信号中提取瑞利面波速度频散曲线的方法,以及研究了利用瑞利面波运动学特征对地层Vs结构进行反演的方法;其二,结合地脉动单点谱比法的优缺点,本论文考虑利用主要成分容易确定的人工激发的主动源瑞利面波,即提出了利用单个三分量检波器采集的主动源瑞利面波信息的HVSR(动力学特征)对地层Vs结构进行反演的方法,并围绕该核心内容展开了对水平层状介质中瑞利面波波场动力学特征的正演数值模拟,以及利用瑞利面波动力学特征对地层Vs结构进行反演的方法研究。其中,重点是对瑞利面波动力学特征的研究。在对瑞利面波动力学特征的研究过程中,一方面是对主动源瑞利面波HVSR法的物理机制——椭圆极化特征随频率变化规律的数值模拟研究,研究结果表明,瑞利面波椭圆极化特征与地层Vs结构之间具有良好的对应关系,并创新性的提出了椭圆极化频散的概念,该研究结果奠定了利用主动源瑞利面波动力学特性——HVSR对地层Vs结构进行反演的正演理论基础;另一方面是对利用主动源瑞利面波HVSR特性对地层Vs结构反演的方法研究,研究结果表明,利用主动源瑞利面波动力学特性——HVSR特性能够成功对地层Vs结构进行反演。
     通过以上对水平层状介质中瑞利面波波场特征(运动学和动力学特征)的正演数值模拟研究,以及对利用瑞利面波波场特征(运动学和动力学特征)对地层Vs结构进行反演的研究,本文实现了所有正演及反演算法及其所对应的MATLAB语言程序,并结合工程实例,验证了所有算法及程序的可行性和稳定性。
     本论文研究内容及成果解决了传统瑞利面波法所遇到的场地限制等问题,对于扩展瑞利面波在工程中的应用范围提供了更加完备的基础理论,对相关的工程设计和建筑抗震设计等都具有重要的研究意义,对于完善该学科理论,促进学科发展有极大帮助。
Because of the dispersion characteristic and the similarity of velocity to shear wave, Rayleigh surface wave is widely used in various kinds of underground investigation areas, such as the natural earthquake research, oil seismic exploration, etc. In recent years, along with the rapidly development of computer technology and the need of engineering investigation, transient Rayleigh surface wave method with artificial excitation has been popularized in large civil engineering and environmental geology, such as medium stratification, karst cave distribution range investigation and antiseismic design for building engineering.
     Traditional research and application of Rayleigh surface wave method is based on its velocity dispersion characteristic (kinematic characteristic).The dispersion curve is usually extracted with the method of F-K domain filtering which needs to arrange many geophones and long array during observation, and the exploration depth is proportional to the length of the array. So, the traditional Rayleigh surface wave method is obviously limited to the space of the site, for example, it can not suitable for urban area with dense population and small spaces.
     To solve the application difficulties of the traditional Rayleigh surface wave method, we should exploration new theory with strengthening the research of dynamic characteristic of surface wave on the basic theory. In 1989, Nakamura proposed the H/V spectral ratio method (horizontal to vertical spectral ratio, HVSR) for micro-tremor information with passive source. In 2004, H.Arai and K.Tokimatsu successfully achieved the medium Vs structure by using the HVSR method of micro-tremor. The HVSR method is based on the dynamic characteristic of surface wave. Because of the essential component uncertainty and the randomicity and complexity of micro-tremor information with passive source, the forward numerical simulation of the micro-tremor wave-field is still incomplete till this day.
     In this dissertation, in order to solve the application difficulties in small site spaces limitation for the traditional surface wave method, it puts forward two approaches of inversion. The first is acquiring Rayleigh surface wave with fewer geophones and shorter array. To carry out this approach, the kinematic characteristic (verlocity dispersion characteristic) of Rayleigh surface wave field has been studied using numerical simulation, and the method of narrowband pass filtering and wavelet packet filtering have been discussed in this dissertation, which are used to extract the dispersion curve from time domain signial with shorter array. The second is using the HVSR characteristic (dynamic characteristic) of active source Rayleigh surface wave information acquired with single three-component geophone, combined with the advantages and disadvantages of micro-tremor HVSR method. Around this content, it studies not only dynamic characteristic of Rayleigh surface wave field with active source using numerical simulation method, but also the inversion method with the dynamic characteristic. About the two approaches, the second one dealt wth the dynamic characteristic of Rayleigh surface wave is mainly studied in the dissertation, and it is studied on two hands. On the one hand, the study is on the elliptic polarization characteristics of Rayleigh surface wave and the concept of elliptic polarization dispersion is put forword creatively, which is the physical mechanism for active source HVSR method, and the result of which shows that it has good corresponding relationship between the medium Vs structure and the elliptic polarization characteristics; on the other hand, the study is on the inversion method with using the HVSR characteristic, the dynamic characteristic of Rayleigh surface wave, the result of which shows that the medium Vs structure can be successfully achieved by inversion with the HVSR characteristic of Rayleigh surface wave with active source.
     Through the research of Rayleigh surface wave field characteristic (kinematic and dynamic characteristic) by numerical simulating for horizontal layered medium and the research of medium Vs structure inversion by using the field characteristic, the dissertation has realized not only the forward and inversion algorithms, but also the corresponding MATLAB language programs. Combined with the practical work, it is has been verified that the algorithms and programs is feasible and stable.
     The research results of this dissertation can successfully solve the application difficulties of the traditional Rayleigh surface wave method. It provides more perfect basic theory for expanding the applicable range in engineering. It not only has important research meanings for antiseismic design of building engineering, but also is very helpful for improving the scientific theory and promoting the development of the subject.
引文
[1]Rayleigh, L.,1885. On waves propagated along the plane surface of an elasticsolid. Proc. Lond. Math. Soc., vol.17, pp.4-11,1887 (read in 1885);
    [2]Jianghai Xia, Richard D. Miller, and Choon B.Park, Estimation of near surface shear wave velocity by inversion of Rayleigh waves, GEOPHYSICS.VOL.64.NO.3 (MAY-JUNE 1999); P.691-700,8FIGS,2 TABLES;
    [3]Dorman J, Ewing M. Numerical inversion of seismic surface wave dispersion data and crust-mantle structure in the New York-Pennsylvania am [J]. Journal of Geophysical Research,1962,67:5227-5241;
    [4]Geophysical Service, Active and Passive Surface wave Techniques, www.geovision.com;
    [5]Capon, J.,1969:High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 57(8),1408-1419.
    [6]Aki, K.,1957, Space and time spectra of statinary stochastic waves with special reference to microtreors. Bull. Earthq. Res. Inst.,35,415-456;
    [7]Hortencia Flores Estrella, Jorge Aguirre Gonzalez, SPAC:An alternative method to estimation earthquake site effects in mexico city, Geofisica Internacional (2003), Vol.42, No.2, pp.227-236;
    [8]Nakamura, Y. (1989)., A method for dynamic characteristics estimation of subsurface using microtremors on the ground surface, Q. Rept. RTRI Japan 30,25-33;
    [9]Arai, H. and K. Tokimatsu (2004). S-Wave Velocity Profiling by Inversion of Microtremor H/V Spectrum.. Bull. Seism. Soc. Am.,94(1), pp.53-63;
    [10]Arai, H. and K. Tokimatsu,用地脉动谱反演S波速度剖面,世界地震译丛,2006(2),p64-74;
    [11]Lachet, C. and Bard, P.Y. (1994), Numerical and Theoretical Investigations on the Possibilities and Limitations of Nakamura's Technique., J. Phys. Earth,42, pp.377-397;
    [12]Nogoshi, M. and Igarashi, T. (1971). On the Amplitude Characteristics of Microtremor-part2 (in Japanese with English abstract), Jour. Seiism. Soc. Japan,24,26-40;
    [13]Konno, K. and Ohmachi, T. (1998). Ground-Motion Characteristics Estimated from Spectral Ratio between Horizontal and Vertical Components of Microtremor, Bull. Soc. Am,88:1, 228-241;
    [14]Tokimatsu, K., Shinzawa, K., and Kuwayama, S.1992, Use of short-period microtremors for Vs profiling, J. Geotech. Rngrg. ASCE.118(10):1544-1588;
    [15]Horike, M.1985, Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to basement in urbanized area, J. Phys. Earth.33:59-96;
    [16]Matsushima, T. and Okada, H.1990. An exploration methof using microtremors (2)-An pxperiment to identify Love waves in long-period microtremors-. Proc. The 82nd SEGF Conf: 5-8(in Japanese);
    [17]Tokimatsu. K. Arai, H., and Asaka, Y.1997. Deep shera-wave structure and earthquake ground motion characteristics in Sumiyoshi area, Kobe city, based on microtremor measurements. J.Struct. Constr. Engng AIJ.491:37-45 (in Japanese);
    [18]Yutaka Nakamura, On the H/V spectrum, The 14th world conference on earthquake engineering, October,2008, Beijing, China;
    [19]Tokimatsu, K. and Miyadera, Y.1992, Characteristics of Rayleigh waves in microtremors and their relation to underground structures, J.Struct, Constr, Engng, AIJ.439:81-87 (in Japanese);
    [20]Arai, H. and K. Tokimatsu (2000). Effects of Rayleigh and Love Waves on microtremors H/V spectra. Proc.12th World Conf. on Earthquake Engineering, paper 2232, CD-ROM;
    [21]郭明珠,谢礼立,凌贤长,弹性介质面波地脉动单点谱比法研究,岩土工程学报,Vol.26,No.4,2004:
    [22]郭明珠,谢礼立,闫维明,马东辉,体波地脉动单点谱比法研究,岩土力学,Vol.24,No.1,2003:
    [23]Thomson W T. Transmission of elastic waves through a stratified solid medium. Journal of applied physics,1950,21;89-93;
    [24]Haskall N A. The dispersion of surface waves on multilayered media. Bulletin of seismological society of America,1953,(43); 17-34;
    [25]Rosebaum, J H. A note on the computation of Rayleigh wave dispersion curves for layered elastic media [J]. Bull seis. Soc Am.,1964,53(3);1013-1019;
    [26]Thrower E N. The computation of the dispersion of elastic waves in layered media [J]. J sound vib,1965,2(3);210-226;
    [27]Biot M A. The theory of pmpogation of elastic wave8 in a fluid-saturated porous solid: I. Low-frequency range[J]. J Acoust Soc Am.,1956,28:168-178;
    [28]Biot M A. The theory of propogation of elastic waves in afluid-saturated porous solid: (?)I. Higher-frequency range [J]. J Acoust Soc Am.,1956,28:179-191.
    [29]Biot M A. Generalized theory of acoustic propagation inporous dissipative media[J]. J Acoust Soc Am,1962,34:1254-1264;
    [30]Harkrider, D. G. 1964. Surface waves in multilayered elastic media, Part 1. Bull. Seism. Soc. Am.54(2):627-679.
    [31]Knopoff L. A matrix method for elastic wave problems[J]. Bull seism soc Am.,1964,54 (1): 431-438;
    [32]Abo-Zena.A dispersion function computation for unlimited frequency values[J]. Geophys J R. astr soc,1979,(55);
    [33]Schwab, F A, and knopoff, L Seismic surface waves. Methods in Computational physics [M]. BA Bolt, ed., Academic press, Inc., San Diego,11:87-180.
    [34]Peter M. Manning and Gary F. Margrave, Finite difference modeling analysis:dispersion and stability, SEG 2000 Expanded abstract;
    [35]Garotta R, Granger P. Dariu H. Combined interpretation of PP and PS data provides direct access to elastic rock properties [J]. The Leading Edge.2002,21(6):532-535;
    [36]DeAngelo M V, Reminqton R, M urray P E, et al. M ulticomponent seismic technology for imaging deep gas prospects[J]. The Leading Edge,2004,23(12);1270-1281;
    [37]Stewart J, Shatilo A, Jing C.et al. A comparison of streamer and OBC seismic data at Beryl Alpha Field, UK North Sea[J]. Expanded Abstracts of 74th Annual Internet SEG Mtg,2004, 841-844;
    [38]赵镨,欧美应用地球物理现状——多波地震勘探[J].中国煤田地质,1994,16(6):47-49;
    [39]朱成宏.从EAGE第66届年会看多分量地震技术的新进展[J].勘探地球物理进展,2004,27(4)300-307;
    [40]詹正彬,姚姚编,多波及横波地震勘探,普通高等教育地质矿产类规划教材,地质出版社,1994.12;
    [41]李锦飞,TRES-I型多分量瑞利波勘探仪的研究及应用,物探与化探,1998,22(2),129-133;
    [42]屈连忠,多分量瑞利波勘探系统和试验,煤田地质与勘探,1997(4),50-53。
    [43]姚姚,多波地震勘探的发展历程和趋势展望,勘探地球物理进展,2005,28(3);
    [44]吴世明,曾国熙,陈云敏,叶贵如.利用表面波谱分析测定土层波速[J].地震工程与工程振动,1988,8(9):27-32;
    [45]夏唐代,陈云敏,吴世明.利用瑞雷波速度弥散特性反演地基参数[J].振动工程学报,1991,4(4):31-37;
    [46]张忠苗,魏玉伦,陈云敏,吴世明.瞬态面波测试技术在地基处理评价中的应用[J].物探与化探,1992,16(1):48-55;
    [47]陈云敏,吴世明,曾国熙.表面波谱分析方法及其应用[J].岩土工程学报,1992,14(3):61-65:
    [48]陈云敏,吴世明,夏唐代.用表面波谱分析方法检测道路结构的质量[J].浙江大学学报,1993,27(3):309-314;
    [49]许建聪,简文斌,尚岳全,邱海容,孙红月,地脉动在福州市区地基土层场地评价中的应用,岩石力学与工程学报,Vol.23,No.12,2004;
    [50]夏唐代,张忠苗,吴世明Rayleigh面波法原理的数值模拟[J].浙江大学学报,30(3):277-285;
    [51]陈龙珠,黄秋菊,夏唐代.饱和地基中瑞利波的弥散特性[J].岩土工程学报.1998,20(3):6-9;
    [52]章在墉,李文艺,陶能付,长周期地面脉动在地震小区划中的应用[J],同济大学学报,1994,22(4),421-426;
    [53]师黎静,陶夏新,Robert Kayen,石海量,颜世菊,场地瑞利面波频散特性的测试方法研究,上海力学,Vol.20,No.3,1999;
    [54]董连成,陶夏新,师黎静,颜世菊,利用地脉动台阵观测推算Love波频散曲线,世界地震工程,Vol.23,No.2,2007;
    [55]蒋通,崔哲,李文艺,层状介质中的瑞雷面波理论及其在场地脉动观测中的应用,上海力学,Vol.20,No.3,1999,252-258;
    [56]严寿民,瑞雷面波勘探方法[J],物探与化探,1992,16(2):113-119;
    [57]Chang F K. Rayleigh wave dispersion technique for rapid subsurface exploration [A].第42届国际地球物理年会,1973;
    [58]佐藤长范.用GR—810激光激振系统进行地基勘察[M].日本VIC株式会社,1986;
    [59]Stoke, II K H, Nazarian S. Effectiveness of ground improvement from spectral analysis of surface waves [A].In; Proc.8th. Euro Conf on Soil Mech and Found Eng.1983;
    [60]Barbara A L, Kenneth H, Stoke II. Application of SASW Method Underwater[J]. Journal of Geotechnical and Geoenvionmental engineering,1998,523-531;
    [61]Park,C.B.,Miller,R.D.,Xia,J.,1996, Multi-channel analysis of surface waves using vibroseis(MASWV).Exp.Abstrs.of Technical Program with Biographies, Society of Exploration Geophysicists,66th Annual Meeting,Denver,Colorado. Society of Exploration Geophysicists Tulsa, OK, pp.68-71;
    [62]Xia, J., Miller. R.D., Park, C.B.,1997. Estimation of shear wave velocity in a compreeible Gibsoon half-space by inverting Rayleigh wave phase velocity. Exp.Abstrs.of Technical Program with Biographies, Society of Exploration Geophysicists,67th Annual Meeting, Dallas, TX. Society of Exploration Geophysicists Tulsa, OK, pp.1917-1920;
    [63]Xia, J., Miller, R.D., Park, C.B.,1998. Construction of vertical section of near-surface shear-wave velocity from groud roll. Exp.Abstrs.of Technical Program. The Society of Exploration Geophysicists and the Chinese Petroleum Society Beijing 98'International Conference. Chines Petroleum Society, Beijing, pp.29-33;
    [64]Park, C.B., Miller, R.D., Xia, J.,1998. Imaging dispersion curves of surface waves on multi-channel record. Exp. Abstrs. Of Technical Program with Biographies, Society of Exploration Geophysicists,68th Annual Meeting, New Orleans, Louisiana. Society of Exploration Geophysicists Tulsa, OK, pp.1377-1380;
    [65]Park, C.B., Miller, R.D., Xia, J.,1999a, Muti-channel analysis of surface waves (MASW). Geophysics 64,800-808;
    [66]Miller, R.D., Xia, J., Park, C.B.,Ivanov,J.,1999.Muti-channel analysis of surface waves to map bedrock. Lead. Edge 18,1392-1396;
    [67]Xia, J., Miller, R.D., Park, C.B., Hunter, J.A., Harris, J.B.,2000. Comparing shear-wave velocity profiles grom MASW with borehole measurmeants in unconsolidated sediments, Fraser River Delta, B.C., Canada. J. Environ. Eng. Geophys.5(3),1-13;
    [68]Jianghai Xia, Richard D.Miller, Choon B. Park, Gang Tian,2002. Inversion of high frequency surface waves with fundamental and higer modes. Journal of Applied Geophysics 52(2003) 45-57;
    [69]杨学林,吴世明.考虑高阶模态时SASW法的反演[J].浙江大学学报,1996,30(2):149-156:
    [70]吴世明,土介质中的波[M],北京:科学出版社,1997,383-399;
    [71]杨成林,瑞雷波勘探原理及其应用[J].物探与化探,1989,13(6):465-468;
    [72]朱裕林,瑞利波勘探在工程勘察中的应用[J].工程勘探,1991(1):67-70;
    [73]刘云桢,王振东,瞬态面波法的数据采集处理系统及其应用实例[J],物探与化探,1996,20(1):28-34;
    [74]胡家富,段永康,胡毅力等,利用Rayleigh波反演浅土层的剪切波速度结构[J],地球物理学报。1999,42(3):393-400;
    [75]胡家富.Rayleigh波在工程勘探中的解释方法探讨[J].岩土工程学报,1999.25(5): 599-602;
    [76]胡家富,段永康.影响面波勘探精度的因素探讨[J],地震研究,2000,23(3):333-328;
    [77]张碧星,肖柏勋,杨文杰,曹思远,牟永光.瑞利波勘探中“之”形频散曲线的形成机理及反演研究[J].地球物理学报,2000,43(4):557-567;
    [78]关小平,黄嘉正,周鸿秋.工程勘探中稳态瑞利波法解释理论的探讨[J].地球物理学报,1993,36(1):96-105;
    [79]黄嘉正,周鸿秋,关小平.工程地质中瑞利波勘探的理论初探[J].物探和化探,1991,15(4):268-277;
    [80]崔占荣,张世洪,张俊喻.瞬态瑞雷波勘探中一些问题的探讨[J].物探与化探,1995,19(5):367-377;
    [81]崔建文,乔森,樊耀新.瞬态面波勘探技术在工程地质中的应用[J].岩土工程学报,1996,18(3):3340;
    [82]夏宇靖,稳态瑞雷波法的勘探精度[J].工程勘探,1997,9(2):58-62;
    [83]祁生文,孙进忠,万志清.瞬态瑞雷波勘探方法的一点改进[J].辽宁工程技术大学学报(自然科学版)2001,20(4),466-468;
    [84]靳洪晓,瞬态面波CT研究原理及其岩土工程勘探应用[D]:[硕士学位论文].北京:中国科学院地质研究所,1999;
    [85]王兴泰,赵东.瑞利波勘探:应用、现状和问题[J].世界地质,1995,14(2):87-90;
    [86]师黎静,陶夏新,赵纪生,地脉动台阵方法的有效性分析,岩石力学与工程学报,Vol.25,No.8,2006:
    [87]师黎静,陶夏新,地脉动方法最新研究进展,地震工程与工程振动,Vol.27,No.6,2007;
    [88]董连成,陶夏新,师黎静,李广影,利用地脉动台阵记录反演场地浅层Vs结构,岩土力学,Vol.29,No.2,2008;
    [89]杨学林,吴世明,利用短周期地脉动推断深层地基S波速度,振动工程学报,Vol.10,No.2,1997:
    [90]陈仲候、王兴泰、杜世汉编,《工程与环境物探教程》,地质出版社,1999;
    [91]王兴泰,《工程与环境物探新方法新技术》,瑞利面波勘探,地质出版社,1996;
    [92]储绍良,《矿井物探应用》,瑞利面波勘探,煤炭工业出版社,1995;
    [93]郑仙种,崔力科编着,波动理论在地震勘探中的应用,石油出版社,1987:
    [94]朱介寿等编著,地震学中的计算方法,地震出版社,1988;
    [95]长春地质学院,成都地质学院,武汉地质学院合编,地震勘探——原理和方法,地质出版社,1980。
    [96]黄德济,贺振华,包吉山编著,地震勘探数字处理,地质出版社,1990;
    [97]Sheriff, R. E.,1991. Encyclopedic dictionary of exploration geophysics,3rd ed. Society of Exploration Geophysicists, Tulsa, OK;
    [98]郭君,地下洞穴的瑞利面波波场特征有限元数值模拟研究(学位论文),2008;
    [99]Viktorov I. A. Rayleigh and Lamb Waves:physical theory and applications[M].New York Plenum Press,1967;
    [100]Aki, K., Richards, P.G.,定量地震学,1980;
    [101]地震面波测深指导,Surface Wave Sounding Guid-China 2000;
    [102]Babuskan, V., Cara, M.,1991.Seismic anisotropy in the earth. Kluwer Academic Publishing, Boston;
    [103]彭文,利用石油勘探面波信息调查表层结构的方法研究(博士论文),2007;
    [104]陶莅宁,侯广春,波速测试技术在工程地质勘察中的应用,山东煤炭科技,No.2,2008,p20-21;
    [105]任健,多道瞬态面波法检测技术在工程勘察中的应用,陕西水利水电技术,No.1,1999,p45-51;
    [106]赵明杰,张桂玉,刘宾,瑞利面波在地质勘察中的应用,华北地震科学,2005,Vol.23,No.3.p31-33;
    [107]杜正涛,刘丽敏,程道伟,瑞雷面波勘探技术在第四系分层方面的应用,物探与化探,。1999.8,Vol.23.,No.4.,p277-282;
    [108]张新兵,王家林,吴健生,混合最优化算法在地球物理学中的应用现状与前景,地球物理学进展.2003.18(2);
    [109]Ohta, Y. (1963). On the phase velocity and amplitude distributioin of Rayleigh type waves in stratified double layer (in case of λ≠μ) (in Japanese with English abstract), Zisin,2:16, 12-25;
    [110]罗省贤,李录明,F-K域多波变速波场分离,物探化探计算技术,Vol.21,No.2,1999.3,p126-32:
    [111]吴律,武克奋,孙力,τ-p变换方法及其在地震资料处理中的应用(Ⅰ),石油物探,Vol.25, No.1,1986.3, P37-53;
    [112]胡昌华,张军波,夏军,张伟编著,基于MATLAB的系统分析与设计——小波分析,西安电子科技大学出版社,2001.9;
    [113]严光洪,秦晓辉,振动声窄带信号采集与分析,鱼雷技术,Vol.13,No.4,2005.12;
    [114]陈冬芳,薛继伟,张漫,全局最优化算法及其应用,大庆石油学院学报,2005,29(1);
    [115]赵东,王光杰,王兴泰,孙仁国,用遗传算法进行瑞利面波反演,物探与化探,1995,19(3);
    [116]罗润林,张小路,电阻率测深数据的遗传算法和最小二乘法反演,林工学院学报,2004,24(2);
    [117]杨荣富,丁晶,金菊良,与局部微调方法相结合的遗传算法,水科学进展,1999,10(2);
    [118]王晓丽,孙萍,种全局优化的计算方法——遗传算法,吉林建筑工程学院学报,2000(3);
    [119]田雨波,钱鉴,生佳根,计算表面波特征方程的一种新的数值方法,电波科学学报,2006.21(6);
    [120]陈国龙,蔡金锭,遗传算法在求解全局优化问题中的应用,福卅大学学报(自然科学版),1999,27(5);
    [121]石耀霖,金文,面波频散反演地球内部构造的遗传算法,地球物理学报,1995.38(2);
    [122]吴建平,明跃红,曾融生,遗传算法中的光滑约束反演及其在青藏高原面波研究中的应用,地震学报,2001,23(1).;
    [123]程乾生编著,信号数字处理的数学原理,石油工业出版社,1981.5;
    [124]西南交通大学九里校区教职工经济适用房(南区)波速测试报告,2006.11;
    [125]何世聪,瑞雷波频散曲线提取方法的研究(硕士学位论文),中国地质大学(北京),2005.5:
    [126]卢建旗,马建国,多道面波勘探技术在水利工程中的应用,黑龙江水利科技,2005(1);
    [127]物探局等,地震勘探数字技术(第二册)[M].北京:科学出版社,1974。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700